#define iowrite32(v, addr) writel((v), (addr)) #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" #include "intel_drv.h" #include #include #include #include #include #include #include "bitmap.h" typedef struct { kobj_t header; uint32_t *data; uint32_t hot_x; uint32_t hot_y; struct list_head list; struct drm_i915_gem_object *cobj; }cursor_t; #define CURSOR_WIDTH 64 #define CURSOR_HEIGHT 64 struct tag_display { int x; int y; int width; int height; int bpp; int vrefresh; int pitch; int lfb; int supported_modes; struct drm_device *ddev; struct drm_connector *connector; struct drm_crtc *crtc; struct list_head cursors; cursor_t *cursor; int (*init_cursor)(cursor_t*); cursor_t* (__stdcall *select_cursor)(cursor_t*); void (*show_cursor)(int show); void (__stdcall *move_cursor)(cursor_t *cursor, int x, int y); void (__stdcall *restore_cursor)(int x, int y); void (*disable_mouse)(void); u32 mask_seqno; u32 check_mouse; u32 check_m_pixel; }; static display_t *os_display; u32_t cmd_buffer; u32_t cmd_offset; void init_render(); int sna_init(); int init_cursor(cursor_t *cursor); static cursor_t* __stdcall select_cursor_kms(cursor_t *cursor); static void __stdcall move_cursor_kms(cursor_t *cursor, int x, int y); void __stdcall restore_cursor(int x, int y) {}; void disable_mouse(void) {}; static char *manufacturer_name(unsigned char *x) { static char name[4]; name[0] = ((x[0] & 0x7C) >> 2) + '@'; name[1] = ((x[0] & 0x03) << 3) + ((x[1] & 0xE0) >> 5) + '@'; name[2] = (x[1] & 0x1F) + '@'; name[3] = 0; return name; } bool set_mode(struct drm_device *dev, struct drm_connector *connector, videomode_t *reqmode, bool strict) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_fb_helper *fb_helper = &dev_priv->fbdev->helper; struct drm_mode_config *config = &dev->mode_config; struct drm_display_mode *mode = NULL, *tmpmode; struct drm_framebuffer *fb = NULL; struct drm_crtc *crtc; struct drm_encoder *encoder; struct drm_i915_gem_object *fb_obj; struct drm_mode_set set; const char *con_name; const char *enc_name; unsigned hdisplay, vdisplay; int ret; mutex_lock(&dev->mode_config.mutex); list_for_each_entry(tmpmode, &connector->modes, head) { if( (drm_mode_width(tmpmode) == reqmode->width) && (drm_mode_height(tmpmode) == reqmode->height) && (drm_mode_vrefresh(tmpmode) == reqmode->freq) ) { mode = tmpmode; goto do_set; } }; if( (mode == NULL) && (strict == false) ) { list_for_each_entry(tmpmode, &connector->modes, head) { if( (drm_mode_width(tmpmode) == reqmode->width) && (drm_mode_height(tmpmode) == reqmode->height) ) { mode = tmpmode; goto do_set; } }; }; DRM_ERROR("%s failed\n", __FUNCTION__); return -1; do_set: encoder = connector->encoder; crtc = encoder->crtc; con_name = drm_get_connector_name(connector); enc_name = drm_get_encoder_name(encoder); DRM_DEBUG_KMS("set mode %d %d: crtc %d connector %s encoder %s\n", reqmode->width, reqmode->height, crtc->base.id, con_name, enc_name); drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V); hdisplay = mode->hdisplay; vdisplay = mode->vdisplay; if (crtc->invert_dimensions) swap(hdisplay, vdisplay); fb_obj = get_fb_obj(); fb = fb_helper->fb; fb->width = reqmode->width; fb->height = reqmode->height; fb->pitches[0] = fb->pitches[1] = fb->pitches[2] = fb->pitches[3] = ALIGN(reqmode->width * 4, 512); fb_obj->stride = fb->pitches[0]; fb->bits_per_pixel = 32; fb->depth = 24; crtc->fb = fb; crtc->enabled = true; os_display->crtc = crtc; i915_gem_object_put_fence(fb_obj); set.crtc = crtc; set.x = 0; set.y = 0; set.mode = mode; set.connectors = &connector; set.num_connectors = 1; set.fb = fb; ret = crtc->funcs->set_config(&set); mutex_unlock(&dev->mode_config.mutex); if ( !ret ) { os_display->width = fb->width; os_display->height = fb->height; os_display->vrefresh = drm_mode_vrefresh(mode); sysSetScreen(fb->width, fb->height, fb->pitches[0]); DRM_DEBUG_KMS("new mode %d x %d pitch %d\n", fb->width, fb->height, fb->pitches[0]); } else DRM_ERROR("failed to set mode %d_%d on crtc %p\n", fb->width, fb->height, crtc); return ret; } static int count_connector_modes(struct drm_connector* connector) { struct drm_display_mode *mode; int count = 0; list_for_each_entry(mode, &connector->modes, head) { count++; }; return count; }; static struct drm_connector* get_def_connector(struct drm_device *dev) { struct drm_connector *connector; struct drm_connector_helper_funcs *connector_funcs; struct drm_connector *def_connector = NULL; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct drm_encoder *encoder; struct drm_crtc *crtc; if( connector->status != connector_status_connected) continue; connector_funcs = connector->helper_private; encoder = connector_funcs->best_encoder(connector); if( encoder == NULL) continue; connector->encoder = encoder; crtc = encoder->crtc; DRM_DEBUG_KMS("CONNECTOR %x ID: %d status %d encoder %x\n crtc %x", connector, connector->base.id, connector->status, connector->encoder, crtc); // if (crtc == NULL) // continue; def_connector = connector; break; }; return def_connector; }; struct drm_connector *get_active_connector(struct drm_device *dev) { struct drm_connector *tmp = NULL; struct drm_connector_helper_funcs *connector_funcs; struct drm_encoder *encoder; list_for_each_entry(tmp, &dev->mode_config.connector_list, head) { if( tmp->status != connector_status_connected) continue; connector_funcs = tmp->helper_private; encoder = connector_funcs->best_encoder(tmp); if( encoder == NULL) { DRM_DEBUG_KMS("CONNECTOR %x ID: %d no active encoders\n", tmp, tmp->base.id); continue; }; tmp->encoder = encoder; DRM_DEBUG_KMS("CONNECTOR %p ID:%d status:%d ENCODER %x CRTC %p ID:%d\n", tmp, tmp->base.id, tmp->status, tmp->encoder, tmp->encoder->crtc, tmp->encoder->crtc->base.id ); return tmp; }; return NULL; } struct drm_crtc *get_possible_crtc(struct drm_device *dev, struct drm_encoder *encoder) { struct drm_crtc *tmp_crtc; int crtc_mask = 1; list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) { if (encoder->possible_crtcs & crtc_mask) { encoder->crtc = tmp_crtc; dbgprintf("CRTC %p\n", tmp_crtc); return tmp_crtc; }; crtc_mask <<= 1; }; return NULL; }; int get_boot_mode(struct drm_connector *connector, videomode_t *usermode) { struct drm_display_mode *mode; list_for_each_entry(mode, &connector->modes, head) { dbgprintf("check mode w:%d h:%d %dHz\n", drm_mode_width(mode), drm_mode_height(mode), drm_mode_vrefresh(mode)); if( os_display->width == drm_mode_width(mode) && os_display->height == drm_mode_height(mode) && drm_mode_vrefresh(mode) == 60) { usermode->width = os_display->width; usermode->height = os_display->height; usermode->freq = 60; return 1; } } return 0; } int init_display_kms(struct drm_device *dev, videomode_t *usermode) { struct drm_connector *connector; struct drm_connector_helper_funcs *connector_funcs; struct drm_encoder *encoder; struct drm_crtc *crtc; struct drm_framebuffer *fb; cursor_t *cursor; u32_t ifl; int err; ENTER(); mutex_lock(&dev->mode_config.mutex); connector = get_active_connector(dev) ; if(connector == NULL) { DRM_DEBUG_KMS("No active connectors!\n"); mutex_unlock(&dev->mode_config.mutex); return -1; }; encoder = connector->encoder; crtc = encoder->crtc; if(crtc == NULL) crtc = get_possible_crtc(dev, encoder); dbgprintf("CRTC %p\n", crtc); if(crtc == NULL) { DRM_DEBUG_KMS("No CRTC for encoder %d\n", encoder->base.id); mutex_unlock(&dev->mode_config.mutex); return -1; }; DRM_DEBUG_KMS("[Select CRTC: %p ID:%d]\n",crtc, crtc->base.id); os_display = GetDisplay(); os_display->ddev = dev; os_display->connector = connector; os_display->crtc = crtc; os_display->supported_modes = count_connector_modes(connector); ifl = safe_cli(); { struct intel_crtc *intel_crtc = to_intel_crtc(os_display->crtc); list_for_each_entry(cursor, &os_display->cursors, list) { init_cursor(cursor); }; os_display->restore_cursor(0,0); os_display->init_cursor = init_cursor; os_display->select_cursor = select_cursor_kms; os_display->show_cursor = NULL; os_display->move_cursor = move_cursor_kms; os_display->restore_cursor = restore_cursor; os_display->disable_mouse = disable_mouse; intel_crtc->cursor_x = os_display->width/2; intel_crtc->cursor_y = os_display->height/2; select_cursor_kms(os_display->cursor); }; safe_sti(ifl); if( (usermode->width == 0) || (usermode->height == 0)) { if( !get_boot_mode(connector, usermode)) { struct drm_display_mode *mode; mode = list_entry(connector->modes.next, typeof(*mode), head); usermode->width = drm_mode_width(mode); usermode->height = drm_mode_height(mode); usermode->freq = drm_mode_vrefresh(mode); }; }; mutex_unlock(&dev->mode_config.mutex); set_mode(dev, os_display->connector, usermode, false); #ifdef __HWA__ err = init_bitmaps(); #endif LEAVE(); return 0; }; int get_videomodes(videomode_t *mode, int *count) { int err = -1; // dbgprintf("mode %x count %d\n", mode, *count); if( *count == 0 ) { *count = os_display->supported_modes; err = 0; } else if( mode != NULL ) { struct drm_display_mode *drmmode; int i = 0; if( *count > os_display->supported_modes) *count = os_display->supported_modes; list_for_each_entry(drmmode, &os_display->connector->modes, head) { if( i < *count) { mode->width = drm_mode_width(drmmode); mode->height = drm_mode_height(drmmode); mode->bpp = 32; mode->freq = drm_mode_vrefresh(drmmode); i++; mode++; } else break; }; *count = i; err = 0; }; return err; }; int set_user_mode(videomode_t *mode) { int err = -1; // dbgprintf("width %d height %d vrefresh %d\n", // mode->width, mode->height, mode->freq); if( (mode->width != 0) && (mode->height != 0) && (mode->freq != 0 ) && ( (mode->width != os_display->width) || (mode->height != os_display->height) || (mode->freq != os_display->vrefresh) ) ) { if( set_mode(os_display->ddev, os_display->connector, mode, true) ) err = 0; }; return err; }; void i915_dpms(struct drm_device *dev, int mode) { const struct drm_connector_funcs *f = os_display->connector->funcs; f->dpms(os_display->connector, mode); }; void __attribute__((regparm(1))) destroy_cursor(cursor_t *cursor) { list_del(&cursor->list); i915_gem_object_unpin(cursor->cobj); mutex_lock(&main_device->struct_mutex); drm_gem_object_unreference(&cursor->cobj->base); mutex_unlock(&main_device->struct_mutex); __DestroyObject(cursor); }; int init_cursor(cursor_t *cursor) { struct drm_i915_private *dev_priv = os_display->ddev->dev_private; struct drm_i915_gem_object *obj; uint32_t *bits; uint32_t *src; void *mapped; int i,j; int ret; if (dev_priv->info->cursor_needs_physical) { bits = (uint32_t*)KernelAlloc(CURSOR_WIDTH*CURSOR_HEIGHT*4); if (unlikely(bits == NULL)) return ENOMEM; cursor->cobj = (struct drm_i915_gem_object *)GetPgAddr(bits); } else { obj = i915_gem_alloc_object(os_display->ddev, CURSOR_WIDTH*CURSOR_HEIGHT*4); if (unlikely(obj == NULL)) return -ENOMEM; ret = i915_gem_obj_ggtt_pin(obj, CURSOR_WIDTH*CURSOR_HEIGHT*4, true, true); if (ret) { drm_gem_object_unreference(&obj->base); return ret; } ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) { i915_gem_object_unpin(obj); drm_gem_object_unreference(&obj->base); return ret; } /* You don't need to worry about fragmentation issues. * GTT space is continuous. I guarantee it. */ mapped = bits = (u32*)MapIoMem(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj), CURSOR_WIDTH*CURSOR_HEIGHT*4, PG_SW); if (unlikely(bits == NULL)) { i915_gem_object_unpin(obj); drm_gem_object_unreference(&obj->base); return -ENOMEM; }; cursor->cobj = obj; }; src = cursor->data; for(i = 0; i < 32; i++) { for(j = 0; j < 32; j++) *bits++ = *src++; for(j = 32; j < CURSOR_WIDTH; j++) *bits++ = 0; } for(i = 0; i < CURSOR_WIDTH*(CURSOR_HEIGHT-32); i++) *bits++ = 0; FreeKernelSpace(mapped); // release old cursor KernelFree(cursor->data); cursor->data = bits; cursor->header.destroy = destroy_cursor; return 0; } static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; bool visible = base != 0; if (intel_crtc->cursor_visible != visible) { uint32_t cntl = I915_READ(CURCNTR(pipe)); if (base) { cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT); cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; cntl |= pipe << 28; /* Connect to correct pipe */ } else { cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); cntl |= CURSOR_MODE_DISABLE; } I915_WRITE(CURCNTR(pipe), cntl); intel_crtc->cursor_visible = visible; } /* and commit changes on next vblank */ I915_WRITE(CURBASE(pipe), base); } void __stdcall move_cursor_kms(cursor_t *cursor, int x, int y) { struct drm_i915_private *dev_priv = os_display->ddev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(os_display->crtc); u32 base, pos; bool visible; int pipe = intel_crtc->pipe; intel_crtc->cursor_x = x; intel_crtc->cursor_y = y; x = x - cursor->hot_x; y = y - cursor->hot_y; pos = 0; base = intel_crtc->cursor_addr; if (x >= os_display->width) base = 0; if (y >= os_display->height) base = 0; if (x < 0) { if (x + intel_crtc->cursor_width < 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; x = -x; } pos |= x << CURSOR_X_SHIFT; if (y < 0) { if (y + intel_crtc->cursor_height < 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; y = -y; } pos |= y << CURSOR_Y_SHIFT; visible = base != 0; if (!visible && !intel_crtc->cursor_visible) return; I915_WRITE(CURPOS(pipe), pos); // if (IS_845G(dev) || IS_I865G(dev)) // i845_update_cursor(crtc, base); // else i9xx_update_cursor(os_display->crtc, base); }; cursor_t* __stdcall select_cursor_kms(cursor_t *cursor) { struct drm_i915_private *dev_priv = os_display->ddev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(os_display->crtc); cursor_t *old; old = os_display->cursor; os_display->cursor = cursor; if (!dev_priv->info->cursor_needs_physical) intel_crtc->cursor_addr = i915_gem_obj_ggtt_offset(cursor->cobj); else intel_crtc->cursor_addr = (addr_t)cursor->cobj; intel_crtc->cursor_width = 32; intel_crtc->cursor_height = 32; move_cursor_kms(cursor, intel_crtc->cursor_x, intel_crtc->cursor_y); return old; }; int i915_fbinfo(struct drm_i915_fb_info *fb) { struct drm_i915_gem_object *obj = get_fb_obj(); fb->name = obj->base.name; fb->width = os_display->width; fb->height = os_display->height; fb->pitch = obj->stride; fb->tiling = obj->tiling_mode; return 0; } typedef struct { int left; int top; int right; int bottom; }rect_t; #define CURRENT_TASK (0x80003000) static u32_t get_display_map() { u32_t addr; addr = (u32_t)os_display; addr+= sizeof(display_t); /* shoot me */ return *(u32_t*)addr; } void FASTCALL GetWindowRect(rect_t *rc)__asm__("GetWindowRect"); int i915_mask_update(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_mask *mask = data; struct drm_gem_object *obj; static unsigned int mask_seqno[256]; rect_t winrc; u32 slot; int ret=0; if(mask->handle == -2) { printf("%s handle %d\n", __FUNCTION__, mask->handle); return 0; } obj = drm_gem_object_lookup(dev, file, mask->handle); if (obj == NULL) return -ENOENT; if (!obj->filp) { drm_gem_object_unreference_unlocked(obj); return -EINVAL; } GetWindowRect(&winrc); { // static warn_count; mask->width = winrc.right - winrc.left + 1; mask->height = winrc.bottom - winrc.top + 1; mask->bo_pitch = (mask->width+15) & ~15; #if 0 if(warn_count < 1) { printf("left %d top %d right %d bottom %d\n", winrc.left, winrc.top, winrc.right, winrc.bottom); printf("mask pitch %d data %p\n", mask->bo_pitch, mask->bo_size); warn_count++; }; #endif }; slot = *((u8*)CURRENT_TASK); if( mask_seqno[slot] != os_display->mask_seqno) { u8* src_offset; u8* dst_offset; u32 ifl; ret = i915_mutex_lock_interruptible(dev); if (ret) goto err1; ret = i915_gem_object_set_to_cpu_domain(to_intel_bo(obj), true); if(ret !=0 ) { dbgprintf("%s: i915_gem_object_set_to_cpu_domain failed\n", __FUNCTION__); goto err2; }; // printf("width %d height %d\n", winrc.right, winrc.bottom); // slot = 0x01; src_offset = (u8*)( winrc.top*os_display->width + winrc.left); src_offset+= get_display_map(); dst_offset = (u8*)mask->bo_map; u32_t tmp_h = mask->height; ifl = safe_cli(); { mask_seqno[slot] = os_display->mask_seqno; slot|= (slot<<8)|(slot<<16)|(slot<<24); __asm__ __volatile__ ( "movd %[slot], %%xmm6 \n" "punpckldq %%xmm6, %%xmm6 \n" "punpcklqdq %%xmm6, %%xmm6 \n" :: [slot] "m" (slot) :"xmm6"); while( tmp_h--) { int tmp_w = mask->bo_pitch; u8* tmp_src = src_offset; u8* tmp_dst = dst_offset; src_offset+= os_display->width; dst_offset+= mask->bo_pitch; while(tmp_w >= 64) { __asm__ __volatile__ ( "movdqu (%0), %%xmm0 \n" "movdqu 16(%0), %%xmm1 \n" "movdqu 32(%0), %%xmm2 \n" "movdqu 48(%0), %%xmm3 \n" "pcmpeqb %%xmm6, %%xmm0 \n" "pcmpeqb %%xmm6, %%xmm1 \n" "pcmpeqb %%xmm6, %%xmm2 \n" "pcmpeqb %%xmm6, %%xmm3 \n" "movdqa %%xmm0, (%%edi) \n" "movdqa %%xmm1, 16(%%edi) \n" "movdqa %%xmm2, 32(%%edi) \n" "movdqa %%xmm3, 48(%%edi) \n" :: "r" (tmp_src), "D" (tmp_dst) :"xmm0","xmm1","xmm2","xmm3"); tmp_w -= 64; tmp_src += 64; tmp_dst += 64; } if( tmp_w >= 32 ) { __asm__ __volatile__ ( "movdqu (%0), %%xmm0 \n" "movdqu 16(%0), %%xmm1 \n" "pcmpeqb %%xmm6, %%xmm0 \n" "pcmpeqb %%xmm6, %%xmm1 \n" "movdqa %%xmm0, (%%edi) \n" "movdqa %%xmm1, 16(%%edi) \n" :: "r" (tmp_src), "D" (tmp_dst) :"xmm0","xmm1"); tmp_w -= 32; tmp_src += 32; tmp_dst += 32; } while( tmp_w > 0 ) { __asm__ __volatile__ ( "movdqu (%0), %%xmm0 \n" "pcmpeqb %%xmm6, %%xmm0 \n" "movdqa %%xmm0, (%%edi) \n" :: "r" (tmp_src), "D" (tmp_dst) :"xmm0"); tmp_w -= 16; tmp_src += 16; tmp_dst += 16; } }; }; safe_sti(ifl); ret = i915_gem_object_set_to_gtt_domain(to_intel_bo(obj), false); if(ret != 0 ) { dbgprintf("%s: i915_gem_object_set_to_gtt_domain failed\n", __FUNCTION__); }; } err2: mutex_unlock(&dev->struct_mutex); err1: drm_gem_object_unreference(obj); return ret; } #define NSEC_PER_SEC 1000000000L void getrawmonotonic(struct timespec *ts) { u32 tmp = GetTimerTicks(); ts->tv_sec = tmp/100; ts->tv_nsec = (tmp - ts->tv_sec*100)*10000000; } void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) { while (nsec >= NSEC_PER_SEC) { /* * The following asm() prevents the compiler from * optimising this loop into a modulo operation. See * also __iter_div_u64_rem() in include/linux/time.h */ asm("" : "+rm"(nsec)); nsec -= NSEC_PER_SEC; ++sec; } while (nsec < 0) { asm("" : "+rm"(nsec)); nsec += NSEC_PER_SEC; --sec; } ts->tv_sec = sec; ts->tv_nsec = nsec; } void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) { unsigned long flags; // wait->flags &= ~WQ_FLAG_EXCLUSIVE; spin_lock_irqsave(&q->lock, flags); if (list_empty(&wait->task_list)) __add_wait_queue(q, wait); spin_unlock_irqrestore(&q->lock, flags); } /** * finish_wait - clean up after waiting in a queue * @q: waitqueue waited on * @wait: wait descriptor * * Sets current thread back to running state and removes * the wait descriptor from the given waitqueue if still * queued. */ void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) { unsigned long flags; // __set_current_state(TASK_RUNNING); /* * We can check for list emptiness outside the lock * IFF: * - we use the "careful" check that verifies both * the next and prev pointers, so that there cannot * be any half-pending updates in progress on other * CPU's that we haven't seen yet (and that might * still change the stack area. * and * - all other users take the lock (ie we can only * have _one_ other CPU that looks at or modifies * the list). */ if (!list_empty_careful(&wait->task_list)) { spin_lock_irqsave(&q->lock, flags); list_del_init(&wait->task_list); spin_unlock_irqrestore(&q->lock, flags); } DestroyEvent(wait->evnt); } int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) { list_del_init(&wait->task_list); return 1; } unsigned int hweight16(unsigned int w) { unsigned int res = w - ((w >> 1) & 0x5555); res = (res & 0x3333) + ((res >> 2) & 0x3333); res = (res + (res >> 4)) & 0x0F0F; return (res + (res >> 8)) & 0x00FF; } unsigned long round_jiffies_up_relative(unsigned long j) { unsigned long j0 = GetTimerTicks(); /* Use j0 because jiffies might change while we run */ return round_jiffies_common(j + j0, true) - j0; }