forked from KolibriOS/kolibrios
bb2bbc6b91
git-svn-id: svn://kolibrios.org@4364 a494cfbc-eb01-0410-851d-a64ba20cac60
1129 lines
33 KiB
C
1129 lines
33 KiB
C
/*
|
|
* Copyright 2006 Richard Wilson <richard.wilson@netsurf-browser.org>
|
|
* Copyright 2008 Sean Fox <dyntryx@gmail.com>
|
|
*
|
|
* This file is part of NetSurf's libnsbmp, http://www.netsurf-browser.org/
|
|
* Licenced under the MIT License,
|
|
* http://www.opensource.org/licenses/mit-license.php
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include <libnsbmp.h>
|
|
|
|
#include "utils/log.h"
|
|
|
|
/* The functions provided by this file allow for the decoding of
|
|
Microsoft's BMP and ICO image file formats.
|
|
|
|
READING BMP FILES
|
|
=================
|
|
|
|
To begin decoding a BMP, the caller should initialise a
|
|
'bmp_bitmap_callback_vt' structure with the appropriate values necessary
|
|
to handle bitmap images. Next, a 'bmp_image' structure should be
|
|
initialised by calling bmp_create(). This structure should then be
|
|
passed to bmp_analyse() along with the BMP data to process and the size
|
|
of this data.
|
|
|
|
Once the analysis has begun, the decoder completes the width and height
|
|
variables.
|
|
|
|
To decode the image, the caller must use bmp_decode() which selects the
|
|
proper decoding method based on the BMP info header and assigns the
|
|
decoded bitmap image to the 'bitmap' member of the 'bmp_image'
|
|
structure. The bitmap image is stored with 4 bytes-per-pixel in RGBA
|
|
format.
|
|
|
|
It should be noted that bmp_finalise() should always be called, even if
|
|
the image was never decoded. It is also the responsibility of the
|
|
caller to free 'bmp_data'.
|
|
|
|
READING ICO FILES
|
|
=================
|
|
|
|
To begin decoding an ICO, the caller should initialise a
|
|
'bmp_bitmap_callback_vt' structure with the appropriate values necessary
|
|
to handle bitmap images. Next, an 'ico_collection' structure should be
|
|
initialised by calling ico_create(). This structure should then be
|
|
passed to ico_analyse() along with the ICO data to process and the size
|
|
of this data.
|
|
|
|
Once the analysis has begun, the decoder completes the width and height
|
|
variables. Because ICO collections contain multiple bitmap images, the
|
|
width and height will contain the values of the largest available image.
|
|
|
|
The caller then obtains a BMP from the ICO collection by calling
|
|
ico_find() with the requested width and height.
|
|
|
|
To decode the image, the caller must use bmp_decode() which selects the
|
|
proper decoding method based on the BMP info header and assigns the
|
|
decoded bitmap image to the 'bitmap' member of the 'bmp_image'
|
|
structure. The bitmap image is stored with 4 bytes-per-pixel in RGBA
|
|
format.
|
|
|
|
It should be noted that ico_finalise() should always be called, even if
|
|
no images were decoded. Because ico_finalise() calls bmp_finalise() for
|
|
each bitmap within the collection, the caller is not required to perform
|
|
this function. However, it is the responsibility of the caller to free
|
|
'ico_data'.
|
|
|
|
[dynis] - Tue 1st July 2008
|
|
*/
|
|
|
|
/* squashes unused variable compiler warnings */
|
|
#define UNUSED(x) ((x)=(x))
|
|
|
|
/* BMP flags */
|
|
#define BMP_FILE_HEADER_SIZE 14
|
|
#define ICO_FILE_HEADER_SIZE 6
|
|
#define ICO_DIR_ENTRY_SIZE 16
|
|
|
|
static inline int8_t read_int8(uint8_t *data, unsigned int o) {
|
|
return (int8_t) data[o];
|
|
}
|
|
|
|
static inline uint8_t read_uint8(uint8_t *data, unsigned int o) {
|
|
return (uint8_t) data[o];
|
|
}
|
|
|
|
static inline int16_t read_int16(uint8_t *data, unsigned int o) {
|
|
return (int16_t) (data[o] | (data[o+1] << 8));
|
|
}
|
|
|
|
static inline uint16_t read_uint16(uint8_t *data, unsigned int o) {
|
|
return (uint16_t) (data[o] | (data[o+1] << 8));
|
|
}
|
|
|
|
static inline int32_t read_int32(uint8_t *data, unsigned int o) {
|
|
return (int32_t) (data[o] | (data[o+1] << 8) | (data[o+2] << 16) | (data[o+3] << 24));
|
|
}
|
|
|
|
static inline uint32_t read_uint32(uint8_t *data, unsigned int o) {
|
|
return (uint32_t) (data[o] | (data[o+1] << 8) | (data[o+2] << 16) | (data[o+3] << 24));
|
|
}
|
|
|
|
static bmp_result next_ico_image(ico_collection *ico, ico_image *image);
|
|
static bmp_result bmp_analyse_header(bmp_image *bmp, unsigned char *data);
|
|
static bmp_result bmp_decode_rgb24(bmp_image *bmp, uint8_t **start, int bytes);
|
|
static bmp_result bmp_decode_rgb16(bmp_image *bmp, uint8_t **start, int bytes);
|
|
static bmp_result bmp_decode_rgb(bmp_image *bmp, uint8_t **start, int bytes);
|
|
static bmp_result bmp_decode_mask(bmp_image *bmp, uint8_t *data, int bytes);
|
|
static bmp_result bmp_decode_rle(bmp_image *bmp, uint8_t *data, int bytes, int size);
|
|
|
|
|
|
|
|
/** Initialises necessary bmp_image members.
|
|
*/
|
|
void bmp_create(bmp_image *bmp, bmp_bitmap_callback_vt *bitmap_callbacks) {
|
|
memset(bmp, 0, sizeof(bmp_image));
|
|
bmp->bitmap_callbacks = *bitmap_callbacks;
|
|
}
|
|
|
|
|
|
/** Initialises necessary ico_collection members.
|
|
*/
|
|
void ico_collection_create(ico_collection *ico, bmp_bitmap_callback_vt *bitmap_callbacks) {
|
|
memset(ico, 0, sizeof(ico_collection));
|
|
ico->bitmap_callbacks = *bitmap_callbacks;
|
|
}
|
|
|
|
|
|
/**
|
|
* Analyse a BMP prior to decoding.
|
|
*
|
|
* This function will scan the data provided and perform simple checks to
|
|
* ensure the data is a valid BMP.
|
|
*
|
|
* This function must be called before bmp_decode() and sets up all the
|
|
* relevant values in the bmp structure.
|
|
*
|
|
* \param bmp the BMP image to analyse
|
|
* \return BMP_OK on success
|
|
*/
|
|
bmp_result bmp_analyse(bmp_image *bmp, size_t size, unsigned char *cdata) {
|
|
uint8_t *data = (uint8_t *)cdata;
|
|
|
|
/* ensure we aren't already initialised */
|
|
if (bmp->bitmap)
|
|
return BMP_OK;
|
|
|
|
/* initialize values */
|
|
bmp->buffer_size = size;
|
|
bmp->bmp_data = data;
|
|
|
|
/* standard 14-byte BMP file header is:
|
|
*
|
|
* +0 UINT16 File Type ('BM')
|
|
* +2 UINT32 Size of File (in bytes)
|
|
* +6 INT16 Reserved Field (1)
|
|
* +8 INT16 Reserved Field (2)
|
|
* +10 UINT32 Starting Position of Image Data (offset in bytes)
|
|
*/
|
|
if (bmp->buffer_size < BMP_FILE_HEADER_SIZE)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
if ((data[0] != (uint8_t)'B') || (data[1] != (uint8_t)'M'))
|
|
return BMP_DATA_ERROR;
|
|
bmp->bitmap_offset = read_uint32(data, 10);
|
|
data += BMP_FILE_HEADER_SIZE;
|
|
|
|
/* boundary checking */
|
|
if (bmp->bitmap_offset >= size)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
|
|
/* decode the BMP header */
|
|
return bmp_analyse_header(bmp, data);
|
|
}
|
|
|
|
|
|
/**
|
|
* Analyse an ICO prior to decoding.
|
|
*
|
|
* This function will scan the data provided and perform simple checks to
|
|
* ensure the data is a valid ICO.
|
|
*
|
|
* This function must be called before ico_find().
|
|
*
|
|
* \param ico the ICO image to analyse
|
|
* \return BMP_OK on success
|
|
*/
|
|
bmp_result ico_analyse(ico_collection *ico, size_t size, uint8_t *data) {
|
|
uint16_t count, i;
|
|
bmp_result result;
|
|
int area, max_area = 0;
|
|
|
|
/* ensure we aren't already initialised */
|
|
if (ico->first)
|
|
return BMP_OK;
|
|
|
|
/* initialize values */
|
|
ico->buffer_size = size;
|
|
ico->ico_data = data;
|
|
|
|
/* 6-byte ICO file header is:
|
|
*
|
|
* +0 INT16 Reserved (should be 0)
|
|
* +2 UINT16 Type (1 for ICO, 2 for CUR)
|
|
* +4 UINT16 Number of BMPs to follow
|
|
*/
|
|
if (ico->buffer_size < ICO_FILE_HEADER_SIZE)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
// if (read_int16(data, 2) != 0x0000)
|
|
// return BMP_DATA_ERROR;
|
|
if (read_uint16(data, 2) != 0x0001)
|
|
return BMP_DATA_ERROR;
|
|
count = read_uint16(data, 4);
|
|
if (count == 0)
|
|
return BMP_DATA_ERROR;
|
|
data += ICO_FILE_HEADER_SIZE;
|
|
|
|
/* check if we have enough data for the directory */
|
|
if (ico->buffer_size < (uint32_t)(ICO_FILE_HEADER_SIZE + (ICO_DIR_ENTRY_SIZE * count)))
|
|
return BMP_INSUFFICIENT_DATA;
|
|
|
|
/* Decode the BMP files.
|
|
*
|
|
* 16-byte ICO directory entry is:
|
|
*
|
|
* +0 UINT8 Width (0 for 256 pixels)
|
|
* +1 UINT8 Height (0 for 256 pixels)
|
|
* +2 UINT8 Colour count (0 if more than 256 colours)
|
|
* +3 INT8 Reserved (should be 0, but may not be)
|
|
* +4 UINT16 Colour Planes (should be 0 or 1)
|
|
* +6 UINT16 Bits Per Pixel
|
|
* +8 UINT32 Size of BMP info header + bitmap data in bytes
|
|
* +12 UINT32 Offset (points to the BMP info header, not the bitmap data)
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
ico_image *image;
|
|
image = calloc(1, sizeof(ico_image));
|
|
if (!image)
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
result = next_ico_image(ico, image);
|
|
if (result != BMP_OK)
|
|
return result;
|
|
image->bmp.width = read_uint8(data, 0);
|
|
if (image->bmp.width == 0)
|
|
image->bmp.width = 256;
|
|
image->bmp.height = read_uint8(data, 1);
|
|
if (image->bmp.height == 0)
|
|
image->bmp.height = 256;
|
|
image->bmp.buffer_size = read_uint32(data, 8);
|
|
image->bmp.bmp_data = ico->ico_data + read_uint32(data, 12);
|
|
image->bmp.ico = true;
|
|
data += ICO_DIR_ENTRY_SIZE;
|
|
|
|
/* Ensure that the bitmap data resides in the buffer */
|
|
if (image->bmp.bmp_data - ico->ico_data >= 0 &&
|
|
(uint32_t)(image->bmp.bmp_data -
|
|
ico->ico_data) >= ico->buffer_size)
|
|
return BMP_DATA_ERROR;
|
|
|
|
/* Ensure that we have sufficient data to read the bitmap */
|
|
if (image->bmp.buffer_size - ICO_DIR_ENTRY_SIZE >=
|
|
ico->buffer_size - (ico->ico_data - data))
|
|
return BMP_INSUFFICIENT_DATA;
|
|
|
|
result = bmp_analyse_header(&image->bmp, image->bmp.bmp_data);
|
|
if (result != BMP_OK)
|
|
return result;
|
|
|
|
/* adjust the size based on the images available */
|
|
area = image->bmp.width * image->bmp.height;
|
|
if (area > max_area) {
|
|
ico->width = image->bmp.width;
|
|
ico->height = image->bmp.height;
|
|
max_area = area;
|
|
}
|
|
}
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Allocates memory for the next BMP in an ICO collection
|
|
*
|
|
* Sets proper structure values
|
|
*
|
|
* \param ico the ICO collection to add the image to
|
|
* \param image a pointer to the ICO image to be initialised
|
|
*/
|
|
static bmp_result next_ico_image(ico_collection *ico, ico_image *image) {
|
|
bmp_create(&image->bmp, &ico->bitmap_callbacks);
|
|
image->next = ico->first;
|
|
ico->first = image;
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
static bmp_result bmp_analyse_header(bmp_image *bmp, uint8_t *data) {
|
|
uint32_t header_size;
|
|
uint32_t i;
|
|
uint8_t j;
|
|
int32_t width, height;
|
|
uint8_t palette_size;
|
|
unsigned int flags = 0;
|
|
|
|
/* a variety of different bitmap headers can follow, depending
|
|
* on the BMP variant. A full description of the various headers
|
|
* can be found at
|
|
* http://msdn.microsoft.com/en-us/library/ms532301(VS.85).aspx
|
|
*/
|
|
header_size = read_uint32(data, 0);
|
|
if (bmp->buffer_size < (14 + header_size))
|
|
return BMP_INSUFFICIENT_DATA;
|
|
if (header_size == 12) {
|
|
/* the following header is for os/2 and windows 2.x and consists of:
|
|
*
|
|
* +0 UINT32 size of this header (in bytes)
|
|
* +4 INT16 image width (in pixels)
|
|
* +6 INT16 image height (in pixels)
|
|
* +8 UINT16 number of colour planes (always 1)
|
|
* +10 UINT16 number of bits per pixel
|
|
*/
|
|
width = read_int16(data, 4);
|
|
height = read_int16(data, 6);
|
|
if ((width <= 0) || (height == 0))
|
|
return BMP_DATA_ERROR;
|
|
if (height < 0) {
|
|
bmp->reversed = true;
|
|
height = -height;
|
|
}
|
|
/* ICOs only support 256*256 resolutions
|
|
* In the case of the ICO header, the height is actually the added
|
|
* height of XOR-Bitmap and AND-Bitmap (double the visible height)
|
|
* Technically we could remove this check and ICOs with bitmaps
|
|
* of any size could be processed; this is to conform to the spec.
|
|
*/
|
|
if (bmp->ico) {
|
|
if ((width > 256) || (height > 512)) {
|
|
return BMP_DATA_ERROR;
|
|
} else {
|
|
bmp->width = width;
|
|
bmp->height = height / 2;
|
|
}
|
|
} else {
|
|
bmp->width = width;
|
|
bmp->height = height;
|
|
}
|
|
if (read_uint16(data, 8) != 1)
|
|
return BMP_DATA_ERROR;
|
|
bmp->bpp = read_uint16(data, 10);
|
|
/**
|
|
* The bpp value should be in the range 1-32, but the only
|
|
* values considered legal are:
|
|
* RGB ENCODING: 1, 4, 8, 16, 24 and 32
|
|
*/
|
|
if ((bmp->bpp != 1) && (bmp->bpp != 4) &&
|
|
(bmp->bpp != 8) &&
|
|
(bmp->bpp != 16) &&
|
|
(bmp->bpp != 24) &&
|
|
(bmp->bpp != 32))
|
|
return BMP_DATA_ERROR;
|
|
bmp->colours = (1 << bmp->bpp);
|
|
palette_size = 3;
|
|
} else if (header_size < 40) {
|
|
return BMP_DATA_ERROR;
|
|
} else {
|
|
/* the following header is for windows 3.x and onwards. it is a
|
|
* minimum of 40 bytes and (as of Windows 95) a maximum of 108 bytes.
|
|
*
|
|
* +0 UINT32 size of this header (in bytes)
|
|
* +4 INT32 image width (in pixels)
|
|
* +8 INT32 image height (in pixels)
|
|
* +12 UINT16 number of colour planes (always 1)
|
|
* +14 UINT16 number of bits per pixel
|
|
* +16 UINT32 compression methods used
|
|
* +20 UINT32 size of bitmap (in bytes)
|
|
* +24 UINT32 horizontal resolution (in pixels per meter)
|
|
* +28 UINT32 vertical resolution (in pixels per meter)
|
|
* +32 UINT32 number of colours in the image
|
|
* +36 UINT32 number of important colours
|
|
* +40 UINT32 mask identifying bits of red component
|
|
* +44 UINT32 mask identifying bits of green component
|
|
* +48 UINT32 mask identifying bits of blue component
|
|
* +52 UINT32 mask identifying bits of alpha component
|
|
* +56 UINT32 color space type
|
|
* +60 UINT32 x coordinate of red endpoint
|
|
* +64 UINT32 y coordinate of red endpoint
|
|
* +68 UINT32 z coordinate of red endpoint
|
|
* +72 UINT32 x coordinate of green endpoint
|
|
* +76 UINT32 y coordinate of green endpoint
|
|
* +80 UINT32 z coordinate of green endpoint
|
|
* +84 UINT32 x coordinate of blue endpoint
|
|
* +88 UINT32 y coordinate of blue endpoint
|
|
* +92 UINT32 z coordinate of blue endpoint
|
|
* +96 UINT32 gamma red coordinate scale value
|
|
* +100 UINT32 gamma green coordinate scale value
|
|
* +104 UINT32 gamma blue coordinate scale value
|
|
*/
|
|
width = read_int32(data, 4);
|
|
height = read_int32(data, 8);
|
|
if ((width <= 0) || (height == 0))
|
|
return BMP_DATA_ERROR;
|
|
if (height < 0) {
|
|
bmp->reversed = true;
|
|
height = -height;
|
|
}
|
|
/* ICOs only support 256*256 resolutions
|
|
* In the case of the ICO header, the height is actually the added
|
|
* height of XOR-Bitmap and AND-Bitmap (double the visible height)
|
|
* Technically we could remove this check and ICOs with bitmaps
|
|
* of any size could be processed; this is to conform to the spec.
|
|
*/
|
|
if (bmp->ico) {
|
|
if ((width > 256) || (height > 512)) {
|
|
return BMP_DATA_ERROR;
|
|
} else {
|
|
bmp->width = width;
|
|
bmp->height = height / 2;
|
|
}
|
|
} else {
|
|
bmp->width = width;
|
|
bmp->height = height;
|
|
}
|
|
if (read_uint16(data, 12) != 1)
|
|
return BMP_DATA_ERROR;
|
|
bmp->bpp = read_uint16(data, 14);
|
|
if (bmp->bpp == 0)
|
|
bmp->bpp = 8;
|
|
bmp->encoding = read_uint32(data, 16);
|
|
/**
|
|
* The bpp value should be in the range 1-32, but the only
|
|
* values considered legal are:
|
|
* RGB ENCODING: 1, 4, 8, 16, 24 and 32
|
|
* RLE4 ENCODING: 4
|
|
* RLE8 ENCODING: 8
|
|
* BITFIELD ENCODING: 16 and 32
|
|
*/
|
|
switch (bmp->encoding) {
|
|
case BMP_ENCODING_RGB:
|
|
if ((bmp->bpp != 1) && (bmp->bpp != 4) &&
|
|
(bmp->bpp != 8) &&
|
|
(bmp->bpp != 16) &&
|
|
(bmp->bpp != 24) &&
|
|
(bmp->bpp != 32))
|
|
return BMP_DATA_ERROR;
|
|
break;
|
|
case BMP_ENCODING_RLE8:
|
|
if (bmp->bpp != 8)
|
|
return BMP_DATA_ERROR;
|
|
break;
|
|
case BMP_ENCODING_RLE4:
|
|
if (bmp->bpp != 4)
|
|
return BMP_DATA_ERROR;
|
|
break;
|
|
case BMP_ENCODING_BITFIELDS:
|
|
if ((bmp->bpp != 16) && (bmp->bpp != 32))
|
|
return BMP_DATA_ERROR;
|
|
break;
|
|
/* invalid encoding */
|
|
default:
|
|
return BMP_DATA_ERROR;
|
|
break;
|
|
}
|
|
/* Bitfield encoding means we have red, green, blue, and alpha masks.
|
|
* Here we aquire the masks and determine the required bit shift to
|
|
* align them in our 24-bit color 8-bit alpha format.
|
|
*/
|
|
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
|
|
if (header_size == 40) {
|
|
header_size += 12;
|
|
if (bmp->buffer_size < (14 + header_size))
|
|
return BMP_INSUFFICIENT_DATA;
|
|
for (i = 0; i < 3; i++)
|
|
bmp->mask[i] = read_uint32(data, 40 + (i << 2));
|
|
} else {
|
|
for (i = 0; i < 4; i++)
|
|
bmp->mask[i] = read_uint32(data, 40 + (i << 2));
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
if (bmp->mask[i] == 0)
|
|
break;
|
|
for (j = 31; j > 0; j--)
|
|
if (bmp->mask[i] & (1 << j)) {
|
|
if ((j - 7) > 0)
|
|
bmp->mask[i] &= 0xff << (j - 7);
|
|
else
|
|
bmp->mask[i] &= 0xff >> (-(j - 7));
|
|
bmp->shift[i] = (i << 3) - (j - 7);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
bmp->colours = read_uint32(data, 32);
|
|
if (bmp->colours == 0)
|
|
bmp->colours = (1 << bmp->bpp);
|
|
palette_size = 4;
|
|
}
|
|
data += header_size;
|
|
|
|
/* if there's no alpha mask, flag the bmp opaque */
|
|
if ((!bmp->ico) && (bmp->mask[3] == 0)) {
|
|
flags |= BMP_OPAQUE;
|
|
bmp->opaque = true;
|
|
}
|
|
|
|
/* we only have a palette for <16bpp */
|
|
if (bmp->bpp < 16) {
|
|
/* we now have a series of palette entries of the format:
|
|
*
|
|
* +0 BYTE blue
|
|
* +1 BYTE green
|
|
* +2 BYTE red
|
|
*
|
|
* if the palette is from an OS/2 or Win2.x file then the entries
|
|
* are padded with an extra byte.
|
|
*/
|
|
|
|
/* boundary checking */
|
|
if (bmp->buffer_size < (14 + header_size + ((uint64_t)4 * bmp->colours)))
|
|
return BMP_INSUFFICIENT_DATA;
|
|
|
|
/* create the colour table */
|
|
bmp->colour_table = (uint32_t *)malloc(bmp->colours * 4);
|
|
if (!bmp->colour_table)
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
for (i = 0; i < bmp->colours; i++) {
|
|
bmp->colour_table[i] = data[2] | (data[1] << 8) | (data[0] << 16);
|
|
if (bmp->opaque)
|
|
bmp->colour_table[i] |= (0xff << 24);
|
|
data += palette_size;
|
|
bmp->colour_table[i] = read_uint32((uint8_t *)&bmp->colour_table[i],0);
|
|
}
|
|
}
|
|
|
|
/* create our bitmap */
|
|
flags |= BMP_NEW | BMP_CLEAR_MEMORY;
|
|
bmp->bitmap = bmp->bitmap_callbacks.bitmap_create(bmp->width, bmp->height, flags);
|
|
if (!bmp->bitmap) {
|
|
if (bmp->colour_table)
|
|
free(bmp->colour_table);
|
|
bmp->colour_table = NULL;
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
}
|
|
/* BMPs within ICOs don't have BMP file headers, so the image data should
|
|
* always be right after the colour table.
|
|
*/
|
|
if (bmp->ico)
|
|
bmp->bitmap_offset = (intptr_t)data - (intptr_t)bmp->bmp_data;
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Finds the closest BMP within an ICO collection
|
|
*
|
|
* This function finds the BMP with dimensions as close to a specified set
|
|
* as possible from the images in the collection.
|
|
*
|
|
* \param ico the ICO collection to examine
|
|
* \param width the preferred width (0 to use ICO header width)
|
|
* \param height the preferred height (0 to use ICO header height)
|
|
*/
|
|
bmp_image *ico_find(ico_collection *ico, uint16_t width, uint16_t height) {
|
|
bmp_image *bmp = NULL;
|
|
ico_image *image;
|
|
int x, y, cur, distance = (1 << 24);
|
|
|
|
if (width == 0)
|
|
width = ico->width;
|
|
if (height == 0)
|
|
height = ico->height;
|
|
for (image = ico->first; image; image = image->next) {
|
|
if ((image->bmp.width == width) && (image->bmp.height == height))
|
|
return &image->bmp;
|
|
x = image->bmp.width - width;
|
|
y = image->bmp.height - height;
|
|
cur = (x * x) + (y * y);
|
|
if (cur < distance) {
|
|
distance = cur;
|
|
bmp = &image->bmp;
|
|
}
|
|
}
|
|
return bmp;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode a BMP
|
|
*
|
|
* This function decodes the BMP data such that bmp->bitmap is a valid
|
|
* image. The state of bmp->decoded is set to TRUE on exit such that it
|
|
* can easily be identified which BMPs are in a fully decoded state.
|
|
*
|
|
* \param bmp the BMP image to decode
|
|
* \return BMP_OK on success
|
|
*/
|
|
bmp_result bmp_decode(bmp_image *bmp) {
|
|
uint8_t *data;
|
|
uint32_t bytes;
|
|
bmp_result result = BMP_OK;
|
|
|
|
assert(bmp->bitmap);
|
|
|
|
data = bmp->bmp_data + bmp->bitmap_offset;
|
|
bytes = bmp->buffer_size - bmp->bitmap_offset;
|
|
|
|
switch (bmp->encoding) {
|
|
case BMP_ENCODING_RGB:
|
|
if ((bmp->bpp == 24) || (bmp->bpp == 32))
|
|
result = bmp_decode_rgb24(bmp, &data, bytes);
|
|
else if (bmp->bpp == 16)
|
|
result = bmp_decode_rgb16(bmp, &data, bytes);
|
|
else
|
|
result = bmp_decode_rgb(bmp, &data, bytes);
|
|
break;
|
|
case BMP_ENCODING_RLE8:
|
|
result = bmp_decode_rle(bmp, data, bytes, 8);
|
|
break;
|
|
case BMP_ENCODING_RLE4:
|
|
result = bmp_decode_rle(bmp, data, bytes, 4);
|
|
break;
|
|
case BMP_ENCODING_BITFIELDS:
|
|
if (bmp->bpp == 32)
|
|
result = bmp_decode_rgb24(bmp, &data, bytes);
|
|
else if (bmp->bpp == 16)
|
|
result = bmp_decode_rgb16(bmp, &data, bytes);
|
|
else
|
|
return BMP_DATA_ERROR;
|
|
}
|
|
|
|
if ((!bmp->ico) || (result != BMP_OK))
|
|
return result;
|
|
|
|
bytes = (uintptr_t)bmp->bmp_data + bmp->buffer_size - (uintptr_t)data;
|
|
return bmp_decode_mask(bmp, data, bytes);
|
|
}
|
|
|
|
/**
|
|
* Decode a BMP using "limited transparency"
|
|
*
|
|
* Bitmaps do not have native transparency support. However, there is a
|
|
* "trick" that is used in some instances in which the first pixel of the
|
|
* bitmap becomes the "transparency index". The decoding application can
|
|
* replace this index with whatever background colour it chooses to
|
|
* create the illusion of transparency.
|
|
*
|
|
* When to use transparency is at the discretion of the decoding
|
|
* application.
|
|
*
|
|
* \param bmp the BMP image to decode
|
|
* \param colour the colour to use as "transparent"
|
|
* \return BMP_OK on success
|
|
*/
|
|
bmp_result bmp_decode_trans(bmp_image *bmp, uint32_t colour) {
|
|
bmp->limited_trans = true;
|
|
bmp->trans_colour = colour;
|
|
return bmp_decode(bmp);
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode BMP data stored in 24bpp colour.
|
|
*
|
|
* \param bmp the BMP image to decode
|
|
* \param start the data to decode, updated to last byte read on success
|
|
* \param bytes the number of bytes of data available
|
|
* \return BMP_OK on success
|
|
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
|
|
* in this case, the image may be partially viewable
|
|
*/
|
|
static bmp_result bmp_decode_rgb24(bmp_image *bmp, uint8_t **start, int bytes) {
|
|
uint8_t *top, *bottom, *end, *data;
|
|
uint32_t *scanline;
|
|
uint32_t x, y;
|
|
uint32_t swidth, skip;
|
|
intptr_t addr;
|
|
uint8_t i;
|
|
uint32_t word;
|
|
|
|
data = *start;
|
|
swidth = bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap) * bmp->width;
|
|
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
|
|
if (!top)
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
bottom = top + (uint64_t)swidth * (bmp->height - 1);
|
|
end = data + bytes;
|
|
addr = ((intptr_t)data) & 3;
|
|
skip = bmp->bpp >> 3;
|
|
bmp->decoded = true;
|
|
|
|
/* Determine transparent index */
|
|
if (bmp->limited_trans) {
|
|
if ((data + skip) > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
if (bmp->encoding == BMP_ENCODING_BITFIELDS)
|
|
bmp->transparent_index = read_uint32(data, 0);
|
|
else
|
|
bmp->transparent_index = data[2] | (data[1] << 8) | (data[0] << 16);
|
|
}
|
|
|
|
for (y = 0; y < bmp->height; y++) {
|
|
while (addr != (((intptr_t)data) & 3))
|
|
data++;
|
|
if ((data + (skip * bmp->width)) > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
if (bmp->reversed)
|
|
scanline = (void *)(top + (y * swidth));
|
|
else
|
|
scanline = (void *)(bottom - (y * swidth));
|
|
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
|
|
for (x = 0; x < bmp->width; x++) {
|
|
word = read_uint32(data, 0);
|
|
for (i = 0; i < 4; i++)
|
|
if (bmp->shift[i] > 0)
|
|
scanline[x] |= ((word & bmp->mask[i]) << bmp->shift[i]);
|
|
else
|
|
scanline[x] |= ((word & bmp->mask[i]) >> (-bmp->shift[i]));
|
|
/* 32-bit BMPs have alpha masks, but sometimes they're not utilized */
|
|
if (bmp->opaque)
|
|
scanline[x] |= (0xff << 24);
|
|
data += skip;
|
|
scanline[x] = read_uint32((uint8_t *)&scanline[x],0);
|
|
}
|
|
} else {
|
|
for (x = 0; x < bmp->width; x++) {
|
|
scanline[x] = data[2] | (data[1] << 8) | (data[0] << 16);
|
|
if ((bmp->limited_trans) && (scanline[x] == bmp->transparent_index))
|
|
scanline[x] = bmp->trans_colour;
|
|
if (bmp->opaque)
|
|
scanline[x] |= (0xff << 24);
|
|
data += skip;
|
|
scanline[x] = read_uint32((uint8_t *)&scanline[x],0);
|
|
}
|
|
}
|
|
}
|
|
*start = data;
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode BMP data stored in 16bpp colour.
|
|
*
|
|
* \param bmp the BMP image to decode
|
|
* \param start the data to decode, updated to last byte read on success
|
|
* \param bytes the number of bytes of data available
|
|
* \return BMP_OK on success
|
|
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
|
|
* in this case, the image may be partially viewable
|
|
*/
|
|
static bmp_result bmp_decode_rgb16(bmp_image *bmp, uint8_t **start, int bytes) {
|
|
uint8_t *top, *bottom, *end, *data;
|
|
uint32_t *scanline;
|
|
uint32_t x, y, swidth;
|
|
intptr_t addr;
|
|
uint8_t i;
|
|
uint16_t word;
|
|
|
|
data = *start;
|
|
swidth = bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap) * bmp->width;
|
|
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
|
|
if (!top)
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
bottom = top + (uint64_t)swidth * (bmp->height - 1);
|
|
end = data + bytes;
|
|
addr = ((intptr_t)data) & 3;
|
|
bmp->decoded = true;
|
|
|
|
/* Determine transparent index */
|
|
if (bmp->limited_trans) {
|
|
if ((data + 2) > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
bmp->transparent_index = read_uint16(data, 0);
|
|
}
|
|
|
|
for (y = 0; y < bmp->height; y++) {
|
|
while (addr != (((intptr_t)data) & 3))
|
|
data += 2;
|
|
if ((data + (2 * bmp->width)) > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
if (bmp->reversed)
|
|
scanline = (void *)(top + (y * swidth));
|
|
else
|
|
scanline = (void *)(bottom - (y * swidth));
|
|
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
|
|
for (x = 0; x < bmp->width; x++) {
|
|
word = read_uint16(data, 0);
|
|
if ((bmp->limited_trans) && (word == bmp->transparent_index))
|
|
scanline[x] = bmp->trans_colour;
|
|
else {
|
|
scanline[x] = 0;
|
|
for (i = 0; i < 4; i++)
|
|
if (bmp->shift[i] > 0)
|
|
scanline[x] |= ((word & bmp->mask[i]) << bmp->shift[i]);
|
|
else
|
|
scanline[x] |= ((word & bmp->mask[i]) >> (-bmp->shift[i]));
|
|
if (bmp->opaque)
|
|
scanline[x] |= (0xff << 24);
|
|
}
|
|
data += 2;
|
|
scanline[x] = read_uint32((uint8_t *)&scanline[x],0);
|
|
}
|
|
} else {
|
|
for (x = 0; x < bmp->width; x++) {
|
|
word = read_uint16(data, 0);
|
|
if ((bmp->limited_trans) && (word == bmp->transparent_index))
|
|
scanline[x] = bmp->trans_colour;
|
|
else {
|
|
/* 16-bit RGB defaults to RGB555 */
|
|
scanline[x] = ((word & (31 << 0)) << 19) |
|
|
((word & (31 << 5)) << 6) |
|
|
((word & (31 << 10)) >> 7);
|
|
}
|
|
if (bmp->opaque)
|
|
scanline[x] |= (0xff << 24);
|
|
data += 2;
|
|
scanline[x] = read_uint32((uint8_t *)&scanline[x],0);
|
|
}
|
|
}
|
|
}
|
|
*start = data;
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode BMP data stored with a palette and in 8bpp colour or less.
|
|
*
|
|
* \param bmp the BMP image to decode
|
|
* \param start the data to decode, updated to last byte read on success
|
|
* \param bytes the number of bytes of data available
|
|
* \return BMP_OK on success
|
|
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
|
|
* in this case, the image may be partially viewable
|
|
*/
|
|
static bmp_result bmp_decode_rgb(bmp_image *bmp, uint8_t **start, int bytes) {
|
|
uint8_t *top, *bottom, *end, *data;
|
|
uint32_t *scanline;
|
|
intptr_t addr;
|
|
uint32_t x, y, swidth;
|
|
uint8_t bit_shifts[8];
|
|
uint8_t ppb = 8 / bmp->bpp;
|
|
uint8_t bit_mask = (1 << bmp->bpp) - 1;
|
|
uint8_t cur_byte = 0, bit, i;
|
|
|
|
for (i = 0; i < ppb; i++)
|
|
bit_shifts[i] = 8 - ((i + 1) * bmp->bpp);
|
|
|
|
data = *start;
|
|
swidth = bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap) * bmp->width;
|
|
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
|
|
if (!top)
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
bottom = top + (uint64_t)swidth * (bmp->height - 1);
|
|
end = data + bytes;
|
|
addr = ((intptr_t)data) & 3;
|
|
bmp->decoded = true;
|
|
|
|
/* Determine transparent index */
|
|
if (bmp->limited_trans)
|
|
bmp->transparent_index = bmp->colour_table[(*data >> bit_shifts[0]) & bit_mask];
|
|
|
|
for (y = 0; y < bmp->height; y++) {
|
|
while (addr != (((intptr_t)data) & 3))
|
|
data++;
|
|
bit = 8;
|
|
if ((data + (bmp->width / ppb)) > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
if (bmp->reversed)
|
|
scanline = (void *)(top + (y * swidth));
|
|
else
|
|
scanline = (void *)(bottom - (y * swidth));
|
|
for (x = 0; x < bmp->width; x++) {
|
|
if (bit >= ppb) {
|
|
bit = 0;
|
|
cur_byte = *data++;
|
|
}
|
|
scanline[x] = bmp->colour_table[(cur_byte >> bit_shifts[bit++]) & bit_mask];
|
|
if ((bmp->limited_trans) && (scanline[x] == bmp->transparent_index))
|
|
scanline[x] = bmp->trans_colour;
|
|
}
|
|
}
|
|
*start = data;
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode a 1bpp mask for an ICO
|
|
*
|
|
* \param bmp the BMP image to decode
|
|
* \param data the data to decode
|
|
* \param bytes the number of bytes of data available
|
|
* \return BMP_OK on success
|
|
*/
|
|
static bmp_result bmp_decode_mask(bmp_image *bmp, uint8_t *data, int bytes) {
|
|
uint8_t *top, *bottom, *end;
|
|
uint32_t *scanline;
|
|
intptr_t addr;
|
|
uint32_t x, y, swidth;
|
|
uint32_t cur_byte = 0;
|
|
|
|
swidth = bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap) * bmp->width;
|
|
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
|
|
if (!top)
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
bottom = top + (uint64_t)swidth * (bmp->height - 1);
|
|
end = data + bytes;
|
|
addr = ((intptr_t)data) & 3;
|
|
|
|
for (y = 0; y < bmp->height; y++) {
|
|
while (addr != (((intptr_t)data) & 3))
|
|
data++;
|
|
if ((data + (bmp->width >> 3)) > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
scanline = (void *)(bottom - (y * swidth));
|
|
for (x = 0; x < bmp->width; x++) {
|
|
if ((x & 7) == 0)
|
|
cur_byte = *data++;
|
|
if ((cur_byte & 128) == 0) {
|
|
scanline[x] = read_uint32((uint8_t *)&scanline[x], 0);
|
|
scanline[x] |= (0xff << 24);
|
|
scanline[x] = read_uint32((uint8_t *)&scanline[x], 0);
|
|
}
|
|
cur_byte = cur_byte << 1;
|
|
}
|
|
}
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decode BMP data stored encoded in either RLE4 or RLE8.
|
|
*
|
|
* \param bmp the BMP image to decode
|
|
* \param data the data to decode
|
|
* \param bytes the number of bytes of data available
|
|
* \param size the size of the RLE tokens (4 or 8)
|
|
* \return BMP_OK on success
|
|
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
|
|
* in this case, the image may be partially viewable
|
|
*/
|
|
static bmp_result bmp_decode_rle(bmp_image *bmp, uint8_t *data, int bytes, int size) {
|
|
uint8_t *top, *bottom, *end;
|
|
uint32_t *scanline;
|
|
uint32_t swidth;
|
|
uint32_t i, length, pixels_left;
|
|
uint32_t x = 0, y = 0, last_y = 0;
|
|
uint32_t pixel = 0, pixel2;
|
|
|
|
if (bmp->ico)
|
|
return BMP_DATA_ERROR;
|
|
|
|
swidth = bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap) * bmp->width;
|
|
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
|
|
if (!top)
|
|
return BMP_INSUFFICIENT_MEMORY;
|
|
bottom = top + (uint64_t)swidth * (bmp->height - 1);
|
|
end = data + bytes;
|
|
bmp->decoded = true;
|
|
|
|
do {
|
|
if (data + 2 > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
length = *data++;
|
|
if (length == 0) {
|
|
length = *data++;
|
|
if (length == 0) {
|
|
/* 00 - 00 means end of scanline */
|
|
x = 0;
|
|
if (last_y == y) {
|
|
if (++y > bmp->height)
|
|
return BMP_DATA_ERROR;
|
|
}
|
|
last_y = y;
|
|
} else if (length == 1) {
|
|
/* 00 - 01 means end of RLE data */
|
|
return BMP_OK;
|
|
} else if (length == 2) {
|
|
/* 00 - 02 - XX - YY means move cursor */
|
|
if (data + 2 > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
x += *data++;
|
|
if (x >= bmp->width)
|
|
return BMP_DATA_ERROR;
|
|
y += *data++;
|
|
if (y >= bmp->height)
|
|
return BMP_DATA_ERROR;
|
|
} else {
|
|
/* 00 - NN means escape NN pixels */
|
|
if (bmp->reversed) {
|
|
pixels_left = (y + 1) * bmp->width - x;
|
|
scanline = (void *)(top + (y * swidth));
|
|
} else {
|
|
pixels_left = (bmp->height - y + 1) * bmp->width - x;
|
|
scanline = (void *)(bottom - (y * swidth));
|
|
}
|
|
if (length > pixels_left)
|
|
length = pixels_left;
|
|
if (data + length > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
|
|
/* the following code could be easily optimised by simply
|
|
* checking the bounds on entry and using some simply copying
|
|
* routines if so */
|
|
if (size == 8) {
|
|
for (i = 0; i < length; i++) {
|
|
if (x >= bmp->width) {
|
|
x = 0;
|
|
if (++y > bmp->height)
|
|
return BMP_DATA_ERROR;
|
|
scanline -= bmp->width;
|
|
}
|
|
scanline[x++] = bmp->colour_table[(int)*data++];
|
|
}
|
|
} else {
|
|
for (i = 0; i < length; i++) {
|
|
if (x >= bmp->width) {
|
|
x = 0;
|
|
if (++y > bmp->height)
|
|
return BMP_DATA_ERROR;
|
|
scanline -= bmp->width;
|
|
}
|
|
if ((i & 1) == 0) {
|
|
pixel = *data++;
|
|
scanline[x++] = bmp->colour_table
|
|
[pixel >> 4];
|
|
} else {
|
|
scanline[x++] = bmp->colour_table
|
|
[pixel & 0xf];
|
|
}
|
|
}
|
|
length = (length + 1) >> 1;
|
|
}
|
|
if ((length & 1) && (*data++ != 0x00))
|
|
return BMP_DATA_ERROR;
|
|
|
|
}
|
|
} else {
|
|
/* NN means perform RLE for NN pixels */
|
|
if (bmp->reversed) {
|
|
pixels_left = (y + 1) * bmp->width - x;
|
|
scanline = (void *)(top + (y * swidth));
|
|
} else {
|
|
pixels_left = (bmp->height - y + 1) * bmp->width - x;
|
|
scanline = (void *)(bottom - (y * swidth));
|
|
}
|
|
if (length > pixels_left)
|
|
length = pixels_left;
|
|
|
|
/* boundary checking */
|
|
if (data + 1 > end)
|
|
return BMP_INSUFFICIENT_DATA;
|
|
|
|
/* the following code could be easily optimised by simply
|
|
* checking the bounds on entry and using some simply copying
|
|
* routines if so */
|
|
if (size == 8) {
|
|
pixel = bmp->colour_table[(int)*data++];
|
|
for (i = 0; i < length; i++) {
|
|
if (x >= bmp->width) {
|
|
x = 0;
|
|
if (++y > bmp->height)
|
|
return BMP_DATA_ERROR;
|
|
scanline -= bmp->width;
|
|
}
|
|
scanline[x++] = pixel;
|
|
}
|
|
} else {
|
|
pixel2 = *data++;
|
|
pixel = bmp->colour_table[pixel2 >> 4];
|
|
pixel2 = bmp->colour_table[pixel2 & 0xf];
|
|
for (i = 0; i < length; i++) {
|
|
if (x >= bmp->width) {
|
|
x = 0;
|
|
if (++y > bmp->height)
|
|
return BMP_DATA_ERROR;
|
|
scanline -= bmp->width;
|
|
}
|
|
if ((i & 1) == 0)
|
|
scanline[x++] = pixel;
|
|
else
|
|
scanline[x++] = pixel2;
|
|
}
|
|
}
|
|
}
|
|
} while (data < end);
|
|
return BMP_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Finalise a BMP prior to destruction.
|
|
*
|
|
* \param bmp the BMP image to finalise
|
|
*/
|
|
void bmp_finalise(bmp_image *bmp) {
|
|
if (bmp->bitmap)
|
|
bmp->bitmap_callbacks.bitmap_destroy(bmp->bitmap);
|
|
bmp->bitmap = NULL;
|
|
if (bmp->colour_table)
|
|
free(bmp->colour_table);
|
|
bmp->colour_table = NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* Finalise an ICO prior to destruction.
|
|
*
|
|
* \param ico the ICO image to finalise
|
|
*/
|
|
void ico_finalise(ico_collection *ico) {
|
|
ico_image *image;
|
|
|
|
for (image = ico->first; image; image = image->next)
|
|
bmp_finalise(&image->bmp);
|
|
while (ico->first) {
|
|
image = ico->first;
|
|
ico->first = image->next;
|
|
free(image);
|
|
}
|
|
}
|