forked from KolibriOS/kolibrios
1533 lines
42 KiB
C
1533 lines
42 KiB
C
|
/*
|
||
|
* Copyright © 2004 Carl Worth
|
||
|
* Copyright © 2006 Red Hat, Inc.
|
||
|
* Copyright © 2008 Chris Wilson
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it either under the terms of the GNU Lesser General Public
|
||
|
* License version 2.1 as published by the Free Software Foundation
|
||
|
* (the "LGPL") or, at your option, under the terms of the Mozilla
|
||
|
* Public License Version 1.1 (the "MPL"). If you do not alter this
|
||
|
* notice, a recipient may use your version of this file under either
|
||
|
* the MPL or the LGPL.
|
||
|
*
|
||
|
* You should have received a copy of the LGPL along with this library
|
||
|
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
|
||
|
* You should have received a copy of the MPL along with this library
|
||
|
* in the file COPYING-MPL-1.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License
|
||
|
* Version 1.1 (the "License"); you may not use this file except in
|
||
|
* compliance with the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
|
||
|
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
|
||
|
* the specific language governing rights and limitations.
|
||
|
*
|
||
|
* The Original Code is the cairo graphics library.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is Carl Worth
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
* Carl D. Worth <cworth@cworth.org>
|
||
|
* Chris Wilson <chris@chris-wilson.co.uk>
|
||
|
*/
|
||
|
|
||
|
/* Provide definitions for standalone compilation */
|
||
|
#include "cairoint.h"
|
||
|
|
||
|
#include "cairo-error-private.h"
|
||
|
#include "cairo-freelist-private.h"
|
||
|
#include "cairo-combsort-inline.h"
|
||
|
|
||
|
typedef cairo_point_t cairo_bo_point32_t;
|
||
|
|
||
|
typedef struct _cairo_bo_intersect_ordinate {
|
||
|
int32_t ordinate;
|
||
|
enum { EXACT, INEXACT } exactness;
|
||
|
} cairo_bo_intersect_ordinate_t;
|
||
|
|
||
|
typedef struct _cairo_bo_intersect_point {
|
||
|
cairo_bo_intersect_ordinate_t x;
|
||
|
cairo_bo_intersect_ordinate_t y;
|
||
|
} cairo_bo_intersect_point_t;
|
||
|
|
||
|
typedef struct _cairo_bo_edge cairo_bo_edge_t;
|
||
|
|
||
|
typedef struct _cairo_bo_deferred {
|
||
|
cairo_bo_edge_t *other;
|
||
|
int32_t top;
|
||
|
} cairo_bo_deferred_t;
|
||
|
|
||
|
struct _cairo_bo_edge {
|
||
|
int a_or_b;
|
||
|
cairo_edge_t edge;
|
||
|
cairo_bo_edge_t *prev;
|
||
|
cairo_bo_edge_t *next;
|
||
|
cairo_bo_deferred_t deferred;
|
||
|
};
|
||
|
|
||
|
/* the parent is always given by index/2 */
|
||
|
#define PQ_PARENT_INDEX(i) ((i) >> 1)
|
||
|
#define PQ_FIRST_ENTRY 1
|
||
|
|
||
|
/* left and right children are index * 2 and (index * 2) +1 respectively */
|
||
|
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
|
||
|
|
||
|
typedef enum {
|
||
|
CAIRO_BO_EVENT_TYPE_STOP,
|
||
|
CAIRO_BO_EVENT_TYPE_INTERSECTION,
|
||
|
CAIRO_BO_EVENT_TYPE_START
|
||
|
} cairo_bo_event_type_t;
|
||
|
|
||
|
typedef struct _cairo_bo_event {
|
||
|
cairo_bo_event_type_t type;
|
||
|
cairo_point_t point;
|
||
|
} cairo_bo_event_t;
|
||
|
|
||
|
typedef struct _cairo_bo_start_event {
|
||
|
cairo_bo_event_type_t type;
|
||
|
cairo_point_t point;
|
||
|
cairo_bo_edge_t edge;
|
||
|
} cairo_bo_start_event_t;
|
||
|
|
||
|
typedef struct _cairo_bo_queue_event {
|
||
|
cairo_bo_event_type_t type;
|
||
|
cairo_point_t point;
|
||
|
cairo_bo_edge_t *e1;
|
||
|
cairo_bo_edge_t *e2;
|
||
|
} cairo_bo_queue_event_t;
|
||
|
|
||
|
typedef struct _pqueue {
|
||
|
int size, max_size;
|
||
|
|
||
|
cairo_bo_event_t **elements;
|
||
|
cairo_bo_event_t *elements_embedded[1024];
|
||
|
} pqueue_t;
|
||
|
|
||
|
typedef struct _cairo_bo_event_queue {
|
||
|
cairo_freepool_t pool;
|
||
|
pqueue_t pqueue;
|
||
|
cairo_bo_event_t **start_events;
|
||
|
} cairo_bo_event_queue_t;
|
||
|
|
||
|
typedef struct _cairo_bo_sweep_line {
|
||
|
cairo_bo_edge_t *head;
|
||
|
int32_t current_y;
|
||
|
cairo_bo_edge_t *current_edge;
|
||
|
} cairo_bo_sweep_line_t;
|
||
|
|
||
|
static cairo_fixed_t
|
||
|
_line_compute_intersection_x_for_y (const cairo_line_t *line,
|
||
|
cairo_fixed_t y)
|
||
|
{
|
||
|
cairo_fixed_t x, dy;
|
||
|
|
||
|
if (y == line->p1.y)
|
||
|
return line->p1.x;
|
||
|
if (y == line->p2.y)
|
||
|
return line->p2.x;
|
||
|
|
||
|
x = line->p1.x;
|
||
|
dy = line->p2.y - line->p1.y;
|
||
|
if (dy != 0) {
|
||
|
x += _cairo_fixed_mul_div_floor (y - line->p1.y,
|
||
|
line->p2.x - line->p1.x,
|
||
|
dy);
|
||
|
}
|
||
|
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_bo_point32_compare (cairo_bo_point32_t const *a,
|
||
|
cairo_bo_point32_t const *b)
|
||
|
{
|
||
|
int cmp;
|
||
|
|
||
|
cmp = a->y - b->y;
|
||
|
if (cmp)
|
||
|
return cmp;
|
||
|
|
||
|
return a->x - b->x;
|
||
|
}
|
||
|
|
||
|
/* Compare the slope of a to the slope of b, returning 1, 0, -1 if the
|
||
|
* slope a is respectively greater than, equal to, or less than the
|
||
|
* slope of b.
|
||
|
*
|
||
|
* For each edge, consider the direction vector formed from:
|
||
|
*
|
||
|
* top -> bottom
|
||
|
*
|
||
|
* which is:
|
||
|
*
|
||
|
* (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y)
|
||
|
*
|
||
|
* We then define the slope of each edge as dx/dy, (which is the
|
||
|
* inverse of the slope typically used in math instruction). We never
|
||
|
* compute a slope directly as the value approaches infinity, but we
|
||
|
* can derive a slope comparison without division as follows, (where
|
||
|
* the ? represents our compare operator).
|
||
|
*
|
||
|
* 1. slope(a) ? slope(b)
|
||
|
* 2. adx/ady ? bdx/bdy
|
||
|
* 3. (adx * bdy) ? (bdx * ady)
|
||
|
*
|
||
|
* Note that from step 2 to step 3 there is no change needed in the
|
||
|
* sign of the result since both ady and bdy are guaranteed to be
|
||
|
* greater than or equal to 0.
|
||
|
*
|
||
|
* When using this slope comparison to sort edges, some care is needed
|
||
|
* when interpreting the results. Since the slope compare operates on
|
||
|
* distance vectors from top to bottom it gives a correct left to
|
||
|
* right sort for edges that have a common top point, (such as two
|
||
|
* edges with start events at the same location). On the other hand,
|
||
|
* the sense of the result will be exactly reversed for two edges that
|
||
|
* have a common stop point.
|
||
|
*/
|
||
|
static inline int
|
||
|
_slope_compare (const cairo_bo_edge_t *a,
|
||
|
const cairo_bo_edge_t *b)
|
||
|
{
|
||
|
/* XXX: We're assuming here that dx and dy will still fit in 32
|
||
|
* bits. That's not true in general as there could be overflow. We
|
||
|
* should prevent that before the tessellation algorithm
|
||
|
* begins.
|
||
|
*/
|
||
|
int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x;
|
||
|
int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x;
|
||
|
|
||
|
/* Since the dy's are all positive by construction we can fast
|
||
|
* path several common cases.
|
||
|
*/
|
||
|
|
||
|
/* First check for vertical lines. */
|
||
|
if (adx == 0)
|
||
|
return -bdx;
|
||
|
if (bdx == 0)
|
||
|
return adx;
|
||
|
|
||
|
/* Then where the two edges point in different directions wrt x. */
|
||
|
if ((adx ^ bdx) < 0)
|
||
|
return adx;
|
||
|
|
||
|
/* Finally we actually need to do the general comparison. */
|
||
|
{
|
||
|
int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y;
|
||
|
int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y;
|
||
|
cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
|
||
|
cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
|
||
|
|
||
|
return _cairo_int64_cmp (adx_bdy, bdx_ady);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to compare the x-coordinates of a pair of lines for a particular y,
|
||
|
* without loss of precision.
|
||
|
*
|
||
|
* The x-coordinate along an edge for a given y is:
|
||
|
* X = A_x + (Y - A_y) * A_dx / A_dy
|
||
|
*
|
||
|
* So the inequality we wish to test is:
|
||
|
* A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
|
||
|
* where ∘ is our inequality operator.
|
||
|
*
|
||
|
* By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
|
||
|
* all positive, so we can rearrange it thus without causing a sign change:
|
||
|
* A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
|
||
|
* - (Y - A_y) * A_dx * B_dy
|
||
|
*
|
||
|
* Given the assumption that all the deltas fit within 32 bits, we can compute
|
||
|
* this comparison directly using 128 bit arithmetic. For certain, but common,
|
||
|
* input we can reduce this down to a single 32 bit compare by inspecting the
|
||
|
* deltas.
|
||
|
*
|
||
|
* (And put the burden of the work on developing fast 128 bit ops, which are
|
||
|
* required throughout the tessellator.)
|
||
|
*
|
||
|
* See the similar discussion for _slope_compare().
|
||
|
*/
|
||
|
static int
|
||
|
edges_compare_x_for_y_general (const cairo_bo_edge_t *a,
|
||
|
const cairo_bo_edge_t *b,
|
||
|
int32_t y)
|
||
|
{
|
||
|
/* XXX: We're assuming here that dx and dy will still fit in 32
|
||
|
* bits. That's not true in general as there could be overflow. We
|
||
|
* should prevent that before the tessellation algorithm
|
||
|
* begins.
|
||
|
*/
|
||
|
int32_t dx;
|
||
|
int32_t adx, ady;
|
||
|
int32_t bdx, bdy;
|
||
|
enum {
|
||
|
HAVE_NONE = 0x0,
|
||
|
HAVE_DX = 0x1,
|
||
|
HAVE_ADX = 0x2,
|
||
|
HAVE_DX_ADX = HAVE_DX | HAVE_ADX,
|
||
|
HAVE_BDX = 0x4,
|
||
|
HAVE_DX_BDX = HAVE_DX | HAVE_BDX,
|
||
|
HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
|
||
|
HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX
|
||
|
} have_dx_adx_bdx = HAVE_ALL;
|
||
|
|
||
|
/* don't bother solving for abscissa if the edges' bounding boxes
|
||
|
* can be used to order them. */
|
||
|
{
|
||
|
int32_t amin, amax;
|
||
|
int32_t bmin, bmax;
|
||
|
if (a->edge.line.p1.x < a->edge.line.p2.x) {
|
||
|
amin = a->edge.line.p1.x;
|
||
|
amax = a->edge.line.p2.x;
|
||
|
} else {
|
||
|
amin = a->edge.line.p2.x;
|
||
|
amax = a->edge.line.p1.x;
|
||
|
}
|
||
|
if (b->edge.line.p1.x < b->edge.line.p2.x) {
|
||
|
bmin = b->edge.line.p1.x;
|
||
|
bmax = b->edge.line.p2.x;
|
||
|
} else {
|
||
|
bmin = b->edge.line.p2.x;
|
||
|
bmax = b->edge.line.p1.x;
|
||
|
}
|
||
|
if (amax < bmin) return -1;
|
||
|
if (amin > bmax) return +1;
|
||
|
}
|
||
|
|
||
|
ady = a->edge.line.p2.y - a->edge.line.p1.y;
|
||
|
adx = a->edge.line.p2.x - a->edge.line.p1.x;
|
||
|
if (adx == 0)
|
||
|
have_dx_adx_bdx &= ~HAVE_ADX;
|
||
|
|
||
|
bdy = b->edge.line.p2.y - b->edge.line.p1.y;
|
||
|
bdx = b->edge.line.p2.x - b->edge.line.p1.x;
|
||
|
if (bdx == 0)
|
||
|
have_dx_adx_bdx &= ~HAVE_BDX;
|
||
|
|
||
|
dx = a->edge.line.p1.x - b->edge.line.p1.x;
|
||
|
if (dx == 0)
|
||
|
have_dx_adx_bdx &= ~HAVE_DX;
|
||
|
|
||
|
#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
|
||
|
#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)
|
||
|
#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)
|
||
|
switch (have_dx_adx_bdx) {
|
||
|
default:
|
||
|
case HAVE_NONE:
|
||
|
return 0;
|
||
|
case HAVE_DX:
|
||
|
/* A_dy * B_dy * (A_x - B_x) ∘ 0 */
|
||
|
return dx; /* ady * bdy is positive definite */
|
||
|
case HAVE_ADX:
|
||
|
/* 0 ∘ - (Y - A_y) * A_dx * B_dy */
|
||
|
return adx; /* bdy * (y - a->top.y) is positive definite */
|
||
|
case HAVE_BDX:
|
||
|
/* 0 ∘ (Y - B_y) * B_dx * A_dy */
|
||
|
return -bdx; /* ady * (y - b->top.y) is positive definite */
|
||
|
case HAVE_ADX_BDX:
|
||
|
/* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
|
||
|
if ((adx ^ bdx) < 0) {
|
||
|
return adx;
|
||
|
} else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */
|
||
|
cairo_int64_t adx_bdy, bdx_ady;
|
||
|
|
||
|
/* ∴ A_dx * B_dy ∘ B_dx * A_dy */
|
||
|
|
||
|
adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
|
||
|
bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
|
||
|
|
||
|
return _cairo_int64_cmp (adx_bdy, bdx_ady);
|
||
|
} else
|
||
|
return _cairo_int128_cmp (A, B);
|
||
|
case HAVE_DX_ADX:
|
||
|
/* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
|
||
|
if ((-adx ^ dx) < 0) {
|
||
|
return dx;
|
||
|
} else {
|
||
|
cairo_int64_t ady_dx, dy_adx;
|
||
|
|
||
|
ady_dx = _cairo_int32x32_64_mul (ady, dx);
|
||
|
dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx);
|
||
|
|
||
|
return _cairo_int64_cmp (ady_dx, dy_adx);
|
||
|
}
|
||
|
case HAVE_DX_BDX:
|
||
|
/* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
|
||
|
if ((bdx ^ dx) < 0) {
|
||
|
return dx;
|
||
|
} else {
|
||
|
cairo_int64_t bdy_dx, dy_bdx;
|
||
|
|
||
|
bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
|
||
|
dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx);
|
||
|
|
||
|
return _cairo_int64_cmp (bdy_dx, dy_bdx);
|
||
|
}
|
||
|
case HAVE_ALL:
|
||
|
/* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */
|
||
|
return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
|
||
|
}
|
||
|
#undef B
|
||
|
#undef A
|
||
|
#undef L
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to compare the x-coordinate of a line for a particular y wrt to a
|
||
|
* given x, without loss of precision.
|
||
|
*
|
||
|
* The x-coordinate along an edge for a given y is:
|
||
|
* X = A_x + (Y - A_y) * A_dx / A_dy
|
||
|
*
|
||
|
* So the inequality we wish to test is:
|
||
|
* A_x + (Y - A_y) * A_dx / A_dy ∘ X
|
||
|
* where ∘ is our inequality operator.
|
||
|
*
|
||
|
* By construction, we know that A_dy (and (Y - A_y)) are
|
||
|
* all positive, so we can rearrange it thus without causing a sign change:
|
||
|
* (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
|
||
|
*
|
||
|
* Given the assumption that all the deltas fit within 32 bits, we can compute
|
||
|
* this comparison directly using 64 bit arithmetic.
|
||
|
*
|
||
|
* See the similar discussion for _slope_compare() and
|
||
|
* edges_compare_x_for_y_general().
|
||
|
*/
|
||
|
static int
|
||
|
edge_compare_for_y_against_x (const cairo_bo_edge_t *a,
|
||
|
int32_t y,
|
||
|
int32_t x)
|
||
|
{
|
||
|
int32_t adx, ady;
|
||
|
int32_t dx, dy;
|
||
|
cairo_int64_t L, R;
|
||
|
|
||
|
if (x < a->edge.line.p1.x && x < a->edge.line.p2.x)
|
||
|
return 1;
|
||
|
if (x > a->edge.line.p1.x && x > a->edge.line.p2.x)
|
||
|
return -1;
|
||
|
|
||
|
adx = a->edge.line.p2.x - a->edge.line.p1.x;
|
||
|
dx = x - a->edge.line.p1.x;
|
||
|
|
||
|
if (adx == 0)
|
||
|
return -dx;
|
||
|
if (dx == 0 || (adx ^ dx) < 0)
|
||
|
return adx;
|
||
|
|
||
|
dy = y - a->edge.line.p1.y;
|
||
|
ady = a->edge.line.p2.y - a->edge.line.p1.y;
|
||
|
|
||
|
L = _cairo_int32x32_64_mul (dy, adx);
|
||
|
R = _cairo_int32x32_64_mul (dx, ady);
|
||
|
|
||
|
return _cairo_int64_cmp (L, R);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
edges_compare_x_for_y (const cairo_bo_edge_t *a,
|
||
|
const cairo_bo_edge_t *b,
|
||
|
int32_t y)
|
||
|
{
|
||
|
/* If the sweep-line is currently on an end-point of a line,
|
||
|
* then we know its precise x value (and considering that we often need to
|
||
|
* compare events at end-points, this happens frequently enough to warrant
|
||
|
* special casing).
|
||
|
*/
|
||
|
enum {
|
||
|
HAVE_NEITHER = 0x0,
|
||
|
HAVE_AX = 0x1,
|
||
|
HAVE_BX = 0x2,
|
||
|
HAVE_BOTH = HAVE_AX | HAVE_BX
|
||
|
} have_ax_bx = HAVE_BOTH;
|
||
|
int32_t ax, bx;
|
||
|
|
||
|
if (y == a->edge.line.p1.y)
|
||
|
ax = a->edge.line.p1.x;
|
||
|
else if (y == a->edge.line.p2.y)
|
||
|
ax = a->edge.line.p2.x;
|
||
|
else
|
||
|
have_ax_bx &= ~HAVE_AX;
|
||
|
|
||
|
if (y == b->edge.line.p1.y)
|
||
|
bx = b->edge.line.p1.x;
|
||
|
else if (y == b->edge.line.p2.y)
|
||
|
bx = b->edge.line.p2.x;
|
||
|
else
|
||
|
have_ax_bx &= ~HAVE_BX;
|
||
|
|
||
|
switch (have_ax_bx) {
|
||
|
default:
|
||
|
case HAVE_NEITHER:
|
||
|
return edges_compare_x_for_y_general (a, b, y);
|
||
|
case HAVE_AX:
|
||
|
return -edge_compare_for_y_against_x (b, y, ax);
|
||
|
case HAVE_BX:
|
||
|
return edge_compare_for_y_against_x (a, y, bx);
|
||
|
case HAVE_BOTH:
|
||
|
return ax - bx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_line_equal (const cairo_line_t *a, const cairo_line_t *b)
|
||
|
{
|
||
|
return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
|
||
|
a->p2.x == b->p2.x && a->p2.y == b->p2.y;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
_cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t *sweep_line,
|
||
|
const cairo_bo_edge_t *a,
|
||
|
const cairo_bo_edge_t *b)
|
||
|
{
|
||
|
int cmp;
|
||
|
|
||
|
/* compare the edges if not identical */
|
||
|
if (! _line_equal (&a->edge.line, &b->edge.line)) {
|
||
|
cmp = edges_compare_x_for_y (a, b, sweep_line->current_y);
|
||
|
if (cmp)
|
||
|
return cmp;
|
||
|
|
||
|
/* The two edges intersect exactly at y, so fall back on slope
|
||
|
* comparison. We know that this compare_edges function will be
|
||
|
* called only when starting a new edge, (not when stopping an
|
||
|
* edge), so we don't have to worry about conditionally inverting
|
||
|
* the sense of _slope_compare. */
|
||
|
cmp = _slope_compare (a, b);
|
||
|
if (cmp)
|
||
|
return cmp;
|
||
|
}
|
||
|
|
||
|
/* We've got two collinear edges now. */
|
||
|
return b->edge.bottom - a->edge.bottom;
|
||
|
}
|
||
|
|
||
|
static inline cairo_int64_t
|
||
|
det32_64 (int32_t a, int32_t b,
|
||
|
int32_t c, int32_t d)
|
||
|
{
|
||
|
/* det = a * d - b * c */
|
||
|
return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
|
||
|
_cairo_int32x32_64_mul (b, c));
|
||
|
}
|
||
|
|
||
|
static inline cairo_int128_t
|
||
|
det64x32_128 (cairo_int64_t a, int32_t b,
|
||
|
cairo_int64_t c, int32_t d)
|
||
|
{
|
||
|
/* det = a * d - b * c */
|
||
|
return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
|
||
|
_cairo_int64x32_128_mul (c, b));
|
||
|
}
|
||
|
|
||
|
/* Compute the intersection of two lines as defined by two edges. The
|
||
|
* result is provided as a coordinate pair of 128-bit integers.
|
||
|
*
|
||
|
* Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
|
||
|
* %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
|
||
|
*/
|
||
|
static cairo_bool_t
|
||
|
intersect_lines (cairo_bo_edge_t *a,
|
||
|
cairo_bo_edge_t *b,
|
||
|
cairo_bo_intersect_point_t *intersection)
|
||
|
{
|
||
|
cairo_int64_t a_det, b_det;
|
||
|
|
||
|
/* XXX: We're assuming here that dx and dy will still fit in 32
|
||
|
* bits. That's not true in general as there could be overflow. We
|
||
|
* should prevent that before the tessellation algorithm begins.
|
||
|
* What we're doing to mitigate this is to perform clamping in
|
||
|
* cairo_bo_tessellate_polygon().
|
||
|
*/
|
||
|
int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
|
||
|
int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
|
||
|
|
||
|
int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
|
||
|
int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
|
||
|
|
||
|
cairo_int64_t den_det;
|
||
|
cairo_int64_t R;
|
||
|
cairo_quorem64_t qr;
|
||
|
|
||
|
den_det = det32_64 (dx1, dy1, dx2, dy2);
|
||
|
|
||
|
/* Q: Can we determine that the lines do not intersect (within range)
|
||
|
* much more cheaply than computing the intersection point i.e. by
|
||
|
* avoiding the division?
|
||
|
*
|
||
|
* X = ax + t * adx = bx + s * bdx;
|
||
|
* Y = ay + t * ady = by + s * bdy;
|
||
|
* ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
|
||
|
* => t * L = R
|
||
|
*
|
||
|
* Therefore we can reject any intersection (under the criteria for
|
||
|
* valid intersection events) if:
|
||
|
* L^R < 0 => t < 0, or
|
||
|
* L<R => t > 1
|
||
|
*
|
||
|
* (where top/bottom must at least extend to the line endpoints).
|
||
|
*
|
||
|
* A similar substitution can be performed for s, yielding:
|
||
|
* s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
|
||
|
*/
|
||
|
R = det32_64 (dx2, dy2,
|
||
|
b->edge.line.p1.x - a->edge.line.p1.x,
|
||
|
b->edge.line.p1.y - a->edge.line.p1.y);
|
||
|
if (_cairo_int64_negative (den_det)) {
|
||
|
if (_cairo_int64_ge (den_det, R))
|
||
|
return FALSE;
|
||
|
} else {
|
||
|
if (_cairo_int64_le (den_det, R))
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
R = det32_64 (dy1, dx1,
|
||
|
a->edge.line.p1.y - b->edge.line.p1.y,
|
||
|
a->edge.line.p1.x - b->edge.line.p1.x);
|
||
|
if (_cairo_int64_negative (den_det)) {
|
||
|
if (_cairo_int64_ge (den_det, R))
|
||
|
return FALSE;
|
||
|
} else {
|
||
|
if (_cairo_int64_le (den_det, R))
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/* We now know that the two lines should intersect within range. */
|
||
|
|
||
|
a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
|
||
|
a->edge.line.p2.x, a->edge.line.p2.y);
|
||
|
b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
|
||
|
b->edge.line.p2.x, b->edge.line.p2.y);
|
||
|
|
||
|
/* x = det (a_det, dx1, b_det, dx2) / den_det */
|
||
|
qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
|
||
|
b_det, dx2),
|
||
|
den_det);
|
||
|
if (_cairo_int64_eq (qr.rem, den_det))
|
||
|
return FALSE;
|
||
|
#if 0
|
||
|
intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
|
||
|
#else
|
||
|
intersection->x.exactness = EXACT;
|
||
|
if (! _cairo_int64_is_zero (qr.rem)) {
|
||
|
if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
|
||
|
qr.rem = _cairo_int64_negate (qr.rem);
|
||
|
qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
|
||
|
if (_cairo_int64_ge (qr.rem, den_det)) {
|
||
|
qr.quo = _cairo_int64_add (qr.quo,
|
||
|
_cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
|
||
|
} else
|
||
|
intersection->x.exactness = INEXACT;
|
||
|
}
|
||
|
#endif
|
||
|
intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
|
||
|
|
||
|
/* y = det (a_det, dy1, b_det, dy2) / den_det */
|
||
|
qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
|
||
|
b_det, dy2),
|
||
|
den_det);
|
||
|
if (_cairo_int64_eq (qr.rem, den_det))
|
||
|
return FALSE;
|
||
|
#if 0
|
||
|
intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
|
||
|
#else
|
||
|
intersection->y.exactness = EXACT;
|
||
|
if (! _cairo_int64_is_zero (qr.rem)) {
|
||
|
if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
|
||
|
qr.rem = _cairo_int64_negate (qr.rem);
|
||
|
qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
|
||
|
if (_cairo_int64_ge (qr.rem, den_det)) {
|
||
|
qr.quo = _cairo_int64_add (qr.quo,
|
||
|
_cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
|
||
|
} else
|
||
|
intersection->y.exactness = INEXACT;
|
||
|
}
|
||
|
#endif
|
||
|
intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
_cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t a,
|
||
|
int32_t b)
|
||
|
{
|
||
|
/* First compare the quotient */
|
||
|
if (a.ordinate > b)
|
||
|
return +1;
|
||
|
if (a.ordinate < b)
|
||
|
return -1;
|
||
|
/* With quotient identical, if remainder is 0 then compare equal */
|
||
|
/* Otherwise, the non-zero remainder makes a > b */
|
||
|
return INEXACT == a.exactness;
|
||
|
}
|
||
|
|
||
|
/* Does the given edge contain the given point. The point must already
|
||
|
* be known to be contained within the line determined by the edge,
|
||
|
* (most likely the point results from an intersection of this edge
|
||
|
* with another).
|
||
|
*
|
||
|
* If we had exact arithmetic, then this function would simply be a
|
||
|
* matter of examining whether the y value of the point lies within
|
||
|
* the range of y values of the edge. But since intersection points
|
||
|
* are not exact due to being rounded to the nearest integer within
|
||
|
* the available precision, we must also examine the x value of the
|
||
|
* point.
|
||
|
*
|
||
|
* The definition of "contains" here is that the given intersection
|
||
|
* point will be seen by the sweep line after the start event for the
|
||
|
* given edge and before the stop event for the edge. See the comments
|
||
|
* in the implementation for more details.
|
||
|
*/
|
||
|
static cairo_bool_t
|
||
|
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t *edge,
|
||
|
cairo_bo_intersect_point_t *point)
|
||
|
{
|
||
|
int cmp_top, cmp_bottom;
|
||
|
|
||
|
/* XXX: When running the actual algorithm, we don't actually need to
|
||
|
* compare against edge->top at all here, since any intersection above
|
||
|
* top is eliminated early via a slope comparison. We're leaving these
|
||
|
* here for now only for the sake of the quadratic-time intersection
|
||
|
* finder which needs them.
|
||
|
*/
|
||
|
|
||
|
cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y,
|
||
|
edge->edge.top);
|
||
|
cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y,
|
||
|
edge->edge.bottom);
|
||
|
|
||
|
if (cmp_top < 0 || cmp_bottom > 0)
|
||
|
{
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
if (cmp_top > 0 && cmp_bottom < 0)
|
||
|
{
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
/* At this stage, the point lies on the same y value as either
|
||
|
* edge->top or edge->bottom, so we have to examine the x value in
|
||
|
* order to properly determine containment. */
|
||
|
|
||
|
/* If the y value of the point is the same as the y value of the
|
||
|
* top of the edge, then the x value of the point must be greater
|
||
|
* to be considered as inside the edge. Similarly, if the y value
|
||
|
* of the point is the same as the y value of the bottom of the
|
||
|
* edge, then the x value of the point must be less to be
|
||
|
* considered as inside. */
|
||
|
|
||
|
if (cmp_top == 0) {
|
||
|
cairo_fixed_t top_x;
|
||
|
|
||
|
top_x = _line_compute_intersection_x_for_y (&edge->edge.line,
|
||
|
edge->edge.top);
|
||
|
return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0;
|
||
|
} else { /* cmp_bottom == 0 */
|
||
|
cairo_fixed_t bot_x;
|
||
|
|
||
|
bot_x = _line_compute_intersection_x_for_y (&edge->edge.line,
|
||
|
edge->edge.bottom);
|
||
|
return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Compute the intersection of two edges. The result is provided as a
|
||
|
* coordinate pair of 128-bit integers.
|
||
|
*
|
||
|
* Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection
|
||
|
* that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the
|
||
|
* intersection of the lines defined by the edges occurs outside of
|
||
|
* one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges
|
||
|
* are exactly parallel.
|
||
|
*
|
||
|
* Note that when determining if a candidate intersection is "inside"
|
||
|
* an edge, we consider both the infinitesimal shortening and the
|
||
|
* infinitesimal tilt rules described by John Hobby. Specifically, if
|
||
|
* the intersection is exactly the same as an edge point, it is
|
||
|
* effectively outside (no intersection is returned). Also, if the
|
||
|
* intersection point has the same
|
||
|
*/
|
||
|
static cairo_bool_t
|
||
|
_cairo_bo_edge_intersect (cairo_bo_edge_t *a,
|
||
|
cairo_bo_edge_t *b,
|
||
|
cairo_bo_point32_t *intersection)
|
||
|
{
|
||
|
cairo_bo_intersect_point_t quorem;
|
||
|
|
||
|
if (! intersect_lines (a, b, &quorem))
|
||
|
return FALSE;
|
||
|
|
||
|
if (! _cairo_bo_edge_contains_intersect_point (a, &quorem))
|
||
|
return FALSE;
|
||
|
|
||
|
if (! _cairo_bo_edge_contains_intersect_point (b, &quorem))
|
||
|
return FALSE;
|
||
|
|
||
|
/* Now that we've correctly compared the intersection point and
|
||
|
* determined that it lies within the edge, then we know that we
|
||
|
* no longer need any more bits of storage for the intersection
|
||
|
* than we do for our edge coordinates. We also no longer need the
|
||
|
* remainder from the division. */
|
||
|
intersection->x = quorem.x.ordinate;
|
||
|
intersection->y = quorem.y.ordinate;
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
cairo_bo_event_compare (const cairo_bo_event_t *a,
|
||
|
const cairo_bo_event_t *b)
|
||
|
{
|
||
|
int cmp;
|
||
|
|
||
|
cmp = _cairo_bo_point32_compare (&a->point, &b->point);
|
||
|
if (cmp)
|
||
|
return cmp;
|
||
|
|
||
|
cmp = a->type - b->type;
|
||
|
if (cmp)
|
||
|
return cmp;
|
||
|
|
||
|
return a - b;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
_pqueue_init (pqueue_t *pq)
|
||
|
{
|
||
|
pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
|
||
|
pq->size = 0;
|
||
|
|
||
|
pq->elements = pq->elements_embedded;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
_pqueue_fini (pqueue_t *pq)
|
||
|
{
|
||
|
if (pq->elements != pq->elements_embedded)
|
||
|
free (pq->elements);
|
||
|
}
|
||
|
|
||
|
static cairo_status_t
|
||
|
_pqueue_grow (pqueue_t *pq)
|
||
|
{
|
||
|
cairo_bo_event_t **new_elements;
|
||
|
pq->max_size *= 2;
|
||
|
|
||
|
if (pq->elements == pq->elements_embedded) {
|
||
|
new_elements = _cairo_malloc_ab (pq->max_size,
|
||
|
sizeof (cairo_bo_event_t *));
|
||
|
if (unlikely (new_elements == NULL))
|
||
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
||
|
|
||
|
memcpy (new_elements, pq->elements_embedded,
|
||
|
sizeof (pq->elements_embedded));
|
||
|
} else {
|
||
|
new_elements = _cairo_realloc_ab (pq->elements,
|
||
|
pq->max_size,
|
||
|
sizeof (cairo_bo_event_t *));
|
||
|
if (unlikely (new_elements == NULL))
|
||
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
||
|
}
|
||
|
|
||
|
pq->elements = new_elements;
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static inline cairo_status_t
|
||
|
_pqueue_push (pqueue_t *pq, cairo_bo_event_t *event)
|
||
|
{
|
||
|
cairo_bo_event_t **elements;
|
||
|
int i, parent;
|
||
|
|
||
|
if (unlikely (pq->size + 1 == pq->max_size)) {
|
||
|
cairo_status_t status;
|
||
|
|
||
|
status = _pqueue_grow (pq);
|
||
|
if (unlikely (status))
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
elements = pq->elements;
|
||
|
|
||
|
for (i = ++pq->size;
|
||
|
i != PQ_FIRST_ENTRY &&
|
||
|
cairo_bo_event_compare (event,
|
||
|
elements[parent = PQ_PARENT_INDEX (i)]) < 0;
|
||
|
i = parent)
|
||
|
{
|
||
|
elements[i] = elements[parent];
|
||
|
}
|
||
|
|
||
|
elements[i] = event;
|
||
|
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
_pqueue_pop (pqueue_t *pq)
|
||
|
{
|
||
|
cairo_bo_event_t **elements = pq->elements;
|
||
|
cairo_bo_event_t *tail;
|
||
|
int child, i;
|
||
|
|
||
|
tail = elements[pq->size--];
|
||
|
if (pq->size == 0) {
|
||
|
elements[PQ_FIRST_ENTRY] = NULL;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (i = PQ_FIRST_ENTRY;
|
||
|
(child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
|
||
|
i = child)
|
||
|
{
|
||
|
if (child != pq->size &&
|
||
|
cairo_bo_event_compare (elements[child+1],
|
||
|
elements[child]) < 0)
|
||
|
{
|
||
|
child++;
|
||
|
}
|
||
|
|
||
|
if (cairo_bo_event_compare (elements[child], tail) >= 0)
|
||
|
break;
|
||
|
|
||
|
elements[i] = elements[child];
|
||
|
}
|
||
|
elements[i] = tail;
|
||
|
}
|
||
|
|
||
|
static inline cairo_status_t
|
||
|
_cairo_bo_event_queue_insert (cairo_bo_event_queue_t *queue,
|
||
|
cairo_bo_event_type_t type,
|
||
|
cairo_bo_edge_t *e1,
|
||
|
cairo_bo_edge_t *e2,
|
||
|
const cairo_point_t *point)
|
||
|
{
|
||
|
cairo_bo_queue_event_t *event;
|
||
|
|
||
|
event = _cairo_freepool_alloc (&queue->pool);
|
||
|
if (unlikely (event == NULL))
|
||
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
||
|
|
||
|
event->type = type;
|
||
|
event->e1 = e1;
|
||
|
event->e2 = e2;
|
||
|
event->point = *point;
|
||
|
|
||
|
return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue,
|
||
|
cairo_bo_event_t *event)
|
||
|
{
|
||
|
_cairo_freepool_free (&queue->pool, event);
|
||
|
}
|
||
|
|
||
|
static cairo_bo_event_t *
|
||
|
_cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue)
|
||
|
{
|
||
|
cairo_bo_event_t *event, *cmp;
|
||
|
|
||
|
event = event_queue->pqueue.elements[PQ_FIRST_ENTRY];
|
||
|
cmp = *event_queue->start_events;
|
||
|
if (event == NULL ||
|
||
|
(cmp != NULL && cairo_bo_event_compare (cmp, event) < 0))
|
||
|
{
|
||
|
event = cmp;
|
||
|
event_queue->start_events++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
_pqueue_pop (&event_queue->pqueue);
|
||
|
}
|
||
|
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
|
||
|
cairo_bo_event_t *,
|
||
|
cairo_bo_event_compare)
|
||
|
|
||
|
static void
|
||
|
_cairo_bo_event_queue_init (cairo_bo_event_queue_t *event_queue,
|
||
|
cairo_bo_event_t **start_events,
|
||
|
int num_events)
|
||
|
{
|
||
|
_cairo_bo_event_queue_sort (start_events, num_events);
|
||
|
start_events[num_events] = NULL;
|
||
|
|
||
|
event_queue->start_events = start_events;
|
||
|
|
||
|
_cairo_freepool_init (&event_queue->pool,
|
||
|
sizeof (cairo_bo_queue_event_t));
|
||
|
_pqueue_init (&event_queue->pqueue);
|
||
|
event_queue->pqueue.elements[PQ_FIRST_ENTRY] = NULL;
|
||
|
}
|
||
|
|
||
|
static cairo_status_t
|
||
|
event_queue_insert_stop (cairo_bo_event_queue_t *event_queue,
|
||
|
cairo_bo_edge_t *edge)
|
||
|
{
|
||
|
cairo_bo_point32_t point;
|
||
|
|
||
|
point.y = edge->edge.bottom;
|
||
|
point.x = _line_compute_intersection_x_for_y (&edge->edge.line,
|
||
|
point.y);
|
||
|
return _cairo_bo_event_queue_insert (event_queue,
|
||
|
CAIRO_BO_EVENT_TYPE_STOP,
|
||
|
edge, NULL,
|
||
|
&point);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue)
|
||
|
{
|
||
|
_pqueue_fini (&event_queue->pqueue);
|
||
|
_cairo_freepool_fini (&event_queue->pool);
|
||
|
}
|
||
|
|
||
|
static inline cairo_status_t
|
||
|
event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue,
|
||
|
cairo_bo_edge_t *left,
|
||
|
cairo_bo_edge_t *right)
|
||
|
{
|
||
|
cairo_bo_point32_t intersection;
|
||
|
|
||
|
if (_line_equal (&left->edge.line, &right->edge.line))
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
|
||
|
/* The names "left" and "right" here are correct descriptions of
|
||
|
* the order of the two edges within the active edge list. So if a
|
||
|
* slope comparison also puts left less than right, then we know
|
||
|
* that the intersection of these two segments has already
|
||
|
* occurred before the current sweep line position. */
|
||
|
if (_slope_compare (left, right) <= 0)
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
|
||
|
if (! _cairo_bo_edge_intersect (left, right, &intersection))
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
|
||
|
return _cairo_bo_event_queue_insert (event_queue,
|
||
|
CAIRO_BO_EVENT_TYPE_INTERSECTION,
|
||
|
left, right,
|
||
|
&intersection);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line)
|
||
|
{
|
||
|
sweep_line->head = NULL;
|
||
|
sweep_line->current_y = INT32_MIN;
|
||
|
sweep_line->current_edge = NULL;
|
||
|
}
|
||
|
|
||
|
static cairo_status_t
|
||
|
sweep_line_insert (cairo_bo_sweep_line_t *sweep_line,
|
||
|
cairo_bo_edge_t *edge)
|
||
|
{
|
||
|
if (sweep_line->current_edge != NULL) {
|
||
|
cairo_bo_edge_t *prev, *next;
|
||
|
int cmp;
|
||
|
|
||
|
cmp = _cairo_bo_sweep_line_compare_edges (sweep_line,
|
||
|
sweep_line->current_edge,
|
||
|
edge);
|
||
|
if (cmp < 0) {
|
||
|
prev = sweep_line->current_edge;
|
||
|
next = prev->next;
|
||
|
while (next != NULL &&
|
||
|
_cairo_bo_sweep_line_compare_edges (sweep_line,
|
||
|
next, edge) < 0)
|
||
|
{
|
||
|
prev = next, next = prev->next;
|
||
|
}
|
||
|
|
||
|
prev->next = edge;
|
||
|
edge->prev = prev;
|
||
|
edge->next = next;
|
||
|
if (next != NULL)
|
||
|
next->prev = edge;
|
||
|
} else if (cmp > 0) {
|
||
|
next = sweep_line->current_edge;
|
||
|
prev = next->prev;
|
||
|
while (prev != NULL &&
|
||
|
_cairo_bo_sweep_line_compare_edges (sweep_line,
|
||
|
prev, edge) > 0)
|
||
|
{
|
||
|
next = prev, prev = next->prev;
|
||
|
}
|
||
|
|
||
|
next->prev = edge;
|
||
|
edge->next = next;
|
||
|
edge->prev = prev;
|
||
|
if (prev != NULL)
|
||
|
prev->next = edge;
|
||
|
else
|
||
|
sweep_line->head = edge;
|
||
|
} else {
|
||
|
prev = sweep_line->current_edge;
|
||
|
edge->prev = prev;
|
||
|
edge->next = prev->next;
|
||
|
if (prev->next != NULL)
|
||
|
prev->next->prev = edge;
|
||
|
prev->next = edge;
|
||
|
}
|
||
|
} else {
|
||
|
sweep_line->head = edge;
|
||
|
}
|
||
|
|
||
|
sweep_line->current_edge = edge;
|
||
|
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line,
|
||
|
cairo_bo_edge_t *edge)
|
||
|
{
|
||
|
if (edge->prev != NULL)
|
||
|
edge->prev->next = edge->next;
|
||
|
else
|
||
|
sweep_line->head = edge->next;
|
||
|
|
||
|
if (edge->next != NULL)
|
||
|
edge->next->prev = edge->prev;
|
||
|
|
||
|
if (sweep_line->current_edge == edge)
|
||
|
sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t *sweep_line,
|
||
|
cairo_bo_edge_t *left,
|
||
|
cairo_bo_edge_t *right)
|
||
|
{
|
||
|
if (left->prev != NULL)
|
||
|
left->prev->next = right;
|
||
|
else
|
||
|
sweep_line->head = right;
|
||
|
|
||
|
if (right->next != NULL)
|
||
|
right->next->prev = left;
|
||
|
|
||
|
left->next = right->next;
|
||
|
right->next = left;
|
||
|
|
||
|
right->prev = left->prev;
|
||
|
left->prev = right;
|
||
|
}
|
||
|
|
||
|
static inline cairo_bool_t
|
||
|
edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
|
||
|
{
|
||
|
if (_line_equal (&a->edge.line, &b->edge.line))
|
||
|
return TRUE;
|
||
|
|
||
|
if (_slope_compare (a, b))
|
||
|
return FALSE;
|
||
|
|
||
|
/* The choice of y is not truly arbitrary since we must guarantee that it
|
||
|
* is greater than the start of either line.
|
||
|
*/
|
||
|
if (a->edge.line.p1.y == b->edge.line.p1.y) {
|
||
|
return a->edge.line.p1.x == b->edge.line.p1.x;
|
||
|
} else if (a->edge.line.p1.y < b->edge.line.p1.y) {
|
||
|
return edge_compare_for_y_against_x (b,
|
||
|
a->edge.line.p1.y,
|
||
|
a->edge.line.p1.x) == 0;
|
||
|
} else {
|
||
|
return edge_compare_for_y_against_x (a,
|
||
|
b->edge.line.p1.y,
|
||
|
b->edge.line.p1.x) == 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
edges_end (cairo_bo_edge_t *left,
|
||
|
int32_t bot,
|
||
|
cairo_polygon_t *polygon)
|
||
|
{
|
||
|
cairo_bo_deferred_t *l = &left->deferred;
|
||
|
cairo_bo_edge_t *right = l->other;
|
||
|
|
||
|
assert(right->deferred.other == NULL);
|
||
|
if (likely (l->top < bot)) {
|
||
|
_cairo_polygon_add_line (polygon, &left->edge.line, l->top, bot, 1);
|
||
|
_cairo_polygon_add_line (polygon, &right->edge.line, l->top, bot, -1);
|
||
|
}
|
||
|
|
||
|
l->other = NULL;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
edges_start_or_continue (cairo_bo_edge_t *left,
|
||
|
cairo_bo_edge_t *right,
|
||
|
int top,
|
||
|
cairo_polygon_t *polygon)
|
||
|
{
|
||
|
assert (right->deferred.other == NULL);
|
||
|
|
||
|
if (left->deferred.other == right)
|
||
|
return;
|
||
|
|
||
|
if (left->deferred.other != NULL) {
|
||
|
if (right != NULL && edges_colinear (left->deferred.other, right)) {
|
||
|
cairo_bo_edge_t *old = left->deferred.other;
|
||
|
|
||
|
/* continuation on right, extend right to cover both */
|
||
|
assert (old->deferred.other == NULL);
|
||
|
assert (old->edge.line.p2.y > old->edge.line.p1.y);
|
||
|
|
||
|
if (old->edge.line.p1.y < right->edge.line.p1.y)
|
||
|
right->edge.line.p1 = old->edge.line.p1;
|
||
|
if (old->edge.line.p2.y > right->edge.line.p2.y)
|
||
|
right->edge.line.p2 = old->edge.line.p2;
|
||
|
left->deferred.other = right;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
edges_end (left, top, polygon);
|
||
|
}
|
||
|
|
||
|
if (right != NULL && ! edges_colinear (left, right)) {
|
||
|
left->deferred.top = top;
|
||
|
left->deferred.other = right;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define is_zero(w) ((w)[0] == 0 || (w)[1] == 0)
|
||
|
|
||
|
static inline void
|
||
|
active_edges (cairo_bo_edge_t *left,
|
||
|
int32_t top,
|
||
|
cairo_polygon_t *polygon)
|
||
|
{
|
||
|
cairo_bo_edge_t *right;
|
||
|
int winding[2] = {0, 0};
|
||
|
|
||
|
/* Yes, this is naive. Consider this a placeholder. */
|
||
|
|
||
|
while (left != NULL) {
|
||
|
assert (is_zero (winding));
|
||
|
|
||
|
do {
|
||
|
winding[left->a_or_b] += left->edge.dir;
|
||
|
if (! is_zero (winding))
|
||
|
break;
|
||
|
|
||
|
if unlikely ((left->deferred.other))
|
||
|
edges_end (left, top, polygon);
|
||
|
|
||
|
left = left->next;
|
||
|
if (! left)
|
||
|
return;
|
||
|
} while (1);
|
||
|
|
||
|
right = left->next;
|
||
|
do {
|
||
|
if unlikely ((right->deferred.other))
|
||
|
edges_end (right, top, polygon);
|
||
|
|
||
|
winding[right->a_or_b] += right->edge.dir;
|
||
|
if (is_zero (winding)) {
|
||
|
if (right->next == NULL ||
|
||
|
! edges_colinear (right, right->next))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
right = right->next;
|
||
|
} while (1);
|
||
|
|
||
|
edges_start_or_continue (left, right, top, polygon);
|
||
|
|
||
|
left = right->next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static cairo_status_t
|
||
|
intersection_sweep (cairo_bo_event_t **start_events,
|
||
|
int num_events,
|
||
|
cairo_polygon_t *polygon)
|
||
|
{
|
||
|
cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */
|
||
|
cairo_bo_event_queue_t event_queue;
|
||
|
cairo_bo_sweep_line_t sweep_line;
|
||
|
cairo_bo_event_t *event;
|
||
|
cairo_bo_edge_t *left, *right;
|
||
|
cairo_bo_edge_t *e1, *e2;
|
||
|
|
||
|
_cairo_bo_event_queue_init (&event_queue, start_events, num_events);
|
||
|
_cairo_bo_sweep_line_init (&sweep_line);
|
||
|
|
||
|
while ((event = _cairo_bo_event_dequeue (&event_queue))) {
|
||
|
if (event->point.y != sweep_line.current_y) {
|
||
|
active_edges (sweep_line.head,
|
||
|
sweep_line.current_y,
|
||
|
polygon);
|
||
|
sweep_line.current_y = event->point.y;
|
||
|
}
|
||
|
|
||
|
switch (event->type) {
|
||
|
case CAIRO_BO_EVENT_TYPE_START:
|
||
|
e1 = &((cairo_bo_start_event_t *) event)->edge;
|
||
|
|
||
|
status = sweep_line_insert (&sweep_line, e1);
|
||
|
if (unlikely (status))
|
||
|
goto unwind;
|
||
|
|
||
|
status = event_queue_insert_stop (&event_queue, e1);
|
||
|
if (unlikely (status))
|
||
|
goto unwind;
|
||
|
|
||
|
left = e1->prev;
|
||
|
right = e1->next;
|
||
|
|
||
|
if (left != NULL) {
|
||
|
status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1);
|
||
|
if (unlikely (status))
|
||
|
goto unwind;
|
||
|
}
|
||
|
|
||
|
if (right != NULL) {
|
||
|
status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
|
||
|
if (unlikely (status))
|
||
|
goto unwind;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case CAIRO_BO_EVENT_TYPE_STOP:
|
||
|
e1 = ((cairo_bo_queue_event_t *) event)->e1;
|
||
|
_cairo_bo_event_queue_delete (&event_queue, event);
|
||
|
|
||
|
if (e1->deferred.other)
|
||
|
edges_end (e1, sweep_line.current_y, polygon);
|
||
|
|
||
|
left = e1->prev;
|
||
|
right = e1->next;
|
||
|
|
||
|
_cairo_bo_sweep_line_delete (&sweep_line, e1);
|
||
|
|
||
|
if (left != NULL && right != NULL) {
|
||
|
status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, right);
|
||
|
if (unlikely (status))
|
||
|
goto unwind;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case CAIRO_BO_EVENT_TYPE_INTERSECTION:
|
||
|
e1 = ((cairo_bo_queue_event_t *) event)->e1;
|
||
|
e2 = ((cairo_bo_queue_event_t *) event)->e2;
|
||
|
_cairo_bo_event_queue_delete (&event_queue, event);
|
||
|
|
||
|
/* skip this intersection if its edges are not adjacent */
|
||
|
if (e2 != e1->next)
|
||
|
break;
|
||
|
|
||
|
if (e1->deferred.other)
|
||
|
edges_end (e1, sweep_line.current_y, polygon);
|
||
|
if (e2->deferred.other)
|
||
|
edges_end (e2, sweep_line.current_y, polygon);
|
||
|
|
||
|
left = e1->prev;
|
||
|
right = e2->next;
|
||
|
|
||
|
_cairo_bo_sweep_line_swap (&sweep_line, e1, e2);
|
||
|
|
||
|
/* after the swap e2 is left of e1 */
|
||
|
|
||
|
if (left != NULL) {
|
||
|
status = event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2);
|
||
|
if (unlikely (status))
|
||
|
goto unwind;
|
||
|
}
|
||
|
|
||
|
if (right != NULL) {
|
||
|
status = event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
|
||
|
if (unlikely (status))
|
||
|
goto unwind;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unwind:
|
||
|
_cairo_bo_event_queue_fini (&event_queue);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
cairo_status_t
|
||
|
_cairo_polygon_intersect (cairo_polygon_t *a, int winding_a,
|
||
|
cairo_polygon_t *b, int winding_b)
|
||
|
{
|
||
|
cairo_status_t status;
|
||
|
cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)];
|
||
|
cairo_bo_start_event_t *events;
|
||
|
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
|
||
|
cairo_bo_event_t **event_ptrs;
|
||
|
int num_events;
|
||
|
int i, j;
|
||
|
|
||
|
/* XXX lazy */
|
||
|
if (winding_a != CAIRO_FILL_RULE_WINDING) {
|
||
|
status = _cairo_polygon_reduce (a, winding_a);
|
||
|
if (unlikely (status))
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
if (winding_b != CAIRO_FILL_RULE_WINDING) {
|
||
|
status = _cairo_polygon_reduce (b, winding_b);
|
||
|
if (unlikely (status))
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
if (unlikely (0 == a->num_edges))
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
|
||
|
if (unlikely (0 == b->num_edges)) {
|
||
|
a->num_edges = 0;
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
events = stack_events;
|
||
|
event_ptrs = stack_event_ptrs;
|
||
|
num_events = a->num_edges + b->num_edges;
|
||
|
if (num_events > ARRAY_LENGTH (stack_events)) {
|
||
|
events = _cairo_malloc_ab_plus_c (num_events,
|
||
|
sizeof (cairo_bo_start_event_t) +
|
||
|
sizeof (cairo_bo_event_t *),
|
||
|
sizeof (cairo_bo_event_t *));
|
||
|
if (unlikely (events == NULL))
|
||
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
||
|
|
||
|
event_ptrs = (cairo_bo_event_t **) (events + num_events);
|
||
|
}
|
||
|
|
||
|
j = 0;
|
||
|
for (i = 0; i < a->num_edges; i++) {
|
||
|
event_ptrs[j] = (cairo_bo_event_t *) &events[j];
|
||
|
|
||
|
events[j].type = CAIRO_BO_EVENT_TYPE_START;
|
||
|
events[j].point.y = a->edges[i].top;
|
||
|
events[j].point.x =
|
||
|
_line_compute_intersection_x_for_y (&a->edges[i].line,
|
||
|
events[j].point.y);
|
||
|
|
||
|
events[j].edge.a_or_b = 0;
|
||
|
events[j].edge.edge = a->edges[i];
|
||
|
events[j].edge.deferred.other = NULL;
|
||
|
events[j].edge.prev = NULL;
|
||
|
events[j].edge.next = NULL;
|
||
|
j++;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < b->num_edges; i++) {
|
||
|
event_ptrs[j] = (cairo_bo_event_t *) &events[j];
|
||
|
|
||
|
events[j].type = CAIRO_BO_EVENT_TYPE_START;
|
||
|
events[j].point.y = b->edges[i].top;
|
||
|
events[j].point.x =
|
||
|
_line_compute_intersection_x_for_y (&b->edges[i].line,
|
||
|
events[j].point.y);
|
||
|
|
||
|
events[j].edge.a_or_b = 1;
|
||
|
events[j].edge.edge = b->edges[i];
|
||
|
events[j].edge.deferred.other = NULL;
|
||
|
events[j].edge.prev = NULL;
|
||
|
events[j].edge.next = NULL;
|
||
|
j++;
|
||
|
}
|
||
|
assert (j == num_events);
|
||
|
|
||
|
#if 0
|
||
|
{
|
||
|
FILE *file = fopen ("clip_a.txt", "w");
|
||
|
_cairo_debug_print_polygon (file, a);
|
||
|
fclose (file);
|
||
|
}
|
||
|
{
|
||
|
FILE *file = fopen ("clip_b.txt", "w");
|
||
|
_cairo_debug_print_polygon (file, b);
|
||
|
fclose (file);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
a->num_edges = 0;
|
||
|
status = intersection_sweep (event_ptrs, num_events, a);
|
||
|
if (events != stack_events)
|
||
|
free (events);
|
||
|
|
||
|
#if 0
|
||
|
{
|
||
|
FILE *file = fopen ("clip_result.txt", "w");
|
||
|
_cairo_debug_print_polygon (file, a);
|
||
|
fclose (file);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
cairo_status_t
|
||
|
_cairo_polygon_intersect_with_boxes (cairo_polygon_t *polygon,
|
||
|
cairo_fill_rule_t *winding,
|
||
|
cairo_box_t *boxes,
|
||
|
int num_boxes)
|
||
|
{
|
||
|
cairo_polygon_t b;
|
||
|
cairo_status_t status;
|
||
|
int n;
|
||
|
|
||
|
if (num_boxes == 0) {
|
||
|
polygon->num_edges = 0;
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < num_boxes; n++) {
|
||
|
if (polygon->extents.p1.x >= boxes[n].p1.x &&
|
||
|
polygon->extents.p2.x <= boxes[n].p2.x &&
|
||
|
polygon->extents.p1.y >= boxes[n].p1.y &&
|
||
|
polygon->extents.p2.y <= boxes[n].p2.y)
|
||
|
{
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_cairo_polygon_init (&b, NULL, 0);
|
||
|
for (n = 0; n < num_boxes; n++) {
|
||
|
if (boxes[n].p2.x > polygon->extents.p1.x &&
|
||
|
boxes[n].p1.x < polygon->extents.p2.x &&
|
||
|
boxes[n].p2.y > polygon->extents.p1.y &&
|
||
|
boxes[n].p1.y < polygon->extents.p2.y)
|
||
|
{
|
||
|
cairo_point_t p1, p2;
|
||
|
|
||
|
p1.y = boxes[n].p1.y;
|
||
|
p2.y = boxes[n].p2.y;
|
||
|
|
||
|
p2.x = p1.x = boxes[n].p1.x;
|
||
|
_cairo_polygon_add_external_edge (&b, &p1, &p2);
|
||
|
|
||
|
p2.x = p1.x = boxes[n].p2.x;
|
||
|
_cairo_polygon_add_external_edge (&b, &p2, &p1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
status = _cairo_polygon_intersect (polygon, *winding,
|
||
|
&b, CAIRO_FILL_RULE_WINDING);
|
||
|
_cairo_polygon_fini (&b);
|
||
|
|
||
|
*winding = CAIRO_FILL_RULE_WINDING;
|
||
|
return status;
|
||
|
}
|