part of main system dll, not usable yet

git-svn-id: svn://kolibrios.org@5195 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
CleverMouse 2014-11-28 18:35:35 +00:00
parent 3054442804
commit 50b2538b02
8 changed files with 3713 additions and 0 deletions

View File

@ -0,0 +1,2 @@
if tup.getconfig("NO_FASM") ~= "" then return end
tup.rule("kolibri.asm", "fasm %f %o " .. tup.getconfig("KPACK_CMD"), "kolibri.dll")

View File

@ -0,0 +1,66 @@
; Macroinstruction for making export section
macro export dllname,[label,string]
{ common
local module,addresses,names,ordinal,count
count = 0
forward
count = count+1
common
dd 0,0,0,RVA module,1
dd count,count,RVA addresses,RVA names,RVA ordinal
addresses:
forward
dd RVA label
common
names:
forward
local name
dd RVA name
common
ordinal: count = 0
forward
dw count
count = count+1
common
module db dllname,0
forward
name db string,0
common
local x,y,z,str1,str2,v1,v2
x = count shr 1
while x > 0
y = x
while y < count
z = y
while z-x >= 0
load v1 dword from names+z*4
str1=($-RVA $)+v1
load v2 dword from names+(z-x)*4
str2=($-RVA $)+v2
while v1 > 0
load v1 from str1+%-1
load v2 from str2+%-1
if v1 <> v2
break
end if
end while
if v1<v2
load v1 dword from names+z*4
load v2 dword from names+(z-x)*4
store dword v1 at names+(z-x)*4
store dword v2 at names+z*4
load v1 word from ordinal+z*2
load v2 word from ordinal+(z-x)*2
store word v1 at ordinal+(z-x)*2
store word v2 at ordinal+z*2
else
break
end if
z = z-x
end while
y = y+1
end while
x = x shr 1
end while }

View File

@ -0,0 +1,24 @@
; Magic for proc32.inc: prologue/epilogue for esp-based addressing
; fpo stands from Frame Pointer Omission
macro fpo_prologue procname,flag,parmbytes,localbytes,reglist
{
local loc,regcount
loc = (localbytes+3) and (not 3)
regcount = 0
irps reg, reglist
\{
regcount = regcount+1
push reg
\}
parmbase@proc equ esp+4+regcount*4
localbase@proc equ esp-localbytes
}
macro fpo_epilogue procname,flag,parmbytes,localbytes,reglist
{
irps reg, reglist \{ reverse pop reg \}
if flag and 10000b
retn
else
retn parmbytes
end if
}

View File

@ -0,0 +1,144 @@
format PE DLL GUI 0.8 at 7FF00000h
entry start
include '../../struct.inc'
include '../../proc32.inc'
include 'fpo.inc'
include 'export.inc'
include 'pe.inc'
section '.text' code readable executable
FS_STACK_MAX equ dword [fs:4]
FS_STACK_MIN equ dword [fs:8]
FS_SELF_PTR equ dword [fs:0x18]
FS_PROCESS_DATA equ dword [fs:0x30]
FS_ERRNO equ dword [fs:0x34]
FS_SYSCALL_PTR equ dword [fs:0xC0]
ENOMEM = 12
DLL_PROCESS_DETACH = 0
DLL_PROCESS_ATTACH = 1
DLL_THREAD_ATTACH = 2
DLL_THREAD_DETACH = 3
SYSCALL_METHOD_I40 = 1
SYSCALL_METHOD_SYSENTER = 2
SYSCALL_METHOD_SYSCALL = 3
; Pointer to this structure is passed as the third argument
; to 'start' procedure by the kernel.
struct kernel_init_data
version dw ?
flags dw ?
syscall_method dd ?
; either one of SYSCALL_METHOD_xxx or pointer to procedure
exe_base dd ?
stack_base dd ?
stack_size dd ?
exe_path dd ?
command_line dd ?
ends
include 'malloc.inc'
proc syscall_int40
int 0x40
ret
endp
proc kercall
jmp FS_SYSCALL_PTR
endp
prologue@proc equ fpo_prologue
epilogue@proc equ fpo_epilogue
proc start stdcall, dll_base, reason, reserved
; 1. Do nothing unless called by the kernel for DLL_PROCESS_ATTACH.
cmp [reason], DLL_PROCESS_ATTACH
jnz .nothing
; 2. Validate version of the init struct.
; If not known, say a debug message and die.
mov ebp, [reserved]
cmp [ebp+kernel_init_data.version], 1
jnz .version_mismatch
; 3. Setup common data based on the init struct.
mov eax, [ebp+kernel_init_data.stack_base]
mov FS_STACK_MIN, eax
add eax, [ebp+kernel_init_data.stack_size]
mov FS_STACK_MAX, eax
mov eax, [ebp+kernel_init_data.syscall_method]
cmp eax, 0x10000
jae @f
mov eax, syscall_int40
@@:
mov FS_SYSCALL_PTR, eax
; 4. Initialize the process heap.
mov eax, [ebp+kernel_init_data.exe_base]
mov edx, [eax+STRIPPED_PE_HEADER.SizeOfHeapReserve]
cmp word [eax], 'MZ'
jnz @f
add eax, [eax+IMAGE_DOS_HEADER.e_lfanew]
mov edx, [eax+IMAGE_NT_HEADERS.OptionalHeader.SizeOfHeapReserve]
@@:
malloc_init
; ...TBD...
; Call exe entry point.
mov eax, [ebp+kernel_init_data.exe_base]
mov edx, [eax+STRIPPED_PE_HEADER.AddressOfEntryPoint]
cmp word [eax], 'MZ'
jnz @f
mov ecx, [eax+IMAGE_DOS_HEADER.e_lfanew]
add ecx, eax
mov edx, [ecx+IMAGE_NT_HEADERS.OptionalHeader.AddressOfEntryPoint]
@@:
add edx, eax
call edx
; If exe entry point has returned control, die.
mov eax, -1
call FS_SYSCALL_PTR
.version_mismatch:
mov esi, version_mismatch_msg
mov eax, 63
mov ebx, 1
@@:
mov cl, [esi]
test cl, cl
jz @f
int 0x40 ; can't use FS_SYSCALL_PTR here, it has not yet been set
inc esi
jmp @b
@@:
mov eax, -1
int 0x40
.nothing:
ret
endp
align 4
data export
export 'kolibri.dll' \
, kercall, 'kercall' \
, malloc, 'malloc' \
, free, 'free' \
, calloc, 'calloc' \
, realloc, 'realloc' \
, realloc_in_place, 'realloc_in_place' \
, memalign, 'memalign' \
, create_mspace, 'create_mspace' \
, destroy_mspace, 'destroy_mspace' \
, mspace_malloc, 'mspace_malloc' \
, mspace_free, 'mspace_free' \
, mspace_calloc, 'mspace_calloc' \
, mspace_realloc, 'mspace_realloc' \
, mspace_realloc_in_place, 'mspace_realloc_in_place' \
, mspace_memalign, 'mspace_memalign' \
end data
version_mismatch_msg db 'Version mismatch between kernel and kolibri.dll',13,10,0
if FOOTERS
section '.data' data readable writable
malloc_magic dd ?
end if

View File

@ -0,0 +1,339 @@
; System allocator.
; Based on dlmalloc 2.8.6.
; dlmalloc is written by Doug Lea and released to the public domain.
; Algorithms are the same as in dlmalloc, with the following differences:
; * segment management uses large segments,
; since segments can never be merged;
; * top chunk is usually large, so the code tries mmap
; for chunks with size >= mmap_threshold before allocating from top;
; * there is additional bookkeeping for releasing physical memory
; instead of relying on unmapping entire segments:
; tree chunks have additional field in the end,
; all recently expanded tree chunks are linked in one list for sys_trim;
; * there is an additional list of all mmapped chunks,
; so that mspace_destroy can free everything, including mmapped chunks;
; * realloc and memalign can give back a space before a free chunk
; (extending that chunk) even if a space is less than minimal chunk size.
; Statistics:
; Alignment: 8 bytes
; Minimum overhead per allocated chunk: 4 or 8 bytes,
; depending on whether FOOTERS is defined.
; Minimum allocated size: 16 bytes (including overhead)
; See details at http://gee.cs.oswego.edu/dl/html/malloc.html.
; The KolibriOS kernel provides functions similar to mmap/mremap/munmap,
; they are used as base for allocations.
FOOTERS = 0
; If true, provide extra checking and dispatching by placing
; information in the footers of allocated chunks. This adds
; space and time overhead, but can be useful for debugging.
DEFAULT_MMAP_THRESHOLD = 256*1024
; The request size threshold for using MMAP to directly service a
; request. Requests of at least this size that cannot be allocated
; using already-existing space will be serviced via mmap. (If enough
; normal freed space already exists it is used instead.) Using mmap
; segregates relatively large chunks of memory so that they can be
; individually obtained and released from the host system. A request
; serviced through mmap is never reused by any other request (at least
; not directly; the system may just so happen to remap successive
; requests to the same locations). Segregating space in this way has
; the benefits that: Mmapped space can always be individually released
; back to the system, which helps keep the system level memory demands
; of a long-lived program low. Also, mapped memory doesn't become
; `locked' between other chunks, as can happen with normally allocated
; chunks, which means that even trimming via malloc_trim would not
; release them. However, it has the disadvantage that the space
; cannot be reclaimed, consolidated, and then used to service later
; requests, as happens with normal chunks. The advantages of mmap
; nearly always outweigh disadvantages for "large" chunks, but the
; value of "large" may vary across systems. The default is an
; empirically derived value that works well in most systems. You can
; disable mmap by setting to 0xFFFFFFFF.
RELEASE_CHECK_RATE = 64
; The number of consolidated frees between checks to release
; unused segments when freeing. When using non-contiguous segments,
; especially with multiple mspaces, checking only for topmost space
; doesn't always suffice to trigger trimming. To compensate for this,
; free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
; current number of segments, if greater) try to release unused
; segments to the OS when freeing chunks that result in
; consolidation. The best value for this parameter is a compromise
; between slowing down frees with relatively costly checks that
; rarely trigger versus holding on to unused memory. To effectively
; disable, set to MAX_SIZE_T. This may lead to a very slight speed
; improvement at the expense of carrying around more memory.
DEFAULT_MSPACE_SIZE = 1024*1024
include 'malloc_internal.inc'
prologue@proc equ fpo_prologue
epilogue@proc equ fpo_epilogue
; void* create_mspace(size_t capacity, int locked)
; create_mspace creates and returns a new independent space with the
; given initial capacity, or, if 0, the default mspace size. It
; returns null if there is no system memory available to create the
; space. If argument locked is non-zero, the space uses a separate
; lock to control access. The capacity of the space will grow
; dynamically as needed to service mspace_malloc requests.
proc create_mspace stdcall uses ebx, capacity, locked
do_create_mspace
endp
; void destroy_mspace(mspace msp)
; destroy_mspace destroys the given space, and attempts to return all
; of its memory back to the system, returning the total number of
; bytes freed. After destruction, the results of access to all memory
; used by the space become undefined.
proc destroy_mspace stdcall uses ebx, msp
do_destroy_mspace
endp
macro set_default_heap
{
mov ebp, FS_PROCESS_DATA
mov ebp, [ebp+0x18]
.got_mspace:
}
macro set_explicit_heap
{
mov ebp, [msp]
}
macro mspace_adapter common_label
{
mov eax, [esp]
mov [esp], ebp
mov ebp, [esp+4]
mov [esp+4], eax
push ebx
push esi
jmp common_label
}
; void* malloc(size_t bytes)
; Returns a pointer to a newly allocated chunk of at least n bytes, or
; null if no space is available, in which case errno is set to ENOMEM
; on ANSI C systems.
;
; If n is zero, malloc returns a minimum-sized chunk. (The minimum
; size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
; systems.) Note that size_t is an unsigned type, so calls with
; arguments that would be negative if signed are interpreted as
; requests for huge amounts of space, which will often fail. The
; maximum supported value of n differs across systems, but is in all
; cases less than the maximum representable value of a size_t.
align 16
proc malloc stdcall uses ebp ebx esi, bytes
set_default_heap
do_malloc
endp
; void free(void* mem)
; Releases the chunk of memory pointed to by mem, that had been previously
; allocated using malloc or a related routine such as realloc.
; It has no effect if mem is null. If mem was not malloced or already
; freed, free(mem) will by default cause the current program to abort.
align 16
proc free stdcall uses ebp ebx esi, mem
set_default_heap
do_free
endp
; void* calloc(size_t n_elements, size_t elem_size);
; Returns a pointer to n_elements * elem_size bytes, with all locations
; set to zero.
align 16
proc calloc stdcall, n_elements, elem_size
do_calloc <stdcall malloc,eax>
endp
; void* realloc(void* oldmem, size_t bytes)
; Returns a pointer to a chunk of size bytes that contains the same data
; as does chunk oldmem up to the minimum of (bytes, oldmem's size) bytes, or null
; if no space is available.
;
; The returned pointer may or may not be the same as oldmem. The algorithm
; prefers extending oldmem in most cases when possible, otherwise it
; employs the equivalent of a malloc-copy-free sequence.
;
; If oldmem is null, realloc is equivalent to malloc.
;
; If space is not available, realloc returns null, errno is set (if on
; ANSI) and oldmem is NOT freed.
;
; if bytes is for fewer bytes than already held by oldmem, the newly unused
; space is lopped off and freed if possible. realloc with a size
; argument of zero (re)allocates a minimum-sized chunk.
;
; The old unix realloc convention of allowing the last-free'd chunk
; to be used as an argument to realloc is not supported.
align 16
proc realloc stdcall uses ebp ebx esi, oldmem, bytes
set_default_heap
if used mspace_realloc
do_realloc <stdcall mspace_malloc,ebp,>, <stdcall mspace_free,ebp,>
else
do_realloc <stdcall malloc,>, <stdcall free,>
end if
endp
; void* realloc_in_place(void* oldmem, size_t bytes)
; Resizes the space allocated for oldmem to size bytes, only if this can be
; done without moving oldmem (i.e., only if there is adjacent space
; available if bytes is greater than oldmem's current allocated size, or bytes is
; less than or equal to oldmem's size). This may be used instead of plain
; realloc if an alternative allocation strategy is needed upon failure
; to expand space; for example, reallocation of a buffer that must be
; memory-aligned or cleared. You can use realloc_in_place to trigger
; these alternatives only when needed.
;
; Returns oldmem if successful; otherwise null.
align 16
proc realloc_in_place stdcall uses ebp ebx esi, oldmem, bytes
set_default_heap
do_realloc_in_place
endp
; void* memalign(size_t alignment, size_t bytes);
; Returns a pointer to a newly allocated chunk of bytes argument, aligned
; in accord with the alignment argument.
;
; The alignment argument should be a power of two. If the argument is
; not a power of two, the nearest greater power is used.
; 8-byte alignment is guaranteed by normal malloc calls, so don't
; bother calling memalign with an argument of 8 or less.
;
; Overreliance on memalign is a sure way to fragment space.
align 16
proc memalign stdcall uses ebp ebx esi, alignment, bytes
set_default_heap
if used mspace_memalign
do_memalign <stdcall mspace_malloc,ebp,>
else
do_memalign <stdcall malloc,>
end if
endp
; void* mspace_malloc(mspace msp, size_t bytes)
; mspace_malloc behaves as malloc, but operates within
; the given space.
align 16
proc mspace_malloc ;stdcall uses ebp ebx esi, msp, bytes
; set_explicit_heap
; do_malloc
mspace_adapter malloc.got_mspace
endp
; void mspace_free(mspace msp, void* mem)
; mspace_free behaves as free, but operates within
; the given space.
align 16
proc mspace_free ;stdcall uses ebp ebx esi, msp, mem
; set_explicit_heap
; do_free
mspace_adapter free.got_mspace
endp
; void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size)
; mspace_calloc behaves as calloc, but operates within
; the given space.
align 16
proc mspace_calloc stdcall, msp, n_elements, elem_size
do_calloc <stdcall mspace_malloc,[msp+4],eax>
endp
; void* mspace_realloc(mspace msp, void* oldmem, size_t bytes)
; mspace_realloc behaves as realloc, but operates within
; the given space.
align 16
proc mspace_realloc ;stdcall uses ebp ebx esi, msp, oldmem, bytes
; set_explicit_heap
; do_realloc <stdcall mspace_malloc,ebp,>, <stdcall mspace_free,ebp,>
mspace_adapter realloc.got_mspace
endp
; void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes)
align 16
proc mspace_realloc_in_place ;stdcall uses ebp ebx esi, msp, oldmem, bytes
; set_explicit_heap
; do_realloc_in_place
mspace_adapter realloc_in_place.got_mspace
endp
; void* mspace_memalign(mspace msp, size_t alignment, size_t bytes)
; mspace_memalign behaves as memalign, but operates within
; the given space.
align 16
proc mspace_memalign ;stdcall uses ebp ebx esi, msp, alignment, bytes
; set_explicit_heap
; do_memalign <stdcall mspace_malloc,ebp,>
mspace_adapter memalign.got_mspace
endp
assert MALLOC_ALIGNMENT >= 8
assert MALLOC_ALIGNMENT and (MALLOC_ALIGNMENT - 1) = 0
assert MCHUNK_SIZE and (MCHUNK_SIZE - 1) = 0
; in: edx = initial size of the process heap
macro malloc_init
{
if FOOTERS
mov eax, 26
mov ebx, 9
call FS_SYSCALL_PTR
xor eax, 0x55555555
or eax, 8
and eax, not 7
mov [malloc_magic], eax
end if
stdcall create_mspace, edx, 1
mov ecx, FS_PROCESS_DATA
mov [ecx+0x18], eax
}
proc heap_corrupted
sub esp, 400h
mov eax, 9
mov ebx, esp
or ecx, -1
call FS_SYSCALL_PTR
lea esi, [ebx+10]
lea edx, [ebx+10+11]
mov eax, 63
mov ebx, 1
mov cl, '['
call FS_SYSCALL_PTR
@@:
mov cl, [esi]
test cl, cl
jz @f
call FS_SYSCALL_PTR
inc esi
cmp esi, ebx
jb @b
@@:
mov esi, heap_corrupted_msg
@@:
mov cl, [esi]
inc esi
test cl, cl
jz @f
mov eax, 63
mov ebx, 1
call FS_SYSCALL_PTR
jmp @b
@@:
or eax, -1
or ebx, -1
call FS_SYSCALL_PTR
endp
heap_corrupted_msg db '] Heap corrupted, aborting',13,10,0

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,448 @@
format PE console 4.0
entry start
include 'win32a.inc'
include '../../struct.inc'
include '../../proc32.inc'
include 'fpo.inc'
FS_ERRNO equ dword [errno]
ENOMEM = 12
include 'malloc.inc'
start:
cinvoke fopen, logfile_name, logfile_mode
mov [logfile], eax
mov edx, 1 ;shl 25
malloc_init
call run_test
set_default_heap
stdcall destroy_mspace, ebp
cinvoke fclose, [logfile]
ret
FS_SYSCALL_PTR:
cmp eax, 68
jnz unknown_syscall
cmp ebx, 12
jz syscall_malloc
cmp ebx, 13
jz syscall_free
cmp ebx, 20
jz syscall_realloc
cmp ebx, 26
jz syscall_trim
unknown_syscall:
int3
jmp $
syscall_malloc:
push ecx edx
invoke VirtualAlloc, 0, ecx, MEM_COMMIT, PAGE_READWRITE
pop edx ecx
ret
syscall_free:
push ecx edx
invoke VirtualFree, ecx, 0, MEM_RELEASE
test eax, eax
jz @f
pop edx ecx
ret
@@:
int3
jmp $
syscall_realloc:
push esi edi
push ecx edx
mov esi, edx
call syscall_malloc
mov edi, eax
sub esp, 1Ch
mov edx, esp
invoke VirtualQuery, esi, edx, 1Ch
mov ecx, [esp+0Ch]
add esp, 1Ch
cmp ecx, [esp+4]
jb @f
mov ecx, [esp+4]
@@:
shr ecx, 2
push esi edi
rep movsd
pop edi ecx
call syscall_free
mov eax, edi
pop edx ecx
pop edi esi
ret
syscall_trim:
push eax ecx edi
lea edi, [ecx+edx]
mov ecx, esi
shr ecx, 2
xor eax, eax
rep stosd
pop edi ecx eax
ret
macro next_random
{
imul edi, 1103515245
add edi, 12345
}
macro call_and_check_regs what
{
push ebx edi
what
cmp edi, [esp]
jnz edi_destroyed
cmp ebx, [esp+4]
jnz ebx_destroyed
add esp, 8
}
get_malloc_size:
and eax, 1023
jnz @f
next_random
mov eax, edi
shr eax, 16
shl eax, 8
@@:
ret
get_and_validate_memory:
xor edx, edx
div esi
mov eax, [esp+edx*8+4]
mov ecx, [esp+edx*8+8]
push edi eax
mov edi, eax
mov al, [edi]
repz scasb
jnz memory_destroyed
pop ecx edi
ret
run_test:
; 65536 times run random operation.
; Randomly select malloc(random size from 1 to 1023 or from 256 to 16M),
; free(random of previously allocated areas),
; realloc(random of previously allocated areas, random size from 1 to 1023 or from 256 to 16M),
; realloc_in_place(<same as realloc>),
; memalign(random size from 1 to 1023 or from 256 to 16M, random power of 2 from 8 to 1024)
mov edi, 0x12345678
xor esi, esi ; 0 areas allocated
mov ebx, 65536
.loop:
; call validate_release_chain
next_random
mov eax, edi
shr eax, 16
mov ecx, eax
shr eax, 3
and ecx, 7
jz .memalign
dec ecx
jz .realloc_in_place
dec ecx
jz .realloc
test ebx, 64
jz .prefer_free
.prefer_malloc:
dec ecx
jz .free
jmp .malloc
.prefer_free:
dec ecx
jnz .free
.malloc:
call get_malloc_size
jz .loop
push eax
call_and_check_regs <stdcall malloc,eax>
pop ecx
pushad
cinvoke fprintf, [logfile], malloc_str, ecx, eax
popad
test eax, eax
jz generic_malloc_failure
inc esi
push ecx eax
push edi
mov edi, eax
mov eax, esi
rep stosb
pop edi
jmp .common
.free:
test esi, esi
jz .loop
call get_and_validate_memory
push edx
pushad
cinvoke fprintf, [logfile], free_str, ecx
popad
call_and_check_regs <stdcall free,ecx>
; call validate_release_chain
pop edx
dec esi
pop eax ecx
push edi
lea edi, [esp+4]
@@:
dec edx
js @f
xchg eax, [edi]
xchg ecx, [edi+4]
add edi, 8
jmp @b
@@:
pop edi
jmp .common
.realloc:
test esi, esi
jz .loop
call get_and_validate_memory
push eax
next_random
mov eax, edi
shr eax, 16
call get_malloc_size
jnz @f
pop eax
jmp .loop
@@:
push eax edx
pushad
cinvoke fprintf, [logfile], realloc_str1, ecx, eax
popad
call_and_check_regs <stdcall realloc,ecx,eax>
pop edx ecx
pushad
cinvoke fprintf, [logfile], realloc_str2, eax
popad
test eax, eax
jz generic_malloc_failure
push ebx edi ecx
mov ebx, [esp+edx*8+20]
mov [esp+edx*8+16], eax
mov [esp+edx*8+20], ecx
cmp ebx, ecx
jae @f
mov ecx, ebx
@@:
mov edi, eax
mov eax, [esp+12]
repz scasb
jnz memory_destroyed
pop ecx
sub ecx, ebx
jbe @f
rep stosb
@@:
pop edi ebx eax
jmp .common
.realloc_in_place:
test esi, esi
jz .loop
call get_and_validate_memory
push eax
next_random
mov eax, edi
shr eax, 16
call get_malloc_size
jnz @f
pop eax
jmp .loop
@@:
push eax edx
pushad
cinvoke fprintf, [logfile], realloc_in_place_str1, ecx, eax
popad
call_and_check_regs <stdcall realloc_in_place,ecx,eax>
pushad
cinvoke fprintf, [logfile], realloc_in_place_str2, eax
popad
pop edx ecx
test eax, eax
jnz @f
pop eax
jmp .common
@@:
cmp [esp+edx*8+4], eax
jnz generic_malloc_failure
push ebx edi ecx
mov ebx, [esp+edx*8+20]
mov [esp+edx*8+20], ecx
cmp ebx, ecx
jae @f
mov ecx, ebx
@@:
mov edi, eax
mov eax, [esp+12]
repz scasb
jnz memory_destroyed
pop ecx
sub ecx, ebx
jbe @f
rep stosb
@@:
pop edi ebx eax
jmp .common
.memalign:
call get_malloc_size
jz .loop
next_random
mov ecx, edi
shr ecx, 29
mov edx, 8
shl edx, cl
push eax edx
pushad
cinvoke fprintf, [logfile], memalign_str1, edx, eax
popad
call_and_check_regs <stdcall memalign, edx, eax>
pushad
cinvoke fprintf, [logfile], memalign_str2, eax
popad
dec dword [esp]
test eax, [esp]
jnz memalign_invalid
add esp, 4
pop ecx
test eax, eax
jz generic_malloc_failure
inc esi
push ecx eax
push edi
mov edi, eax
mov eax, esi
rep stosb
pop edi
.common:
cinvoke fflush, [logfile]
dec ebx
jnz .loop
@@:
dec esi
js @f
pop eax ecx
stdcall free, eax
jmp @b
@@:
ret
generic_malloc_failure:
mov eax, 1
int3
jmp $
memory_destroyed:
mov eax, 2
int3
jmp $
edi_destroyed:
mov eax, 3
int3
jmp $
ebx_destroyed:
mov eax, 4
int3
jmp $
memalign_invalid:
mov eax, 5
int3
jmp $
validate_release_chain:
push ebx ebp
set_default_heap
lea ecx, [ebp+malloc_state.release_list-tchunk_release_fd]
mov eax, ecx
mov edx, [ecx+tchunk_release_fd]
@@:
cmp [edx+tchunk_release_bk], eax
jnz .fail
cmp edx, ecx
jz @f
mov eax, edx
mov edx, [edx+tchunk_release_fd]
jmp @b
@@:
lea eax, [ebp-3]
add eax, [ebp-4]
cmp eax, [ebp+malloc_state.top]
jz .ok
.chunk_loop:
mov ecx, [eax-4]
test ecx, CINUSE_BIT
jnz .next_chunk
cmp ecx, 0x100
jb .next_chunk
mov edx, ecx
and edx, not FLAG_BITS
lea edx, [eax+edx]
cmp [edx+tchunk_release_fd], edx
jnz @f
cmp [edx+tchunk_release_bk], edx
jnz .fail
jmp .next_chunk
@@:
mov ebx, [ebp+malloc_state.release_list]
@@:
cmp edx, ebx
jz .next_chunk
mov ebx, [ebx+tchunk_release_fd]
cmp ebx, [ebp+malloc_state.release_list]
jnz @b
jmp .fail
.next_chunk:
and ecx, not FLAG_BITS
add eax, ecx
cmp eax, [ebp+malloc_state.top]
jb .chunk_loop
ja .fail
.ok:
pop ebp ebx
ret
.fail:
int3
jmp $
align 4
data import
library kernel32,'kernel32.dll',msvcrt,'msvcrt.dll'
import kernel32,\
VirtualAlloc, 'VirtualAlloc', \
VirtualFree, 'VirtualFree', \
VirtualQuery, 'VirtualQuery'
import msvcrt,\
fopen,'fopen',\
fclose,'fclose',\
fprintf,'fprintf',\
fflush,'fflush'
end data
malloc_str db 'malloc(0x%X) = 0x%X',10,0
free_str db 'free(0x%X)',10,0
realloc_str1 db 'realloc(0x%X,0x%X)',0
realloc_str2 db ' = 0x%X',10,0
realloc_in_place_str1 db 'realloc_in_place(0x%X,0x%X)',0
realloc_in_place_str2 db ' = 0x%X',10,0
memalign_str1 db 'memalign(0x%X,0x%X)',0
memalign_str2 db ' = 0x%X',10,0
logfile_name db 'test.log',0
logfile_mode db 'w',0
align 4
logfile dd ?
errno dd ?
FS_PROCESS_DATA = process_data
process_data rd 1024

134
programs/system/os/pe.inc Normal file
View File

@ -0,0 +1,134 @@
struct STRIPPED_PE_HEADER
Signature dw ?
Characteristics dw ?
AddressOfEntryPoint dd ?
ImageBase dd ?
SectionAlignmentLog db ?
FileAlignmentLog db ?
MajorOSVersion db ?
MinorOSVersion db ?
SizeOfImage dd ?
SizeOfStackReserve dd ?
SizeOfHeapReserve dd ?
SizeOfHeaders dd ?
Subsystem db ?
NumberOfRvaAndSizes db ?
NumberOfSections dw ?
ends
STRIPPED_PE_SIGNATURE = 0x4503 ; 'PE' xor 'S'
SPE_DIRECTORY_IMPORT = 0
SPE_DIRECTORY_EXPORT = 1
SPE_DIRECTORY_BASERELOC = 2
struct IMAGE_DATA_DIRECTORY
VirtualAddress dd ?
isize dd ?
ends
struct IMAGE_OPTIONAL_HEADER32
Magic dw ?
MajorLinkerVersion db ?
MinorLinkerVersion db ?
SizeOfCode dd ?
SizeOfInitializedData dd ?
SizeOfUninitializedData dd ?
AddressOfEntryPoint dd ?
BaseOfCode dd ?
BaseOfData dd ?
ImageBase dd ?
SectionAlignment dd ?
FileAlignment dd ?
MajorOperatingSystemVersion dw ?
MinorOperatingSystemVersion dw ?
MajorImageVersion dw ?
MinorImageVersion dw ?
MajorSubsystemVersion dw ?
MinorSubsystemVersion dw ?
Win32VersionValue dd ?
SizeOfImage dd ?
SizeOfHeaders dd ?
CheckSum dd ?
Subsystem dw ?
DllCharacteristics dw ?
SizeOfStackReserve dd ?
SizeOfStackCommit dd ?
SizeOfHeapReserve dd ?
SizeOfHeapCommit dd ?
LoaderFlags dd ?
NumberOfDirectories dd ?
DataDirectory IMAGE_DATA_DIRECTORY ?
Directories rb sizeof.IMAGE_DATA_DIRECTORY*15
ends
struct IMAGE_FILE_HEADER
Machine dw ?
NumberOfSections dw ?
TimeDateStamp dd ?
PointerToSymbolTable dd ?
NumberOfSymbols dd ?
SizeOfOptionalHeader dw ?
Characteristics dw ?
ends
struct IMAGE_NT_HEADERS
Signature dd ?
FileHeader IMAGE_FILE_HEADER
OptionalHeader IMAGE_OPTIONAL_HEADER32
ends
struct IMAGE_EXPORT_DIRECTORY
Characteristics dd ?
TimeDateStamp dd ?
MajorVersion dw ?
MinorVersion dw ?
Name dd ?
Base dd ?
NumberOfFunctions dd ?
NumberOfNames dd ?
AddressOfFunctions dd ?
AddressOfNames dd ?
AddressOfNameOrdinals dd ?
ends
struct IMAGE_IMPORT_DIRECTORY
OriginalFirstThunk dd ?
TimeDateStamp dd ?
ForwarderChain dd ?
Name dd ?
FirstThunk dd ?
ends
struct IMAGE_DOS_HEADER
e_magic dw ?
e_cblp dw ?
e_cp dw ?
e_crlc dw ?
e_cparhdr dw ?
e_minalloc dw ?
e_maxalloc dw ?
e_ss dw ?
e_sp dw ?
e_csum dw ?
e_ip dw ?
e_cs dw ?
e_lfarlc dw ?
e_ovno dw ?
e_res rw 4
e_oemid dw ?
e_oeminfo dw ?
e_res2 rw 10
e_lfanew dd ?
ends
struct IMAGE_SECTION_HEADER
Name rb 8
VirtualSize dd ?
VirtualAddress dd ?
SizeOfRawData dd ?
OffsetToRawData dd ?
OffsetToRelocations dd ?
OffsetToLinenumbers dd ?
NumberOfRelocations dw ?
NumberOfLinenumbers dw ?
Characteristics dd ?
ends