kolibrios/contrib/sdk/sources/vaapi/intel-driver-1.6.2/src/gen9_mfc.c
Sergey Semyonov (Serge) a08f61ddb9 libva-1.6.2
git-svn-id: svn://kolibrios.org@6146 a494cfbc-eb01-0410-851d-a64ba20cac60
2016-02-05 22:00:38 +00:00

1755 lines
68 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Zhao Yakui <yakui.zhao@intel.com>
* Xiang Haihao <haihao.xiang@intel.com>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include "intel_batchbuffer.h"
#include "i965_defines.h"
#include "i965_structs.h"
#include "i965_drv_video.h"
#include "i965_encoder.h"
#include "i965_encoder_utils.h"
#include "gen6_mfc.h"
#include "gen6_vme.h"
#include "intel_media.h"
#define SURFACE_STATE_PADDED_SIZE SURFACE_STATE_PADDED_SIZE_GEN8
#define SURFACE_STATE_OFFSET(index) (SURFACE_STATE_PADDED_SIZE * index)
#define BINDING_TABLE_OFFSET(index) (SURFACE_STATE_OFFSET(MAX_MEDIA_SURFACES_GEN6) + sizeof(unsigned int) * index)
#define MFC_SOFTWARE_HASWELL 1
#define B0_STEP_REV 2
#define IS_STEPPING_BPLUS(i965) ((i965->intel.revision) >= B0_STEP_REV)
static const uint32_t gen9_mfc_batchbuffer_avc_intra[][4] = {
#include "shaders/utils/mfc_batchbuffer_avc_intra.g9b"
};
static const uint32_t gen9_mfc_batchbuffer_avc_inter[][4] = {
#include "shaders/utils/mfc_batchbuffer_avc_inter.g9b"
};
static struct i965_kernel gen9_mfc_kernels[] = {
{
"MFC AVC INTRA BATCHBUFFER ",
MFC_BATCHBUFFER_AVC_INTRA,
gen9_mfc_batchbuffer_avc_intra,
sizeof(gen9_mfc_batchbuffer_avc_intra),
NULL
},
{
"MFC AVC INTER BATCHBUFFER ",
MFC_BATCHBUFFER_AVC_INTER,
gen9_mfc_batchbuffer_avc_inter,
sizeof(gen9_mfc_batchbuffer_avc_inter),
NULL
},
};
#define INTER_MODE_MASK 0x03
#define INTER_8X8 0x03
#define INTER_16X8 0x01
#define INTER_8X16 0x02
#define SUBMB_SHAPE_MASK 0x00FF00
#define INTER_16X16 0x00
#define INTER_MV8 (4 << 20)
#define INTER_MV32 (6 << 20)
static void
gen9_mfc_pipe_mode_select(VADriverContextP ctx,
int standard_select,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
assert(standard_select == MFX_FORMAT_MPEG2 ||
standard_select == MFX_FORMAT_AVC ||
standard_select == MFX_FORMAT_VP8);
BEGIN_BCS_BATCH(batch, 5);
OUT_BCS_BATCH(batch, MFX_PIPE_MODE_SELECT | (5 - 2));
OUT_BCS_BATCH(batch,
(MFX_LONG_MODE << 17) | /* Must be long format for encoder */
(MFD_MODE_VLD << 15) | /* VLD mode */
(0 << 10) | /* Stream-Out Enable */
((!!mfc_context->post_deblocking_output.bo) << 9) | /* Post Deblocking Output */
((!!mfc_context->pre_deblocking_output.bo) << 8) | /* Pre Deblocking Output */
(0 << 6) | /* frame statistics stream-out enable*/
(0 << 5) | /* not in stitch mode */
(1 << 4) | /* encoding mode */
(standard_select << 0)); /* standard select: avc or mpeg2 */
OUT_BCS_BATCH(batch,
(0 << 7) | /* expand NOA bus flag */
(0 << 6) | /* disable slice-level clock gating */
(0 << 5) | /* disable clock gating for NOA */
(0 << 4) | /* terminate if AVC motion and POC table error occurs */
(0 << 3) | /* terminate if AVC mbdata error occurs */
(0 << 2) | /* terminate if AVC CABAC/CAVLC decode error occurs */
(0 << 1) |
(0 << 0));
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_surface_state(VADriverContextP ctx, struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
BEGIN_BCS_BATCH(batch, 6);
OUT_BCS_BATCH(batch, MFX_SURFACE_STATE | (6 - 2));
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch,
((mfc_context->surface_state.height - 1) << 18) |
((mfc_context->surface_state.width - 1) << 4));
OUT_BCS_BATCH(batch,
(MFX_SURFACE_PLANAR_420_8 << 28) | /* 420 planar YUV surface */
(1 << 27) | /* must be 1 for interleave U/V, hardware requirement */
(0 << 22) | /* surface object control state, FIXME??? */
((mfc_context->surface_state.w_pitch - 1) << 3) | /* pitch */
(0 << 2) | /* must be 0 for interleave U/V */
(1 << 1) | /* must be tiled */
(I965_TILEWALK_YMAJOR << 0)); /* tile walk, TILEWALK_YMAJOR */
OUT_BCS_BATCH(batch,
(0 << 16) | /* must be 0 for interleave U/V */
(mfc_context->surface_state.h_pitch)); /* y offset for U(cb) */
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_ind_obj_base_addr_state(VADriverContextP ctx,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
struct gen6_vme_context *vme_context = encoder_context->vme_context;
int vme_size;
BEGIN_BCS_BATCH(batch, 26);
OUT_BCS_BATCH(batch, MFX_IND_OBJ_BASE_ADDR_STATE | (26 - 2));
/* the DW1-3 is for the MFX indirect bistream offset */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
vme_size = vme_context->vme_output.size_block * vme_context->vme_output.num_blocks;
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW6-10 is for MFX Indirect MV Object Base Address */
OUT_BCS_RELOC(batch, vme_context->vme_output.bo, I915_GEM_DOMAIN_INSTRUCTION, 0, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_RELOC(batch, vme_context->vme_output.bo, I915_GEM_DOMAIN_INSTRUCTION, 0, vme_size);
OUT_BCS_BATCH(batch, 0);
/* the DW11-15 is for MFX IT-COFF. Not used on encoder */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW16-20 is for MFX indirect DBLK. Not used on encoder */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW21-25 is for MFC Indirect PAK-BSE Object Base Address for Encoder*/
OUT_BCS_RELOC(batch,
mfc_context->mfc_indirect_pak_bse_object.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_RELOC(batch,
mfc_context->mfc_indirect_pak_bse_object.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
mfc_context->mfc_indirect_pak_bse_object.end_offset);
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_avc_img_state(VADriverContextP ctx, struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
VAEncPictureParameterBufferH264 *pPicParameter = (VAEncPictureParameterBufferH264 *)encode_state->pic_param_ext->buffer;
int width_in_mbs = (mfc_context->surface_state.width + 15) / 16;
int height_in_mbs = (mfc_context->surface_state.height + 15) / 16;
BEGIN_BCS_BATCH(batch, 16);
OUT_BCS_BATCH(batch, MFX_AVC_IMG_STATE | (16 - 2));
/*DW1. MB setting of frame */
OUT_BCS_BATCH(batch,
((width_in_mbs * height_in_mbs - 1) & 0xFFFF));
OUT_BCS_BATCH(batch,
((height_in_mbs - 1) << 16) |
((width_in_mbs - 1) << 0));
/* DW3 QP setting */
OUT_BCS_BATCH(batch,
(0 << 24) | /* Second Chroma QP Offset */
(0 << 16) | /* Chroma QP Offset */
(0 << 14) | /* Max-bit conformance Intra flag */
(0 << 13) | /* Max Macroblock size conformance Inter flag */
(pPicParameter->pic_fields.bits.weighted_pred_flag << 12) | /*Weighted_Pred_Flag */
(pPicParameter->pic_fields.bits.weighted_bipred_idc << 10) | /* Weighted_BiPred_Idc */
(0 << 8) | /* FIXME: Image Structure */
(0 << 0) ); /* Current Decoed Image Frame Store ID, reserved in Encode mode */
OUT_BCS_BATCH(batch,
(0 << 16) | /* Mininum Frame size */
(0 << 15) | /* Disable reading of Macroblock Status Buffer */
(0 << 14) | /* Load BitStream Pointer only once, 1 slic 1 frame */
(0 << 13) | /* CABAC 0 word insertion test enable */
(1 << 12) | /* MVUnpackedEnable,compliant to DXVA */
(1 << 10) | /* Chroma Format IDC, 4:2:0 */
(0 << 8) | /* FIXME: MbMvFormatFlag */
(pPicParameter->pic_fields.bits.entropy_coding_mode_flag << 7) | /*0:CAVLC encoding mode,1:CABAC*/
(0 << 6) | /* Only valid for VLD decoding mode */
(0 << 5) | /* Constrained Intra Predition Flag, from PPS */
(0 << 4) | /* Direct 8x8 inference flag */
(pPicParameter->pic_fields.bits.transform_8x8_mode_flag << 3) | /*8x8 or 4x4 IDCT Transform Mode Flag*/
(1 << 2) | /* Frame MB only flag */
(0 << 1) | /* MBAFF mode is in active */
(0 << 0)); /* Field picture flag */
/* DW5 Trellis quantization */
OUT_BCS_BATCH(batch, 0); /* Mainly about MB rate control and debug, just ignoring */
OUT_BCS_BATCH(batch, /* Inter and Intra Conformance Max size limit */
(0xBB8 << 16) | /* InterMbMaxSz */
(0xEE8) ); /* IntraMbMaxSz */
OUT_BCS_BATCH(batch, 0); /* Reserved */
/* DW8. QP delta */
OUT_BCS_BATCH(batch, 0); /* Slice QP Delta for bitrate control */
OUT_BCS_BATCH(batch, 0); /* Slice QP Delta for bitrate control */
/* DW10. Bit setting for MB */
OUT_BCS_BATCH(batch, 0x8C000000);
OUT_BCS_BATCH(batch, 0x00010000);
/* DW12. */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0x02010100);
/* DW14. For short format */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_qm_state(VADriverContextP ctx,
int qm_type,
unsigned int *qm,
int qm_length,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
unsigned int qm_buffer[16];
assert(qm_length <= 16);
assert(sizeof(*qm) == 4);
memcpy(qm_buffer, qm, qm_length * 4);
BEGIN_BCS_BATCH(batch, 18);
OUT_BCS_BATCH(batch, MFX_QM_STATE | (18 - 2));
OUT_BCS_BATCH(batch, qm_type << 0);
intel_batchbuffer_data(batch, qm_buffer, 16 * 4);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_avc_qm_state(VADriverContextP ctx, struct intel_encoder_context *encoder_context)
{
unsigned int qm[16] = {
0x10101010, 0x10101010, 0x10101010, 0x10101010,
0x10101010, 0x10101010, 0x10101010, 0x10101010,
0x10101010, 0x10101010, 0x10101010, 0x10101010,
0x10101010, 0x10101010, 0x10101010, 0x10101010
};
gen9_mfc_qm_state(ctx, MFX_QM_AVC_4X4_INTRA_MATRIX, qm, 12, encoder_context);
gen9_mfc_qm_state(ctx, MFX_QM_AVC_4X4_INTER_MATRIX, qm, 12, encoder_context);
gen9_mfc_qm_state(ctx, MFX_QM_AVC_8x8_INTRA_MATRIX, qm, 16, encoder_context);
gen9_mfc_qm_state(ctx, MFX_QM_AVC_8x8_INTER_MATRIX, qm, 16, encoder_context);
}
static void
gen9_mfc_fqm_state(VADriverContextP ctx,
int fqm_type,
unsigned int *fqm,
int fqm_length,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
unsigned int fqm_buffer[32];
assert(fqm_length <= 32);
assert(sizeof(*fqm) == 4);
memcpy(fqm_buffer, fqm, fqm_length * 4);
BEGIN_BCS_BATCH(batch, 34);
OUT_BCS_BATCH(batch, MFX_FQM_STATE | (34 - 2));
OUT_BCS_BATCH(batch, fqm_type << 0);
intel_batchbuffer_data(batch, fqm_buffer, 32 * 4);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_avc_fqm_state(VADriverContextP ctx, struct intel_encoder_context *encoder_context)
{
unsigned int qm[32] = {
0x10001000, 0x10001000, 0x10001000, 0x10001000,
0x10001000, 0x10001000, 0x10001000, 0x10001000,
0x10001000, 0x10001000, 0x10001000, 0x10001000,
0x10001000, 0x10001000, 0x10001000, 0x10001000,
0x10001000, 0x10001000, 0x10001000, 0x10001000,
0x10001000, 0x10001000, 0x10001000, 0x10001000,
0x10001000, 0x10001000, 0x10001000, 0x10001000,
0x10001000, 0x10001000, 0x10001000, 0x10001000
};
gen9_mfc_fqm_state(ctx, MFX_QM_AVC_4X4_INTRA_MATRIX, qm, 24, encoder_context);
gen9_mfc_fqm_state(ctx, MFX_QM_AVC_4X4_INTER_MATRIX, qm, 24, encoder_context);
gen9_mfc_fqm_state(ctx, MFX_QM_AVC_8x8_INTRA_MATRIX, qm, 32, encoder_context);
gen9_mfc_fqm_state(ctx, MFX_QM_AVC_8x8_INTER_MATRIX, qm, 32, encoder_context);
}
static void
gen9_mfc_avc_insert_object(VADriverContextP ctx, struct intel_encoder_context *encoder_context,
unsigned int *insert_data, int lenght_in_dws, int data_bits_in_last_dw,
int skip_emul_byte_count, int is_last_header, int is_end_of_slice, int emulation_flag,
struct intel_batchbuffer *batch)
{
if (batch == NULL)
batch = encoder_context->base.batch;
if (data_bits_in_last_dw == 0)
data_bits_in_last_dw = 32;
BEGIN_BCS_BATCH(batch, lenght_in_dws + 2);
OUT_BCS_BATCH(batch, MFX_INSERT_OBJECT | (lenght_in_dws + 2 - 2));
OUT_BCS_BATCH(batch,
(0 << 16) | /* always start at offset 0 */
(data_bits_in_last_dw << 8) |
(skip_emul_byte_count << 4) |
(!!emulation_flag << 3) |
((!!is_last_header) << 2) |
((!!is_end_of_slice) << 1) |
(0 << 0)); /* FIXME: ??? */
intel_batchbuffer_data(batch, insert_data, lenght_in_dws * 4);
ADVANCE_BCS_BATCH(batch);
}
static void gen9_mfc_init(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct i965_driver_data *i965 = i965_driver_data(ctx);
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
dri_bo *bo;
int i;
int width_in_mbs = 0;
int height_in_mbs = 0;
int slice_batchbuffer_size;
if (encoder_context->codec == CODEC_H264 ||
encoder_context->codec == CODEC_H264_MVC) {
VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
width_in_mbs = pSequenceParameter->picture_width_in_mbs;
height_in_mbs = pSequenceParameter->picture_height_in_mbs;
} else {
VAEncSequenceParameterBufferMPEG2 *pSequenceParameter = (VAEncSequenceParameterBufferMPEG2 *)encode_state->seq_param_ext->buffer;
assert(encoder_context->codec == CODEC_MPEG2);
width_in_mbs = ALIGN(pSequenceParameter->picture_width, 16) / 16;
height_in_mbs = ALIGN(pSequenceParameter->picture_height, 16) / 16;
}
slice_batchbuffer_size = 64 * width_in_mbs * height_in_mbs + 4096 +
(SLICE_HEADER + SLICE_TAIL) * encode_state->num_slice_params_ext;
/*Encode common setup for MFC*/
dri_bo_unreference(mfc_context->post_deblocking_output.bo);
mfc_context->post_deblocking_output.bo = NULL;
dri_bo_unreference(mfc_context->pre_deblocking_output.bo);
mfc_context->pre_deblocking_output.bo = NULL;
dri_bo_unreference(mfc_context->uncompressed_picture_source.bo);
mfc_context->uncompressed_picture_source.bo = NULL;
dri_bo_unreference(mfc_context->mfc_indirect_pak_bse_object.bo);
mfc_context->mfc_indirect_pak_bse_object.bo = NULL;
for (i = 0; i < NUM_MFC_DMV_BUFFERS; i++){
if (mfc_context->direct_mv_buffers[i].bo != NULL)
dri_bo_unreference(mfc_context->direct_mv_buffers[i].bo);
mfc_context->direct_mv_buffers[i].bo = NULL;
}
for (i = 0; i < MAX_MFC_REFERENCE_SURFACES; i++){
if (mfc_context->reference_surfaces[i].bo != NULL)
dri_bo_unreference(mfc_context->reference_surfaces[i].bo);
mfc_context->reference_surfaces[i].bo = NULL;
}
dri_bo_unreference(mfc_context->intra_row_store_scratch_buffer.bo);
bo = dri_bo_alloc(i965->intel.bufmgr,
"Buffer",
width_in_mbs * 64,
64);
assert(bo);
mfc_context->intra_row_store_scratch_buffer.bo = bo;
dri_bo_unreference(mfc_context->macroblock_status_buffer.bo);
bo = dri_bo_alloc(i965->intel.bufmgr,
"Buffer",
width_in_mbs * height_in_mbs * 16,
64);
assert(bo);
mfc_context->macroblock_status_buffer.bo = bo;
dri_bo_unreference(mfc_context->deblocking_filter_row_store_scratch_buffer.bo);
bo = dri_bo_alloc(i965->intel.bufmgr,
"Buffer",
4 * width_in_mbs * 64, /* 4 * width_in_mbs * 64 */
64);
assert(bo);
mfc_context->deblocking_filter_row_store_scratch_buffer.bo = bo;
dri_bo_unreference(mfc_context->bsd_mpc_row_store_scratch_buffer.bo);
bo = dri_bo_alloc(i965->intel.bufmgr,
"Buffer",
2 * width_in_mbs * 64, /* 2 * width_in_mbs * 64 */
0x1000);
assert(bo);
mfc_context->bsd_mpc_row_store_scratch_buffer.bo = bo;
dri_bo_unreference(mfc_context->mfc_batchbuffer_surface.bo);
mfc_context->mfc_batchbuffer_surface.bo = NULL;
dri_bo_unreference(mfc_context->aux_batchbuffer_surface.bo);
mfc_context->aux_batchbuffer_surface.bo = NULL;
if (mfc_context->aux_batchbuffer)
intel_batchbuffer_free(mfc_context->aux_batchbuffer);
mfc_context->aux_batchbuffer = intel_batchbuffer_new(&i965->intel, I915_EXEC_BSD, slice_batchbuffer_size);
mfc_context->aux_batchbuffer_surface.bo = mfc_context->aux_batchbuffer->buffer;
dri_bo_reference(mfc_context->aux_batchbuffer_surface.bo);
mfc_context->aux_batchbuffer_surface.pitch = 16;
mfc_context->aux_batchbuffer_surface.num_blocks = mfc_context->aux_batchbuffer->size / 16;
mfc_context->aux_batchbuffer_surface.size_block = 16;
i965_gpe_context_init(ctx, &mfc_context->gpe_context);
}
static void
gen9_mfc_pipe_buf_addr_state(VADriverContextP ctx,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
int i;
BEGIN_BCS_BATCH(batch, 61);
OUT_BCS_BATCH(batch, MFX_PIPE_BUF_ADDR_STATE | (61 - 2));
/* the DW1-3 is for pre_deblocking */
if (mfc_context->pre_deblocking_output.bo)
OUT_BCS_RELOC(batch, mfc_context->pre_deblocking_output.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
else
OUT_BCS_BATCH(batch, 0); /* pre output addr */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW4-6 is for the post_deblocking */
/* post output addr */
if (mfc_context->post_deblocking_output.bo)
OUT_BCS_RELOC(batch, mfc_context->post_deblocking_output.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
else
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW7-9 is for the uncompressed_picture */
OUT_BCS_RELOC(batch, mfc_context->uncompressed_picture_source.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0); /* uncompressed data */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW10-12 is for the mb status */
OUT_BCS_RELOC(batch, mfc_context->macroblock_status_buffer.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0); /* StreamOut data*/
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW13-15 is for the intra_row_store_scratch */
OUT_BCS_RELOC(batch, mfc_context->intra_row_store_scratch_buffer.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW16-18 is for the deblocking filter */
OUT_BCS_RELOC(batch, mfc_context->deblocking_filter_row_store_scratch_buffer.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW 19-50 is for Reference pictures*/
for (i = 0; i < ARRAY_ELEMS(mfc_context->reference_surfaces); i++) {
if ( mfc_context->reference_surfaces[i].bo != NULL) {
OUT_BCS_RELOC(batch, mfc_context->reference_surfaces[i].bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
} else {
OUT_BCS_BATCH(batch, 0);
}
OUT_BCS_BATCH(batch, 0);
}
OUT_BCS_BATCH(batch, 0);
/* The DW 52-54 is for the MB status buffer */
OUT_BCS_RELOC(batch, mfc_context->macroblock_status_buffer.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW 55-57 is the ILDB buffer */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW 58-60 is the second ILDB buffer */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_avc_directmode_state(VADriverContextP ctx,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
int i;
BEGIN_BCS_BATCH(batch, 71);
OUT_BCS_BATCH(batch, MFX_AVC_DIRECTMODE_STATE | (71 - 2));
/* Reference frames and Current frames */
/* the DW1-32 is for the direct MV for reference */
for(i = 0; i < NUM_MFC_DMV_BUFFERS - 2; i += 2) {
if ( mfc_context->direct_mv_buffers[i].bo != NULL) {
OUT_BCS_RELOC(batch, mfc_context->direct_mv_buffers[i].bo,
I915_GEM_DOMAIN_INSTRUCTION, 0,
0);
OUT_BCS_BATCH(batch, 0);
} else {
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
}
}
OUT_BCS_BATCH(batch, 0);
/* the DW34-36 is the MV for the current reference */
OUT_BCS_RELOC(batch, mfc_context->direct_mv_buffers[NUM_MFC_DMV_BUFFERS - 2].bo,
I915_GEM_DOMAIN_INSTRUCTION, 0,
0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* POL list */
for(i = 0; i < 32; i++) {
OUT_BCS_BATCH(batch, i/2);
}
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
static void
gen9_mfc_bsp_buf_base_addr_state(VADriverContextP ctx,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
BEGIN_BCS_BATCH(batch, 10);
OUT_BCS_BATCH(batch, MFX_BSP_BUF_BASE_ADDR_STATE | (10 - 2));
OUT_BCS_RELOC(batch, mfc_context->bsd_mpc_row_store_scratch_buffer.bo,
I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW4-6 is for MPR Row Store Scratch Buffer Base Address */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
/* the DW7-9 is for Bitplane Read Buffer Base Address */
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
static void gen9_mfc_avc_pipeline_picture_programing( VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
mfc_context->pipe_mode_select(ctx, MFX_FORMAT_AVC, encoder_context);
mfc_context->set_surface_state(ctx, encoder_context);
mfc_context->ind_obj_base_addr_state(ctx, encoder_context);
gen9_mfc_pipe_buf_addr_state(ctx, encoder_context);
gen9_mfc_bsp_buf_base_addr_state(ctx, encoder_context);
mfc_context->avc_img_state(ctx, encode_state, encoder_context);
mfc_context->avc_qm_state(ctx, encoder_context);
mfc_context->avc_fqm_state(ctx, encoder_context);
gen9_mfc_avc_directmode_state(ctx, encoder_context);
intel_mfc_avc_ref_idx_state(ctx, encode_state, encoder_context);
}
static VAStatus gen9_mfc_run(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
intel_batchbuffer_flush(batch); //run the pipeline
return VA_STATUS_SUCCESS;
}
static VAStatus
gen9_mfc_stop(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context,
int *encoded_bits_size)
{
VAStatus vaStatus = VA_STATUS_ERROR_UNKNOWN;
VAEncPictureParameterBufferH264 *pPicParameter = (VAEncPictureParameterBufferH264 *)encode_state->pic_param_ext->buffer;
VACodedBufferSegment *coded_buffer_segment;
vaStatus = i965_MapBuffer(ctx, pPicParameter->coded_buf, (void **)&coded_buffer_segment);
assert(vaStatus == VA_STATUS_SUCCESS);
*encoded_bits_size = coded_buffer_segment->size * 8;
i965_UnmapBuffer(ctx, pPicParameter->coded_buf);
return VA_STATUS_SUCCESS;
}
static void
gen9_mfc_avc_slice_state(VADriverContextP ctx,
VAEncPictureParameterBufferH264 *pic_param,
VAEncSliceParameterBufferH264 *slice_param,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context,
int rate_control_enable,
int qp,
struct intel_batchbuffer *batch)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
int width_in_mbs = (mfc_context->surface_state.width + 15) / 16;
int height_in_mbs = (mfc_context->surface_state.height + 15) / 16;
int beginmb = slice_param->macroblock_address;
int endmb = beginmb + slice_param->num_macroblocks;
int beginx = beginmb % width_in_mbs;
int beginy = beginmb / width_in_mbs;
int nextx = endmb % width_in_mbs;
int nexty = endmb / width_in_mbs;
int slice_type = intel_avc_enc_slice_type_fixup(slice_param->slice_type);
int last_slice = (endmb == (width_in_mbs * height_in_mbs));
int maxQpN, maxQpP;
unsigned char correct[6], grow, shrink;
int i;
int weighted_pred_idc = 0;
unsigned int luma_log2_weight_denom = slice_param->luma_log2_weight_denom;
unsigned int chroma_log2_weight_denom = slice_param->chroma_log2_weight_denom;
int num_ref_l0 = 0, num_ref_l1 = 0;
if (batch == NULL)
batch = encoder_context->base.batch;
if (slice_type == SLICE_TYPE_I) {
luma_log2_weight_denom = 0;
chroma_log2_weight_denom = 0;
} else if (slice_type == SLICE_TYPE_P) {
weighted_pred_idc = pic_param->pic_fields.bits.weighted_pred_flag;
num_ref_l0 = pic_param->num_ref_idx_l0_active_minus1 + 1;
if (slice_param->num_ref_idx_active_override_flag)
num_ref_l0 = slice_param->num_ref_idx_l0_active_minus1 + 1;
} else if (slice_type == SLICE_TYPE_B) {
weighted_pred_idc = pic_param->pic_fields.bits.weighted_bipred_idc;
num_ref_l0 = pic_param->num_ref_idx_l0_active_minus1 + 1;
num_ref_l1 = pic_param->num_ref_idx_l1_active_minus1 + 1;
if (slice_param->num_ref_idx_active_override_flag) {
num_ref_l0 = slice_param->num_ref_idx_l0_active_minus1 + 1;
num_ref_l1 = slice_param->num_ref_idx_l1_active_minus1 + 1;
}
if (weighted_pred_idc == 2) {
/* 8.4.3 - Derivation process for prediction weights (8-279) */
luma_log2_weight_denom = 5;
chroma_log2_weight_denom = 5;
}
}
maxQpN = mfc_context->bit_rate_control_context[slice_type].MaxQpNegModifier;
maxQpP = mfc_context->bit_rate_control_context[slice_type].MaxQpPosModifier;
for (i = 0; i < 6; i++)
correct[i] = mfc_context->bit_rate_control_context[slice_type].Correct[i];
grow = mfc_context->bit_rate_control_context[slice_type].GrowInit +
(mfc_context->bit_rate_control_context[slice_type].GrowResistance << 4);
shrink = mfc_context->bit_rate_control_context[slice_type].ShrinkInit +
(mfc_context->bit_rate_control_context[slice_type].ShrinkResistance << 4);
BEGIN_BCS_BATCH(batch, 11);;
OUT_BCS_BATCH(batch, MFX_AVC_SLICE_STATE | (11 - 2) );
OUT_BCS_BATCH(batch, slice_type); /*Slice Type: I:P:B Slice*/
OUT_BCS_BATCH(batch,
(num_ref_l0 << 16) |
(num_ref_l1 << 24) |
(chroma_log2_weight_denom << 8) |
(luma_log2_weight_denom << 0));
OUT_BCS_BATCH(batch,
(weighted_pred_idc << 30) |
(slice_param->direct_spatial_mv_pred_flag<<29) | /*Direct Prediction Type*/
(slice_param->disable_deblocking_filter_idc << 27) |
(slice_param->cabac_init_idc << 24) |
(qp<<16) | /*Slice Quantization Parameter*/
((slice_param->slice_beta_offset_div2 & 0xf) << 8) |
((slice_param->slice_alpha_c0_offset_div2 & 0xf) << 0));
OUT_BCS_BATCH(batch,
(beginy << 24) | /*First MB X&Y , the begin postion of current slice*/
(beginx << 16) |
slice_param->macroblock_address );
OUT_BCS_BATCH(batch, (nexty << 16) | nextx); /*Next slice first MB X&Y*/
OUT_BCS_BATCH(batch,
(0/*rate_control_enable*/ << 31) | /*in CBR mode RateControlCounterEnable = enable*/
(1 << 30) | /*ResetRateControlCounter*/
(0 << 28) | /*RC Triggle Mode = Always Rate Control*/
(4 << 24) | /*RC Stable Tolerance, middle level*/
(0/*rate_control_enable*/ << 23) | /*RC Panic Enable*/
(0 << 22) | /*QP mode, don't modfiy CBP*/
(0 << 21) | /*MB Type Direct Conversion Enabled*/
(0 << 20) | /*MB Type Skip Conversion Enabled*/
(last_slice << 19) | /*IsLastSlice*/
(0 << 18) | /*BitstreamOutputFlag Compressed BitStream Output Disable Flag 0:enable 1:disable*/
(1 << 17) | /*HeaderPresentFlag*/
(1 << 16) | /*SliceData PresentFlag*/
(1 << 15) | /*TailPresentFlag*/
(1 << 13) | /*RBSP NAL TYPE*/
(0 << 12) ); /*CabacZeroWordInsertionEnable*/
OUT_BCS_BATCH(batch, mfc_context->mfc_indirect_pak_bse_object.offset);
OUT_BCS_BATCH(batch,
(maxQpN << 24) | /*Target QP - 24 is lowest QP*/
(maxQpP << 16) | /*Target QP + 20 is highest QP*/
(shrink << 8) |
(grow << 0));
OUT_BCS_BATCH(batch,
(correct[5] << 20) |
(correct[4] << 16) |
(correct[3] << 12) |
(correct[2] << 8) |
(correct[1] << 4) |
(correct[0] << 0));
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
}
#ifdef MFC_SOFTWARE_HASWELL
static int
gen9_mfc_avc_pak_object_intra(VADriverContextP ctx, int x, int y, int end_mb,
int qp,unsigned int *msg,
struct intel_encoder_context *encoder_context,
unsigned char target_mb_size, unsigned char max_mb_size,
struct intel_batchbuffer *batch)
{
int len_in_dwords = 12;
unsigned int intra_msg;
#define INTRA_MSG_FLAG (1 << 13)
#define INTRA_MBTYPE_MASK (0x1F0000)
if (batch == NULL)
batch = encoder_context->base.batch;
BEGIN_BCS_BATCH(batch, len_in_dwords);
intra_msg = msg[0] & 0xC0FF;
intra_msg |= INTRA_MSG_FLAG;
intra_msg |= ((msg[0] & INTRA_MBTYPE_MASK) >> 8);
OUT_BCS_BATCH(batch, MFC_AVC_PAK_OBJECT | (len_in_dwords - 2));
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch,
(0 << 24) | /* PackedMvNum, Debug*/
(0 << 20) | /* No motion vector */
(1 << 19) | /* CbpDcY */
(1 << 18) | /* CbpDcU */
(1 << 17) | /* CbpDcV */
intra_msg);
OUT_BCS_BATCH(batch, (0xFFFF << 16) | (y << 8) | x); /* Code Block Pattern for Y*/
OUT_BCS_BATCH(batch, 0x000F000F); /* Code Block Pattern */
OUT_BCS_BATCH(batch, (0 << 27) | (end_mb << 26) | qp); /* Last MB */
/*Stuff for Intra MB*/
OUT_BCS_BATCH(batch, msg[1]); /* We using Intra16x16 no 4x4 predmode*/
OUT_BCS_BATCH(batch, msg[2]);
OUT_BCS_BATCH(batch, msg[3]&0xFF);
/*MaxSizeInWord and TargetSzieInWord*/
OUT_BCS_BATCH(batch, (max_mb_size << 24) |
(target_mb_size << 16) );
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
return len_in_dwords;
}
static int
gen9_mfc_avc_pak_object_inter(VADriverContextP ctx, int x, int y, int end_mb, int qp,
unsigned int *msg, unsigned int offset,
struct intel_encoder_context *encoder_context,
unsigned char target_mb_size,unsigned char max_mb_size, int slice_type,
struct intel_batchbuffer *batch)
{
struct gen6_vme_context *vme_context = encoder_context->vme_context;
int len_in_dwords = 12;
unsigned int inter_msg = 0;
if (batch == NULL)
batch = encoder_context->base.batch;
{
#define MSG_MV_OFFSET 4
unsigned int *mv_ptr;
mv_ptr = msg + MSG_MV_OFFSET;
/* MV of VME output is based on 16 sub-blocks. So it is necessary
* to convert them to be compatible with the format of AVC_PAK
* command.
*/
if ((msg[0] & INTER_MODE_MASK) == INTER_8X16) {
/* MV[0] and MV[2] are replicated */
mv_ptr[4] = mv_ptr[0];
mv_ptr[5] = mv_ptr[1];
mv_ptr[2] = mv_ptr[8];
mv_ptr[3] = mv_ptr[9];
mv_ptr[6] = mv_ptr[8];
mv_ptr[7] = mv_ptr[9];
} else if ((msg[0] & INTER_MODE_MASK) == INTER_16X8) {
/* MV[0] and MV[1] are replicated */
mv_ptr[2] = mv_ptr[0];
mv_ptr[3] = mv_ptr[1];
mv_ptr[4] = mv_ptr[16];
mv_ptr[5] = mv_ptr[17];
mv_ptr[6] = mv_ptr[24];
mv_ptr[7] = mv_ptr[25];
} else if (((msg[0] & INTER_MODE_MASK) == INTER_8X8) &&
!(msg[1] & SUBMB_SHAPE_MASK)) {
/* Don't touch MV[0] or MV[1] */
mv_ptr[2] = mv_ptr[8];
mv_ptr[3] = mv_ptr[9];
mv_ptr[4] = mv_ptr[16];
mv_ptr[5] = mv_ptr[17];
mv_ptr[6] = mv_ptr[24];
mv_ptr[7] = mv_ptr[25];
}
}
BEGIN_BCS_BATCH(batch, len_in_dwords);
OUT_BCS_BATCH(batch, MFC_AVC_PAK_OBJECT | (len_in_dwords - 2));
inter_msg = 32;
/* MV quantity */
if ((msg[0] & INTER_MODE_MASK) == INTER_8X8) {
if (msg[1] & SUBMB_SHAPE_MASK)
inter_msg = 128;
}
OUT_BCS_BATCH(batch, inter_msg); /* 32 MV*/
OUT_BCS_BATCH(batch, offset);
inter_msg = msg[0] & (0x1F00FFFF);
inter_msg |= INTER_MV8;
inter_msg |= ((1 << 19) | (1 << 18) | (1 << 17));
if (((msg[0] & INTER_MODE_MASK) == INTER_8X8) &&
(msg[1] & SUBMB_SHAPE_MASK)) {
inter_msg |= INTER_MV32;
}
OUT_BCS_BATCH(batch, inter_msg);
OUT_BCS_BATCH(batch, (0xFFFF<<16) | (y << 8) | x); /* Code Block Pattern for Y*/
OUT_BCS_BATCH(batch, 0x000F000F); /* Code Block Pattern */
#if 0
if ( slice_type == SLICE_TYPE_B) {
OUT_BCS_BATCH(batch, (0xF<<28) | (end_mb << 26) | qp); /* Last MB */
} else {
OUT_BCS_BATCH(batch, (end_mb << 26) | qp); /* Last MB */
}
#else
OUT_BCS_BATCH(batch, (end_mb << 26) | qp); /* Last MB */
#endif
inter_msg = msg[1] >> 8;
/*Stuff for Inter MB*/
OUT_BCS_BATCH(batch, inter_msg);
OUT_BCS_BATCH(batch, vme_context->ref_index_in_mb[0]);
OUT_BCS_BATCH(batch, vme_context->ref_index_in_mb[1]);
/*MaxSizeInWord and TargetSzieInWord*/
OUT_BCS_BATCH(batch, (max_mb_size << 24) |
(target_mb_size << 16) );
OUT_BCS_BATCH(batch, 0x0);
ADVANCE_BCS_BATCH(batch);
return len_in_dwords;
}
#define AVC_INTRA_RDO_OFFSET 4
#define AVC_INTER_RDO_OFFSET 10
#define AVC_INTER_MSG_OFFSET 8
#define AVC_INTER_MV_OFFSET 48
#define AVC_RDO_MASK 0xFFFF
static void
gen9_mfc_avc_pipeline_slice_programing(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context,
int slice_index,
struct intel_batchbuffer *slice_batch)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
struct gen6_vme_context *vme_context = encoder_context->vme_context;
VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
VAEncPictureParameterBufferH264 *pPicParameter = (VAEncPictureParameterBufferH264 *)encode_state->pic_param_ext->buffer;
VAEncSliceParameterBufferH264 *pSliceParameter = (VAEncSliceParameterBufferH264 *)encode_state->slice_params_ext[slice_index]->buffer;
unsigned int *msg = NULL, offset = 0;
unsigned char *msg_ptr = NULL;
int width_in_mbs = (mfc_context->surface_state.width + 15) / 16;
int height_in_mbs = (mfc_context->surface_state.height + 15) / 16;
int last_slice = (pSliceParameter->macroblock_address + pSliceParameter->num_macroblocks) == (width_in_mbs * height_in_mbs);
int i,x,y;
int qp = pPicParameter->pic_init_qp + pSliceParameter->slice_qp_delta;
unsigned int rate_control_mode = encoder_context->rate_control_mode;
unsigned int tail_data[] = { 0x0, 0x0 };
int slice_type = intel_avc_enc_slice_type_fixup(pSliceParameter->slice_type);
int is_intra = slice_type == SLICE_TYPE_I;
int qp_slice;
qp_slice = qp;
if (rate_control_mode == VA_RC_CBR) {
qp = mfc_context->bit_rate_control_context[slice_type].QpPrimeY;
if (encode_state->slice_header_index[slice_index] == 0) {
pSliceParameter->slice_qp_delta = qp - pPicParameter->pic_init_qp;
qp_slice = qp;
}
}
/* only support for 8-bit pixel bit-depth */
assert(pSequenceParameter->bit_depth_luma_minus8 == 0);
assert(pSequenceParameter->bit_depth_chroma_minus8 == 0);
assert(pPicParameter->pic_init_qp >= 0 && pPicParameter->pic_init_qp < 52);
assert(qp >= 0 && qp < 52);
gen9_mfc_avc_slice_state(ctx,
pPicParameter,
pSliceParameter,
encode_state, encoder_context,
(rate_control_mode == VA_RC_CBR), qp_slice, slice_batch);
if ( slice_index == 0)
intel_mfc_avc_pipeline_header_programing(ctx, encode_state, encoder_context, slice_batch);
intel_avc_slice_insert_packed_data(ctx, encode_state, encoder_context, slice_index, slice_batch);
dri_bo_map(vme_context->vme_output.bo , 1);
msg_ptr = (unsigned char *)vme_context->vme_output.bo->virtual;
if (is_intra) {
msg = (unsigned int *) (msg_ptr + pSliceParameter->macroblock_address * vme_context->vme_output.size_block);
} else {
msg = (unsigned int *) (msg_ptr + pSliceParameter->macroblock_address * vme_context->vme_output.size_block);
}
for (i = pSliceParameter->macroblock_address;
i < pSliceParameter->macroblock_address + pSliceParameter->num_macroblocks; i++) {
int last_mb = (i == (pSliceParameter->macroblock_address + pSliceParameter->num_macroblocks - 1) );
x = i % width_in_mbs;
y = i / width_in_mbs;
msg = (unsigned int *) (msg_ptr + i * vme_context->vme_output.size_block);
if (is_intra) {
assert(msg);
gen9_mfc_avc_pak_object_intra(ctx, x, y, last_mb, qp, msg, encoder_context, 0, 0, slice_batch);
} else {
int inter_rdo, intra_rdo;
inter_rdo = msg[AVC_INTER_RDO_OFFSET] & AVC_RDO_MASK;
intra_rdo = msg[AVC_INTRA_RDO_OFFSET] & AVC_RDO_MASK;
offset = i * vme_context->vme_output.size_block + AVC_INTER_MV_OFFSET;
if (intra_rdo < inter_rdo) {
gen9_mfc_avc_pak_object_intra(ctx, x, y, last_mb, qp, msg, encoder_context, 0, 0, slice_batch);
} else {
msg += AVC_INTER_MSG_OFFSET;
gen9_mfc_avc_pak_object_inter(ctx, x, y, last_mb, qp, msg, offset, encoder_context, 0, 0, pSliceParameter->slice_type, slice_batch);
}
}
}
dri_bo_unmap(vme_context->vme_output.bo);
if ( last_slice ) {
mfc_context->insert_object(ctx, encoder_context,
tail_data, 2, 8,
2, 1, 1, 0, slice_batch);
} else {
mfc_context->insert_object(ctx, encoder_context,
tail_data, 1, 8,
1, 1, 1, 0, slice_batch);
}
}
static dri_bo *
gen9_mfc_avc_software_batchbuffer(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
struct intel_batchbuffer *batch;
dri_bo *batch_bo;
int i;
batch = mfc_context->aux_batchbuffer;
batch_bo = batch->buffer;
for (i = 0; i < encode_state->num_slice_params_ext; i++) {
gen9_mfc_avc_pipeline_slice_programing(ctx, encode_state, encoder_context, i, batch);
}
intel_batchbuffer_align(batch, 8);
BEGIN_BCS_BATCH(batch, 2);
OUT_BCS_BATCH(batch, 0);
OUT_BCS_BATCH(batch, MI_BATCH_BUFFER_END);
ADVANCE_BCS_BATCH(batch);
dri_bo_reference(batch_bo);
intel_batchbuffer_free(batch);
mfc_context->aux_batchbuffer = NULL;
return batch_bo;
}
#else
static void
gen9_mfc_batchbuffer_surfaces_input(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_vme_context *vme_context = encoder_context->vme_context;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
assert(vme_context->vme_output.bo);
mfc_context->buffer_suface_setup(ctx,
&mfc_context->gpe_context,
&vme_context->vme_output,
BINDING_TABLE_OFFSET(BIND_IDX_VME_OUTPUT),
SURFACE_STATE_OFFSET(BIND_IDX_VME_OUTPUT));
assert(mfc_context->aux_batchbuffer_surface.bo);
mfc_context->buffer_suface_setup(ctx,
&mfc_context->gpe_context,
&mfc_context->aux_batchbuffer_surface,
BINDING_TABLE_OFFSET(BIND_IDX_MFC_SLICE_HEADER),
SURFACE_STATE_OFFSET(BIND_IDX_MFC_SLICE_HEADER));
}
static void
gen9_mfc_batchbuffer_surfaces_output(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct i965_driver_data *i965 = i965_driver_data(ctx);
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
int width_in_mbs = pSequenceParameter->picture_width_in_mbs;
int height_in_mbs = pSequenceParameter->picture_height_in_mbs;
mfc_context->mfc_batchbuffer_surface.num_blocks = width_in_mbs * height_in_mbs + encode_state->num_slice_params_ext * 8 + 1;
mfc_context->mfc_batchbuffer_surface.size_block = 16 * CMD_LEN_IN_OWORD; /* 3 OWORDs */
mfc_context->mfc_batchbuffer_surface.pitch = 16;
mfc_context->mfc_batchbuffer_surface.bo = dri_bo_alloc(i965->intel.bufmgr,
"MFC batchbuffer",
mfc_context->mfc_batchbuffer_surface.num_blocks * mfc_context->mfc_batchbuffer_surface.size_block,
0x1000);
mfc_context->buffer_suface_setup(ctx,
&mfc_context->gpe_context,
&mfc_context->mfc_batchbuffer_surface,
BINDING_TABLE_OFFSET(BIND_IDX_MFC_BATCHBUFFER),
SURFACE_STATE_OFFSET(BIND_IDX_MFC_BATCHBUFFER));
}
static void
gen9_mfc_batchbuffer_surfaces_setup(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
gen9_mfc_batchbuffer_surfaces_input(ctx, encode_state, encoder_context);
gen9_mfc_batchbuffer_surfaces_output(ctx, encode_state, encoder_context);
}
static void
gen9_mfc_batchbuffer_idrt_setup(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
struct gen6_interface_descriptor_data *desc;
int i;
dri_bo *bo;
bo = mfc_context->gpe_context.idrt.bo;
dri_bo_map(bo, 1);
assert(bo->virtual);
desc = bo->virtual;
for (i = 0; i < mfc_context->gpe_context.num_kernels; i++) {
struct i965_kernel *kernel;
kernel = &mfc_context->gpe_context.kernels[i];
assert(sizeof(*desc) == 32);
/*Setup the descritor table*/
memset(desc, 0, sizeof(*desc));
desc->desc0.kernel_start_pointer = (kernel->bo->offset >> 6);
desc->desc2.sampler_count = 0;
desc->desc2.sampler_state_pointer = 0;
desc->desc3.binding_table_entry_count = 2;
desc->desc3.binding_table_pointer = (BINDING_TABLE_OFFSET(0) >> 5);
desc->desc4.constant_urb_entry_read_offset = 0;
desc->desc4.constant_urb_entry_read_length = 4;
/*kernel start*/
dri_bo_emit_reloc(bo,
I915_GEM_DOMAIN_INSTRUCTION, 0,
0,
i * sizeof(*desc) + offsetof(struct gen6_interface_descriptor_data, desc0),
kernel->bo);
desc++;
}
dri_bo_unmap(bo);
}
static void
gen9_mfc_batchbuffer_constant_setup(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
(void)mfc_context;
}
static void
gen9_mfc_batchbuffer_emit_object_command(struct intel_batchbuffer *batch,
int index,
int head_offset,
int batchbuffer_offset,
int head_size,
int tail_size,
int number_mb_cmds,
int first_object,
int last_object,
int last_slice,
int mb_x,
int mb_y,
int width_in_mbs,
int qp)
{
BEGIN_BATCH(batch, 12);
OUT_BATCH(batch, CMD_MEDIA_OBJECT | (12 - 2));
OUT_BATCH(batch, index);
OUT_BATCH(batch, 0);
OUT_BATCH(batch, 0);
OUT_BATCH(batch, 0);
OUT_BATCH(batch, 0);
/*inline data */
OUT_BATCH(batch, head_offset);
OUT_BATCH(batch, batchbuffer_offset);
OUT_BATCH(batch,
head_size << 16 |
tail_size);
OUT_BATCH(batch,
number_mb_cmds << 16 |
first_object << 2 |
last_object << 1 |
last_slice);
OUT_BATCH(batch,
mb_y << 8 |
mb_x);
OUT_BATCH(batch,
qp << 16 |
width_in_mbs);
ADVANCE_BATCH(batch);
}
static void
gen9_mfc_avc_batchbuffer_slice_command(VADriverContextP ctx,
struct intel_encoder_context *encoder_context,
VAEncSliceParameterBufferH264 *slice_param,
int head_offset,
unsigned short head_size,
unsigned short tail_size,
int batchbuffer_offset,
int qp,
int last_slice)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
int width_in_mbs = (mfc_context->surface_state.width + 15) / 16;
int total_mbs = slice_param->num_macroblocks;
int number_mb_cmds = 128;
int starting_mb = 0;
int last_object = 0;
int first_object = 1;
int i;
int mb_x, mb_y;
int index = (slice_param->slice_type == SLICE_TYPE_I) ? MFC_BATCHBUFFER_AVC_INTRA : MFC_BATCHBUFFER_AVC_INTER;
for (i = 0; i < total_mbs / number_mb_cmds; i++) {
last_object = (total_mbs - starting_mb) == number_mb_cmds;
mb_x = (slice_param->macroblock_address + starting_mb) % width_in_mbs;
mb_y = (slice_param->macroblock_address + starting_mb) / width_in_mbs;
assert(mb_x <= 255 && mb_y <= 255);
starting_mb += number_mb_cmds;
gen9_mfc_batchbuffer_emit_object_command(batch,
index,
head_offset,
batchbuffer_offset,
head_size,
tail_size,
number_mb_cmds,
first_object,
last_object,
last_slice,
mb_x,
mb_y,
width_in_mbs,
qp);
if (first_object) {
head_offset += head_size;
batchbuffer_offset += head_size;
}
if (last_object) {
head_offset += tail_size;
batchbuffer_offset += tail_size;
}
batchbuffer_offset += number_mb_cmds * CMD_LEN_IN_OWORD;
first_object = 0;
}
if (!last_object) {
last_object = 1;
number_mb_cmds = total_mbs % number_mb_cmds;
mb_x = (slice_param->macroblock_address + starting_mb) % width_in_mbs;
mb_y = (slice_param->macroblock_address + starting_mb) / width_in_mbs;
assert(mb_x <= 255 && mb_y <= 255);
starting_mb += number_mb_cmds;
gen9_mfc_batchbuffer_emit_object_command(batch,
index,
head_offset,
batchbuffer_offset,
head_size,
tail_size,
number_mb_cmds,
first_object,
last_object,
last_slice,
mb_x,
mb_y,
width_in_mbs,
qp);
}
}
/*
* return size in Owords (16bytes)
*/
static int
gen9_mfc_avc_batchbuffer_slice(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context,
int slice_index,
int batchbuffer_offset)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
struct intel_batchbuffer *slice_batch = mfc_context->aux_batchbuffer;
VAEncSequenceParameterBufferH264 *pSequenceParameter = (VAEncSequenceParameterBufferH264 *)encode_state->seq_param_ext->buffer;
VAEncPictureParameterBufferH264 *pPicParameter = (VAEncPictureParameterBufferH264 *)encode_state->pic_param_ext->buffer;
VAEncSliceParameterBufferH264 *pSliceParameter = (VAEncSliceParameterBufferH264 *)encode_state->slice_params_ext[slice_index]->buffer;
int width_in_mbs = (mfc_context->surface_state.width + 15) / 16;
int height_in_mbs = (mfc_context->surface_state.height + 15) / 16;
int last_slice = (pSliceParameter->macroblock_address + pSliceParameter->num_macroblocks) == (width_in_mbs * height_in_mbs);
int qp = pPicParameter->pic_init_qp + pSliceParameter->slice_qp_delta;
unsigned int rate_control_mode = encoder_context->rate_control_mode;
unsigned int tail_data[] = { 0x0, 0x0 };
long head_offset;
int old_used = intel_batchbuffer_used_size(slice_batch), used;
unsigned short head_size, tail_size;
int slice_type = intel_avc_enc_slice_type_fixup(pSliceParameter->slice_type);
int qp_slice;
qp_slice = qp;
if (rate_control_mode == VA_RC_CBR) {
qp = mfc_context->bit_rate_control_context[slice_type].QpPrimeY;
if (encode_state->slice_header_index[slice_index] == 0) {
pSliceParameter->slice_qp_delta = qp - pPicParameter->pic_init_qp;
qp_slice = qp;
}
}
/* only support for 8-bit pixel bit-depth */
assert(pSequenceParameter->bit_depth_luma_minus8 == 0);
assert(pSequenceParameter->bit_depth_chroma_minus8 == 0);
assert(pPicParameter->pic_init_qp >= 0 && pPicParameter->pic_init_qp < 52);
assert(qp >= 0 && qp < 52);
head_offset = old_used / 16;
gen9_mfc_avc_slice_state(ctx,
pPicParameter,
pSliceParameter,
encode_state,
encoder_context,
(rate_control_mode == VA_RC_CBR),
qp_slice,
slice_batch);
if (slice_index == 0)
intel_mfc_avc_pipeline_header_programing(ctx, encode_state, encoder_context, slice_batch);
intel_avc_slice_insert_packed_data(ctx, encode_state, encoder_context, slice_index, slice_batch);
intel_batchbuffer_align(slice_batch, 16); /* aligned by an Oword */
used = intel_batchbuffer_used_size(slice_batch);
head_size = (used - old_used) / 16;
old_used = used;
/* tail */
if (last_slice) {
mfc_context->insert_object(ctx,
encoder_context,
tail_data,
2,
8,
2,
1,
1,
0,
slice_batch);
} else {
mfc_context->insert_object(ctx,
encoder_context,
tail_data,
1,
8,
1,
1,
1,
0,
slice_batch);
}
intel_batchbuffer_align(slice_batch, 16); /* aligned by an Oword */
used = intel_batchbuffer_used_size(slice_batch);
tail_size = (used - old_used) / 16;
gen9_mfc_avc_batchbuffer_slice_command(ctx,
encoder_context,
pSliceParameter,
head_offset,
head_size,
tail_size,
batchbuffer_offset,
qp,
last_slice);
return head_size + tail_size + pSliceParameter->num_macroblocks * CMD_LEN_IN_OWORD;
}
static void
gen9_mfc_avc_batchbuffer_pipeline(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
struct intel_batchbuffer *batch = encoder_context->base.batch;
int i, size, offset = 0;
intel_batchbuffer_start_atomic(batch, 0x4000);
gen6_gpe_pipeline_setup(ctx, &mfc_context->gpe_context, batch);
for ( i = 0; i < encode_state->num_slice_params_ext; i++) {
size = gen9_mfc_avc_batchbuffer_slice(ctx, encode_state, encoder_context, i, offset);
offset += size;
}
intel_batchbuffer_end_atomic(batch);
intel_batchbuffer_flush(batch);
}
static void
gen9_mfc_build_avc_batchbuffer(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
gen9_mfc_batchbuffer_surfaces_setup(ctx, encode_state, encoder_context);
gen9_mfc_batchbuffer_idrt_setup(ctx, encode_state, encoder_context);
gen9_mfc_batchbuffer_constant_setup(ctx, encode_state, encoder_context);
gen9_mfc_avc_batchbuffer_pipeline(ctx, encode_state, encoder_context);
}
static dri_bo *
gen9_mfc_avc_hardware_batchbuffer(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
gen9_mfc_build_avc_batchbuffer(ctx, encode_state, encoder_context);
dri_bo_reference(mfc_context->mfc_batchbuffer_surface.bo);
return mfc_context->mfc_batchbuffer_surface.bo;
}
#endif
static void
gen9_mfc_avc_pipeline_programing(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct intel_batchbuffer *batch = encoder_context->base.batch;
dri_bo *slice_batch_bo;
if ( intel_mfc_interlace_check(ctx, encode_state, encoder_context) ) {
fprintf(stderr, "Current VA driver don't support interlace mode!\n");
assert(0);
return;
}
#ifdef MFC_SOFTWARE_HASWELL
slice_batch_bo = gen9_mfc_avc_software_batchbuffer(ctx, encode_state, encoder_context);
#else
slice_batch_bo = gen9_mfc_avc_hardware_batchbuffer(ctx, encode_state, encoder_context);
#endif
// begin programing
intel_batchbuffer_start_atomic_bcs(batch, 0x4000);
intel_batchbuffer_emit_mi_flush(batch);
// picture level programing
gen9_mfc_avc_pipeline_picture_programing(ctx, encode_state, encoder_context);
BEGIN_BCS_BATCH(batch, 3);
OUT_BCS_BATCH(batch, MI_BATCH_BUFFER_START | (1 << 8) | (1 << 0));
OUT_BCS_RELOC(batch,
slice_batch_bo,
I915_GEM_DOMAIN_COMMAND, 0,
0);
OUT_BCS_BATCH(batch, 0);
ADVANCE_BCS_BATCH(batch);
// end programing
intel_batchbuffer_end_atomic(batch);
dri_bo_unreference(slice_batch_bo);
}
static VAStatus
gen9_mfc_avc_encode_picture(VADriverContextP ctx,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = encoder_context->mfc_context;
unsigned int rate_control_mode = encoder_context->rate_control_mode;
int current_frame_bits_size;
int sts;
for (;;) {
gen9_mfc_init(ctx, encode_state, encoder_context);
intel_mfc_avc_prepare(ctx, encode_state, encoder_context);
/*Programing bcs pipeline*/
gen9_mfc_avc_pipeline_programing(ctx, encode_state, encoder_context); //filling the pipeline
gen9_mfc_run(ctx, encode_state, encoder_context);
if (rate_control_mode == VA_RC_CBR /*|| rate_control_mode == VA_RC_VBR*/) {
gen9_mfc_stop(ctx, encode_state, encoder_context, &current_frame_bits_size);
sts = intel_mfc_brc_postpack(encode_state, mfc_context, current_frame_bits_size);
if (sts == BRC_NO_HRD_VIOLATION) {
intel_mfc_hrd_context_update(encode_state, mfc_context);
break;
}
else if (sts == BRC_OVERFLOW_WITH_MIN_QP || sts == BRC_UNDERFLOW_WITH_MAX_QP) {
if (!mfc_context->hrd.violation_noted) {
fprintf(stderr, "Unrepairable %s!\n", (sts == BRC_OVERFLOW_WITH_MIN_QP)? "overflow": "underflow");
mfc_context->hrd.violation_noted = 1;
}
return VA_STATUS_SUCCESS;
}
} else {
break;
}
}
return VA_STATUS_SUCCESS;
}
static void
gen9_mfc_context_destroy(void *context)
{
struct gen6_mfc_context *mfc_context = context;
int i;
dri_bo_unreference(mfc_context->post_deblocking_output.bo);
mfc_context->post_deblocking_output.bo = NULL;
dri_bo_unreference(mfc_context->pre_deblocking_output.bo);
mfc_context->pre_deblocking_output.bo = NULL;
dri_bo_unreference(mfc_context->uncompressed_picture_source.bo);
mfc_context->uncompressed_picture_source.bo = NULL;
dri_bo_unreference(mfc_context->mfc_indirect_pak_bse_object.bo);
mfc_context->mfc_indirect_pak_bse_object.bo = NULL;
for (i = 0; i < NUM_MFC_DMV_BUFFERS; i++){
dri_bo_unreference(mfc_context->direct_mv_buffers[i].bo);
mfc_context->direct_mv_buffers[i].bo = NULL;
}
dri_bo_unreference(mfc_context->intra_row_store_scratch_buffer.bo);
mfc_context->intra_row_store_scratch_buffer.bo = NULL;
dri_bo_unreference(mfc_context->macroblock_status_buffer.bo);
mfc_context->macroblock_status_buffer.bo = NULL;
dri_bo_unreference(mfc_context->deblocking_filter_row_store_scratch_buffer.bo);
mfc_context->deblocking_filter_row_store_scratch_buffer.bo = NULL;
dri_bo_unreference(mfc_context->bsd_mpc_row_store_scratch_buffer.bo);
mfc_context->bsd_mpc_row_store_scratch_buffer.bo = NULL;
for (i = 0; i < MAX_MFC_REFERENCE_SURFACES; i++){
dri_bo_unreference(mfc_context->reference_surfaces[i].bo);
mfc_context->reference_surfaces[i].bo = NULL;
}
i965_gpe_context_destroy(&mfc_context->gpe_context);
dri_bo_unreference(mfc_context->mfc_batchbuffer_surface.bo);
mfc_context->mfc_batchbuffer_surface.bo = NULL;
dri_bo_unreference(mfc_context->aux_batchbuffer_surface.bo);
mfc_context->aux_batchbuffer_surface.bo = NULL;
if (mfc_context->aux_batchbuffer)
intel_batchbuffer_free(mfc_context->aux_batchbuffer);
mfc_context->aux_batchbuffer = NULL;
free(mfc_context);
}
static VAStatus gen9_mfc_pipeline(VADriverContextP ctx,
VAProfile profile,
struct encode_state *encode_state,
struct intel_encoder_context *encoder_context)
{
VAStatus vaStatus;
switch (profile) {
case VAProfileH264ConstrainedBaseline:
case VAProfileH264Main:
case VAProfileH264High:
case VAProfileH264MultiviewHigh:
case VAProfileH264StereoHigh:
vaStatus = gen9_mfc_avc_encode_picture(ctx, encode_state, encoder_context);
break;
default:
vaStatus = VA_STATUS_ERROR_UNSUPPORTED_PROFILE;
break;
}
return vaStatus;
}
Bool gen9_mfc_context_init(VADriverContextP ctx, struct intel_encoder_context *encoder_context)
{
struct gen6_mfc_context *mfc_context = NULL;
#if MFC_SOFTWARE_HASWELL
if ((encoder_context->codec == CODEC_H264) ||
(encoder_context->codec == CODEC_H264_MVC)) {
return gen8_mfc_context_init(ctx, encoder_context);
}
#endif
if ((encoder_context->codec == CODEC_VP8) ||
(encoder_context->codec == CODEC_MPEG2))
return gen8_mfc_context_init(ctx, encoder_context);
mfc_context = calloc(1, sizeof(struct gen6_mfc_context));
assert(mfc_context);
mfc_context->gpe_context.surface_state_binding_table.length = (SURFACE_STATE_PADDED_SIZE + sizeof(unsigned int)) * MAX_MEDIA_SURFACES_GEN6;
mfc_context->gpe_context.idrt.max_entries = MAX_GPE_KERNELS;
mfc_context->gpe_context.idrt.entry_size = sizeof(struct gen6_interface_descriptor_data);
mfc_context->gpe_context.curbe.length = 32 * 4;
mfc_context->gpe_context.vfe_state.max_num_threads = 60 - 1;
mfc_context->gpe_context.vfe_state.num_urb_entries = 16;
mfc_context->gpe_context.vfe_state.gpgpu_mode = 0;
mfc_context->gpe_context.vfe_state.urb_entry_size = 59 - 1;
mfc_context->gpe_context.vfe_state.curbe_allocation_size = 37 - 1;
i965_gpe_load_kernels(ctx,
&mfc_context->gpe_context,
gen9_mfc_kernels,
NUM_MFC_KERNEL);
mfc_context->pipe_mode_select = gen9_mfc_pipe_mode_select;
mfc_context->set_surface_state = gen9_mfc_surface_state;
mfc_context->ind_obj_base_addr_state = gen9_mfc_ind_obj_base_addr_state;
mfc_context->avc_img_state = gen9_mfc_avc_img_state;
mfc_context->avc_qm_state = gen9_mfc_avc_qm_state;
mfc_context->avc_fqm_state = gen9_mfc_avc_fqm_state;
mfc_context->insert_object = gen9_mfc_avc_insert_object;
mfc_context->buffer_suface_setup = gen8_gpe_buffer_suface_setup;
encoder_context->mfc_context = mfc_context;
encoder_context->mfc_context_destroy = gen9_mfc_context_destroy;
encoder_context->mfc_pipeline = gen9_mfc_pipeline;
encoder_context->mfc_brc_prepare = intel_mfc_brc_prepare;
return True;
}