/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include "radeon.h" #include "radeon_asic.h" #include "r600d.h" u32 r600_gpu_check_soft_reset(struct radeon_device *rdev); /* * DMA * Starting with R600, the GPU has an asynchronous * DMA engine. The programming model is very similar * to the 3D engine (ring buffer, IBs, etc.), but the * DMA controller has it's own packet format that is * different form the PM4 format used by the 3D engine. * It supports copying data, writing embedded data, * solid fills, and a number of other things. It also * has support for tiling/detiling of buffers. */ /** * r600_dma_get_rptr - get the current read pointer * * @rdev: radeon_device pointer * @ring: radeon ring pointer * * Get the current rptr from the hardware (r6xx+). */ uint32_t r600_dma_get_rptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 rptr; if (rdev->wb.enabled) rptr = rdev->wb.wb[ring->rptr_offs/4]; else rptr = RREG32(DMA_RB_RPTR); return (rptr & 0x3fffc) >> 2; } /** * r600_dma_get_wptr - get the current write pointer * * @rdev: radeon_device pointer * @ring: radeon ring pointer * * Get the current wptr from the hardware (r6xx+). */ uint32_t r600_dma_get_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { return (RREG32(DMA_RB_WPTR) & 0x3fffc) >> 2; } /** * r600_dma_set_wptr - commit the write pointer * * @rdev: radeon_device pointer * @ring: radeon ring pointer * * Write the wptr back to the hardware (r6xx+). */ void r600_dma_set_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { WREG32(DMA_RB_WPTR, (ring->wptr << 2) & 0x3fffc); } /** * r600_dma_stop - stop the async dma engine * * @rdev: radeon_device pointer * * Stop the async dma engine (r6xx-evergreen). */ void r600_dma_stop(struct radeon_device *rdev) { u32 rb_cntl = RREG32(DMA_RB_CNTL); if (rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); rb_cntl &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL, rb_cntl); rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false; } /** * r600_dma_resume - setup and start the async dma engine * * @rdev: radeon_device pointer * * Set up the DMA ring buffer and enable it. (r6xx-evergreen). * Returns 0 for success, error for failure. */ int r600_dma_resume(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; u32 rb_cntl, dma_cntl, ib_cntl; u32 rb_bufsz; int r; WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL, 0); WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL, 0); /* Set ring buffer size in dwords */ rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = rb_bufsz << 1; #ifdef __BIG_ENDIAN rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE; #endif WREG32(DMA_RB_CNTL, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32(DMA_RB_RPTR, 0); WREG32(DMA_RB_WPTR, 0); /* set the wb address whether it's enabled or not */ WREG32(DMA_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_DMA_RPTR_OFFSET) & 0xFF); WREG32(DMA_RB_RPTR_ADDR_LO, ((rdev->wb.gpu_addr + R600_WB_DMA_RPTR_OFFSET) & 0xFFFFFFFC)); if (rdev->wb.enabled) rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE; WREG32(DMA_RB_BASE, ring->gpu_addr >> 8); /* enable DMA IBs */ ib_cntl = DMA_IB_ENABLE; #ifdef __BIG_ENDIAN ib_cntl |= DMA_IB_SWAP_ENABLE; #endif WREG32(DMA_IB_CNTL, ib_cntl); dma_cntl = RREG32(DMA_CNTL); dma_cntl &= ~CTXEMPTY_INT_ENABLE; WREG32(DMA_CNTL, dma_cntl); if (rdev->family >= CHIP_RV770) WREG32(DMA_MODE, 1); ring->wptr = 0; WREG32(DMA_RB_WPTR, ring->wptr << 2); WREG32(DMA_RB_CNTL, rb_cntl | DMA_RB_ENABLE); ring->ready = true; r = radeon_ring_test(rdev, R600_RING_TYPE_DMA_INDEX, ring); if (r) { ring->ready = false; return r; } if (rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); return 0; } /** * r600_dma_fini - tear down the async dma engine * * @rdev: radeon_device pointer * * Stop the async dma engine and free the ring (r6xx-evergreen). */ void r600_dma_fini(struct radeon_device *rdev) { r600_dma_stop(rdev); radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); } /** * r600_dma_is_lockup - Check if the DMA engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the async DMA engine is locked up. * Returns true if the engine appears to be locked up, false if not. */ bool r600_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = r600_gpu_check_soft_reset(rdev); if (!(reset_mask & RADEON_RESET_DMA)) { radeon_ring_lockup_update(rdev, ring); return false; } return radeon_ring_test_lockup(rdev, ring); } /** * r600_dma_ring_test - simple async dma engine test * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (r6xx-SI). * Returns 0 for success, error for failure. */ int r600_dma_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) { unsigned i; int r; unsigned index; u32 tmp; u64 gpu_addr; if (ring->idx == R600_RING_TYPE_DMA_INDEX) index = R600_WB_DMA_RING_TEST_OFFSET; else index = CAYMAN_WB_DMA1_RING_TEST_OFFSET; gpu_addr = rdev->wb.gpu_addr + index; tmp = 0xCAFEDEAD; rdev->wb.wb[index/4] = cpu_to_le32(tmp); r = radeon_ring_lock(rdev, ring, 4); if (r) { DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); return r; } radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1)); radeon_ring_write(ring, lower_32_bits(gpu_addr)); radeon_ring_write(ring, upper_32_bits(gpu_addr) & 0xff); radeon_ring_write(ring, 0xDEADBEEF); radeon_ring_unlock_commit(rdev, ring, false); for (i = 0; i < rdev->usec_timeout; i++) { tmp = le32_to_cpu(rdev->wb.wb[index/4]); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", ring->idx, tmp); r = -EINVAL; } return r; } /** * r600_dma_fence_ring_emit - emit a fence on the DMA ring * * @rdev: radeon_device pointer * @fence: radeon fence object * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (r6xx-r7xx). */ void r600_dma_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* write the fence */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0, 0)); radeon_ring_write(ring, addr & 0xfffffffc); radeon_ring_write(ring, (upper_32_bits(addr) & 0xff)); radeon_ring_write(ring, lower_32_bits(fence->seq)); /* generate an interrupt */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_TRAP, 0, 0, 0)); } /** * r600_dma_semaphore_ring_emit - emit a semaphore on the dma ring * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * @semaphore: radeon semaphore object * @emit_wait: wait or signal semaphore * * Add a DMA semaphore packet to the ring wait on or signal * other rings (r6xx-SI). */ bool r600_dma_semaphore_ring_emit(struct radeon_device *rdev, struct radeon_ring *ring, struct radeon_semaphore *semaphore, bool emit_wait) { u64 addr = semaphore->gpu_addr; u32 s = emit_wait ? 0 : 1; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SEMAPHORE, 0, s, 0)); radeon_ring_write(ring, addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(addr) & 0xff); return true; } /** * r600_dma_ib_test - test an IB on the DMA engine * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test a simple IB in the DMA ring (r6xx-SI). * Returns 0 on success, error on failure. */ int r600_dma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) { struct radeon_ib ib; unsigned i; int r; void __iomem *ptr = (void *)rdev->vram_scratch.ptr; u32 tmp = 0; if (!ptr) { DRM_ERROR("invalid vram scratch pointer\n"); return -EINVAL; } tmp = 0xCAFEDEAD; writel(tmp, ptr); r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); return r; } ib.ptr[0] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1); ib.ptr[1] = rdev->vram_scratch.gpu_addr & 0xfffffffc; ib.ptr[2] = upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xff; ib.ptr[3] = 0xDEADBEEF; ib.length_dw = 4; r = radeon_ib_schedule(rdev, &ib, NULL, false); if (r) { radeon_ib_free(rdev, &ib); DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); return r; } r = radeon_fence_wait(ib.fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); return r; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = readl(ptr); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); } else { DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); r = -EINVAL; } radeon_ib_free(rdev, &ib); return r; } /** * r600_dma_ring_ib_execute - Schedule an IB on the DMA engine * * @rdev: radeon_device pointer * @ib: IB object to schedule * * Schedule an IB in the DMA ring (r6xx-r7xx). */ void r600_dma_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; if (rdev->wb.enabled) { u32 next_rptr = ring->wptr + 4; while ((next_rptr & 7) != 5) next_rptr++; next_rptr += 3; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xff); radeon_ring_write(ring, next_rptr); } /* The indirect buffer packet must end on an 8 DW boundary in the DMA ring. * Pad as necessary with NOPs. */ while ((ring->wptr & 7) != 5) radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0)); radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_INDIRECT_BUFFER, 0, 0, 0)); radeon_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0)); radeon_ring_write(ring, (ib->length_dw << 16) | (upper_32_bits(ib->gpu_addr) & 0xFF)); } /** * r600_copy_dma - copy pages using the DMA engine * * @rdev: radeon_device pointer * @src_offset: src GPU address * @dst_offset: dst GPU address * @num_gpu_pages: number of GPU pages to xfer * @fence: radeon fence object * * Copy GPU paging using the DMA engine (r6xx). * Used by the radeon ttm implementation to move pages if * registered as the asic copy callback. */ int r600_copy_dma(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_gpu_pages, struct radeon_fence **fence) { struct radeon_semaphore *sem = NULL; int ring_index = rdev->asic->copy.dma_ring_index; struct radeon_ring *ring = &rdev->ring[ring_index]; u32 size_in_dw, cur_size_in_dw; int i, num_loops; int r = 0; r = radeon_semaphore_create(rdev, &sem); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); return r; } size_in_dw = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT) / 4; num_loops = DIV_ROUND_UP(size_in_dw, 0xFFFE); r = radeon_ring_lock(rdev, ring, num_loops * 4 + 8); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); radeon_semaphore_free(rdev, &sem, NULL); return r; } radeon_semaphore_sync_to(sem, *fence); radeon_semaphore_sync_rings(rdev, sem, ring->idx); for (i = 0; i < num_loops; i++) { cur_size_in_dw = size_in_dw; if (cur_size_in_dw > 0xFFFE) cur_size_in_dw = 0xFFFE; size_in_dw -= cur_size_in_dw; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_COPY, 0, 0, cur_size_in_dw)); radeon_ring_write(ring, dst_offset & 0xfffffffc); radeon_ring_write(ring, src_offset & 0xfffffffc); radeon_ring_write(ring, (((upper_32_bits(dst_offset) & 0xff) << 16) | (upper_32_bits(src_offset) & 0xff))); src_offset += cur_size_in_dw * 4; dst_offset += cur_size_in_dw * 4; } r = radeon_fence_emit(rdev, fence, ring->idx); if (r) { radeon_ring_unlock_undo(rdev, ring); radeon_semaphore_free(rdev, &sem, NULL); return r; } radeon_ring_unlock_commit(rdev, ring, false); radeon_semaphore_free(rdev, &sem, *fence); return r; }