/* * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org * * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Author Rickard E. (Rik) Faith * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include unsigned int drm_debug = 0; /* 1 to enable debug output */ EXPORT_SYMBOL(drm_debug); unsigned int drm_rnodes = 0; /* 1 to enable experimental render nodes API */ EXPORT_SYMBOL(drm_rnodes); /* 1 to allow user space to request universal planes (experimental) */ unsigned int drm_universal_planes = 0; EXPORT_SYMBOL(drm_universal_planes); unsigned int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ EXPORT_SYMBOL(drm_vblank_offdelay); unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ EXPORT_SYMBOL(drm_timestamp_precision); struct idr drm_minors_idr; void drm_err(const char *format, ...) { struct va_format vaf; va_list args; va_start(args, format); vaf.fmt = format; vaf.va = &args; printk(KERN_ERR "[" DRM_NAME ":%pf] *ERROR* %pV", __builtin_return_address(0), &vaf); va_end(args); } EXPORT_SYMBOL(drm_err); void drm_ut_debug_printk(const char *function_name, const char *format, ...) { struct va_format vaf; va_list args; // if (drm_debug & request_level) { // if (function_name) // printk(KERN_DEBUG "[%s:%s], ", prefix, function_name); // va_start(args, format); // vprintk(format, args); // va_end(args); // } } EXPORT_SYMBOL(drm_ut_debug_printk); #if 0 struct drm_master *drm_master_create(struct drm_minor *minor) { struct drm_master *master; master = kzalloc(sizeof(*master), GFP_KERNEL); if (!master) return NULL; kref_init(&master->refcount); spin_lock_init(&master->lock.spinlock); init_waitqueue_head(&master->lock.lock_queue); if (drm_ht_create(&master->magiclist, DRM_MAGIC_HASH_ORDER)) { kfree(master); return NULL; } INIT_LIST_HEAD(&master->magicfree); master->minor = minor; return master; } struct drm_master *drm_master_get(struct drm_master *master) { kref_get(&master->refcount); return master; } EXPORT_SYMBOL(drm_master_get); static void drm_master_destroy(struct kref *kref) { struct drm_master *master = container_of(kref, struct drm_master, refcount); struct drm_magic_entry *pt, *next; struct drm_device *dev = master->minor->dev; struct drm_map_list *r_list, *list_temp; mutex_lock(&dev->struct_mutex); if (dev->driver->master_destroy) dev->driver->master_destroy(dev, master); list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) { if (r_list->master == master) { drm_rmmap_locked(dev, r_list->map); r_list = NULL; } } if (master->unique) { kfree(master->unique); master->unique = NULL; master->unique_len = 0; } list_for_each_entry_safe(pt, next, &master->magicfree, head) { list_del(&pt->head); drm_ht_remove_item(&master->magiclist, &pt->hash_item); kfree(pt); } drm_ht_remove(&master->magiclist); mutex_unlock(&dev->struct_mutex); kfree(master); } void drm_master_put(struct drm_master **master) { kref_put(&(*master)->refcount, drm_master_destroy); *master = NULL; } EXPORT_SYMBOL(drm_master_put); int drm_setmaster_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret = 0; mutex_lock(&dev->master_mutex); if (file_priv->is_master) goto out_unlock; if (file_priv->minor->master) { ret = -EINVAL; goto out_unlock; } if (!file_priv->master) { ret = -EINVAL; goto out_unlock; } file_priv->minor->master = drm_master_get(file_priv->master); file_priv->is_master = 1; if (dev->driver->master_set) { ret = dev->driver->master_set(dev, file_priv, false); if (unlikely(ret != 0)) { file_priv->is_master = 0; drm_master_put(&file_priv->minor->master); } } out_unlock: mutex_unlock(&dev->master_mutex); return ret; } int drm_dropmaster_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret = -EINVAL; mutex_lock(&dev->master_mutex); if (!file_priv->is_master) goto out_unlock; if (!file_priv->minor->master) goto out_unlock; ret = 0; if (dev->driver->master_drop) dev->driver->master_drop(dev, file_priv, false); drm_master_put(&file_priv->minor->master); file_priv->is_master = 0; out_unlock: mutex_unlock(&dev->master_mutex); return ret; } /* * DRM Minors * A DRM device can provide several char-dev interfaces on the DRM-Major. Each * of them is represented by a drm_minor object. Depending on the capabilities * of the device-driver, different interfaces are registered. * * Minors can be accessed via dev->$minor_name. This pointer is either * NULL or a valid drm_minor pointer and stays valid as long as the device is * valid. This means, DRM minors have the same life-time as the underlying * device. However, this doesn't mean that the minor is active. Minors are * registered and unregistered dynamically according to device-state. */ static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, unsigned int type) { switch (type) { case DRM_MINOR_LEGACY: return &dev->primary; case DRM_MINOR_RENDER: return &dev->render; case DRM_MINOR_CONTROL: return &dev->control; default: return NULL; } } static int drm_minor_alloc(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; minor = kzalloc(sizeof(*minor), GFP_KERNEL); if (!minor) return -ENOMEM; minor->type = type; minor->dev = dev; *drm_minor_get_slot(dev, type) = minor; return 0; } static void drm_minor_free(struct drm_device *dev, unsigned int type) { struct drm_minor **slot; slot = drm_minor_get_slot(dev, type); if (*slot) { drm_mode_group_destroy(&(*slot)->mode_group); kfree(*slot); *slot = NULL; } } static int drm_minor_register(struct drm_device *dev, unsigned int type) { struct drm_minor *new_minor; unsigned long flags; int ret; int minor_id; DRM_DEBUG("\n"); new_minor = *drm_minor_get_slot(dev, type); if (!new_minor) return 0; idr_preload(GFP_KERNEL); spin_lock_irqsave(&drm_minor_lock, flags); minor_id = idr_alloc(&drm_minors_idr, NULL, 64 * type, 64 * (type + 1), GFP_NOWAIT); spin_unlock_irqrestore(&drm_minor_lock, flags); idr_preload_end(); if (minor_id < 0) return minor_id; new_minor->index = minor_id; ret = drm_debugfs_init(new_minor, minor_id, drm_debugfs_root); if (ret) { DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); goto err_id; } ret = drm_sysfs_device_add(new_minor); if (ret) { DRM_ERROR("DRM: Error sysfs_device_add.\n"); goto err_debugfs; } /* replace NULL with @minor so lookups will succeed from now on */ spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, new_minor, new_minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); DRM_DEBUG("new minor assigned %d\n", minor_id); return 0; err_debugfs: drm_debugfs_cleanup(new_minor); err_id: spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor_id); spin_unlock_irqrestore(&drm_minor_lock, flags); new_minor->index = 0; return ret; } static void drm_minor_unregister(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; minor = *drm_minor_get_slot(dev, type); if (!minor || !minor->kdev) return; spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); minor->index = 0; drm_debugfs_cleanup(minor); drm_sysfs_device_remove(minor); } /** * drm_minor_acquire - Acquire a DRM minor * @minor_id: Minor ID of the DRM-minor * * Looks up the given minor-ID and returns the respective DRM-minor object. The * refence-count of the underlying device is increased so you must release this * object with drm_minor_release(). * * As long as you hold this minor, it is guaranteed that the object and the * minor->dev pointer will stay valid! However, the device may get unplugged and * unregistered while you hold the minor. * * Returns: * Pointer to minor-object with increased device-refcount, or PTR_ERR on * failure. */ struct drm_minor *drm_minor_acquire(unsigned int minor_id) { struct drm_minor *minor; unsigned long flags; spin_lock_irqsave(&drm_minor_lock, flags); minor = idr_find(&drm_minors_idr, minor_id); if (minor) drm_dev_ref(minor->dev); spin_unlock_irqrestore(&drm_minor_lock, flags); if (!minor) { return ERR_PTR(-ENODEV); } else if (drm_device_is_unplugged(minor->dev)) { drm_dev_unref(minor->dev); return ERR_PTR(-ENODEV); } return minor; } /** * drm_minor_release - Release DRM minor * @minor: Pointer to DRM minor object * * Release a minor that was previously acquired via drm_minor_acquire(). */ void drm_minor_release(struct drm_minor *minor) { drm_dev_unref(minor->dev); } /** * drm_put_dev - Unregister and release a DRM device * @dev: DRM device * * Called at module unload time or when a PCI device is unplugged. * * Use of this function is discouraged. It will eventually go away completely. * Please use drm_dev_unregister() and drm_dev_unref() explicitly instead. * * Cleans up all DRM device, calling drm_lastclose(). */ void drm_put_dev(struct drm_device *dev) { DRM_DEBUG("\n"); if (!dev) { DRM_ERROR("cleanup called no dev\n"); return; } drm_dev_unregister(dev); drm_dev_unref(dev); } EXPORT_SYMBOL(drm_put_dev); void drm_unplug_dev(struct drm_device *dev) { /* for a USB device */ drm_minor_unregister(dev, DRM_MINOR_LEGACY); drm_minor_unregister(dev, DRM_MINOR_RENDER); drm_minor_unregister(dev, DRM_MINOR_CONTROL); mutex_lock(&drm_global_mutex); drm_device_set_unplugged(dev); if (dev->open_count == 0) { drm_put_dev(dev); } mutex_unlock(&drm_global_mutex); } EXPORT_SYMBOL(drm_unplug_dev); /* * DRM internal mount * We want to be able to allocate our own "struct address_space" to control * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow * stand-alone address_space objects, so we need an underlying inode. As there * is no way to allocate an independent inode easily, we need a fake internal * VFS mount-point. * * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() * frees it again. You are allowed to use iget() and iput() to get references to * the inode. But each drm_fs_inode_new() call must be paired with exactly one * drm_fs_inode_free() call (which does not have to be the last iput()). * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it * between multiple inode-users. You could, technically, call * iget() + drm_fs_inode_free() directly after alloc and sometime later do an * iput(), but this way you'd end up with a new vfsmount for each inode. */ static int drm_fs_cnt; static struct vfsmount *drm_fs_mnt; static const struct dentry_operations drm_fs_dops = { .d_dname = simple_dname, }; static const struct super_operations drm_fs_sops = { .statfs = simple_statfs, }; static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_pseudo(fs_type, "drm:", &drm_fs_sops, &drm_fs_dops, 0x010203ff); } static struct file_system_type drm_fs_type = { .name = "drm", .owner = THIS_MODULE, .mount = drm_fs_mount, .kill_sb = kill_anon_super, }; #endif int drm_fill_in_dev(struct drm_device *dev, const struct pci_device_id *ent, struct drm_driver *driver) { int ret; dev->driver = driver; INIT_LIST_HEAD(&dev->filelist); INIT_LIST_HEAD(&dev->ctxlist); INIT_LIST_HEAD(&dev->vmalist); INIT_LIST_HEAD(&dev->maplist); INIT_LIST_HEAD(&dev->vblank_event_list); spin_lock_init(&dev->buf_lock); spin_lock_init(&dev->event_lock); mutex_init(&dev->struct_mutex); mutex_init(&dev->ctxlist_mutex); // if (drm_ht_create(&dev->map_hash, 12)) { // return -ENOMEM; // } if (driver->driver_features & DRIVER_GEM) { ret = drm_gem_init(dev); if (ret) { DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); goto err_ctxbitmap; } } return 0; err_ctxbitmap: // drm_lastclose(dev); return ret; } EXPORT_SYMBOL(drm_fill_in_dev); /** * Compute size order. Returns the exponent of the smaller power of two which * is greater or equal to given number. * * \param size size. * \return order. * * \todo Can be made faster. */ int drm_order(unsigned long size) { int order; unsigned long tmp; for (order = 0, tmp = size >> 1; tmp; tmp >>= 1, order++) ; if (size & (size - 1)) ++order; return order; } int drm_sysfs_connector_add(struct drm_connector *connector) { return 0; } void drm_sysfs_connector_remove(struct drm_connector *connector) { } void drm_sysfs_hotplug_event(struct drm_device *dev) { DRM_DEBUG("generating hotplug event\n"); } u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) { u32 high = divisor >> 32; u64 quot; if (high == 0) { u32 rem32; quot = div_u64_rem(dividend, divisor, &rem32); *remainder = rem32; } else { int n = 1 + fls(high); quot = div_u64(dividend >> n, divisor >> n); if (quot != 0) quot--; *remainder = dividend - quot * divisor; if (*remainder >= divisor) { quot++; *remainder -= divisor; } } return quot; } u64 div64_u64(u64 dividend, u64 divisor) { u32 high, d; high = divisor >> 32; if (high) { unsigned int shift = fls(high); d = divisor >> shift; dividend >>= shift; } else d = divisor; return div_u64(dividend, d); }