forked from KolibriOS/kolibrios
461dfb6196
git-svn-id: svn://kolibrios.org@5367 a494cfbc-eb01-0410-851d-a64ba20cac60
13639 lines
391 KiB
C
13639 lines
391 KiB
C
/*
|
|
* Copyright © 2006-2007 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*/
|
|
|
|
#include <linux/dmi.h>
|
|
#include <linux/module.h>
|
|
//#include <linux/input.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vgaarb.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/drmP.h>
|
|
#include "intel_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include <drm/drm_dp_helper.h>
|
|
#include <drm/drm_crtc_helper.h>
|
|
#include <drm/drm_plane_helper.h>
|
|
#include <drm/drm_rect.h>
|
|
#include <linux/dma_remapping.h>
|
|
|
|
/* Primary plane formats supported by all gen */
|
|
#define COMMON_PRIMARY_FORMATS \
|
|
DRM_FORMAT_C8, \
|
|
DRM_FORMAT_RGB565, \
|
|
DRM_FORMAT_XRGB8888, \
|
|
DRM_FORMAT_ARGB8888
|
|
|
|
/* Primary plane formats for gen <= 3 */
|
|
static const uint32_t intel_primary_formats_gen2[] = {
|
|
COMMON_PRIMARY_FORMATS,
|
|
DRM_FORMAT_XRGB1555,
|
|
DRM_FORMAT_ARGB1555,
|
|
};
|
|
|
|
/* Primary plane formats for gen >= 4 */
|
|
static const uint32_t intel_primary_formats_gen4[] = {
|
|
COMMON_PRIMARY_FORMATS, \
|
|
DRM_FORMAT_XBGR8888,
|
|
DRM_FORMAT_ABGR8888,
|
|
DRM_FORMAT_XRGB2101010,
|
|
DRM_FORMAT_ARGB2101010,
|
|
DRM_FORMAT_XBGR2101010,
|
|
DRM_FORMAT_ABGR2101010,
|
|
};
|
|
|
|
/* Cursor formats */
|
|
static const uint32_t intel_cursor_formats[] = {
|
|
DRM_FORMAT_ARGB8888,
|
|
};
|
|
|
|
void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
|
|
|
|
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config);
|
|
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config);
|
|
|
|
static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
|
|
int x, int y, struct drm_framebuffer *old_fb);
|
|
static int intel_framebuffer_init(struct drm_device *dev,
|
|
struct intel_framebuffer *ifb,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj);
|
|
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
|
|
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
|
|
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n,
|
|
struct intel_link_m_n *m2_n2);
|
|
static void ironlake_set_pipeconf(struct drm_crtc *crtc);
|
|
static void haswell_set_pipeconf(struct drm_crtc *crtc);
|
|
static void intel_set_pipe_csc(struct drm_crtc *crtc);
|
|
static void vlv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_config *pipe_config);
|
|
static void chv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_config *pipe_config);
|
|
|
|
static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
|
|
{
|
|
if (!connector->mst_port)
|
|
return connector->encoder;
|
|
else
|
|
return &connector->mst_port->mst_encoders[pipe]->base;
|
|
}
|
|
|
|
typedef struct {
|
|
int min, max;
|
|
} intel_range_t;
|
|
|
|
typedef struct {
|
|
int dot_limit;
|
|
int p2_slow, p2_fast;
|
|
} intel_p2_t;
|
|
|
|
typedef struct intel_limit intel_limit_t;
|
|
struct intel_limit {
|
|
intel_range_t dot, vco, n, m, m1, m2, p, p1;
|
|
intel_p2_t p2;
|
|
};
|
|
|
|
int
|
|
intel_pch_rawclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
WARN_ON(!HAS_PCH_SPLIT(dev));
|
|
|
|
return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
|
|
}
|
|
|
|
static inline u32 /* units of 100MHz */
|
|
intel_fdi_link_freq(struct drm_device *dev)
|
|
{
|
|
if (IS_GEN5(dev)) {
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
|
|
} else
|
|
return 27;
|
|
}
|
|
|
|
static const intel_limit_t intel_limits_i8xx_dac = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 908000, .max = 1512000 },
|
|
.n = { .min = 2, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 2, .max = 33 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 4, .p2_fast = 2 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i8xx_dvo = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 908000, .max = 1512000 },
|
|
.n = { .min = 2, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 2, .max = 33 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 4, .p2_fast = 4 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i8xx_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 908000, .max = 1512000 },
|
|
.n = { .min = 2, .max = 16 },
|
|
.m = { .min = 96, .max = 140 },
|
|
.m1 = { .min = 18, .max = 26 },
|
|
.m2 = { .min = 6, .max = 16 },
|
|
.p = { .min = 4, .max = 128 },
|
|
.p1 = { .min = 1, .max = 6 },
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 14, .p2_fast = 7 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i9xx_sdvo = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1400000, .max = 2800000 },
|
|
.n = { .min = 1, .max = 6 },
|
|
.m = { .min = 70, .max = 120 },
|
|
.m1 = { .min = 8, .max = 18 },
|
|
.m2 = { .min = 3, .max = 7 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 200000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i9xx_lvds = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1400000, .max = 2800000 },
|
|
.n = { .min = 1, .max = 6 },
|
|
.m = { .min = 70, .max = 120 },
|
|
.m1 = { .min = 8, .max = 18 },
|
|
.m2 = { .min = 3, .max = 7 },
|
|
.p = { .min = 7, .max = 98 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 112000,
|
|
.p2_slow = 14, .p2_fast = 7 },
|
|
};
|
|
|
|
|
|
static const intel_limit_t intel_limits_g4x_sdvo = {
|
|
.dot = { .min = 25000, .max = 270000 },
|
|
.vco = { .min = 1750000, .max = 3500000},
|
|
.n = { .min = 1, .max = 4 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 10, .max = 30 },
|
|
.p1 = { .min = 1, .max = 3},
|
|
.p2 = { .dot_limit = 270000,
|
|
.p2_slow = 10,
|
|
.p2_fast = 10
|
|
},
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_hdmi = {
|
|
.dot = { .min = 22000, .max = 400000 },
|
|
.vco = { .min = 1750000, .max = 3500000},
|
|
.n = { .min = 1, .max = 4 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 16, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8},
|
|
.p2 = { .dot_limit = 165000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
|
|
.dot = { .min = 20000, .max = 115000 },
|
|
.vco = { .min = 1750000, .max = 3500000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 14, .p2_fast = 14
|
|
},
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
|
|
.dot = { .min = 80000, .max = 224000 },
|
|
.vco = { .min = 1750000, .max = 3500000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 104, .max = 138 },
|
|
.m1 = { .min = 17, .max = 23 },
|
|
.m2 = { .min = 5, .max = 11 },
|
|
.p = { .min = 14, .max = 42 },
|
|
.p1 = { .min = 2, .max = 6 },
|
|
.p2 = { .dot_limit = 0,
|
|
.p2_slow = 7, .p2_fast = 7
|
|
},
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_pineview_sdvo = {
|
|
.dot = { .min = 20000, .max = 400000},
|
|
.vco = { .min = 1700000, .max = 3500000 },
|
|
/* Pineview's Ncounter is a ring counter */
|
|
.n = { .min = 3, .max = 6 },
|
|
.m = { .min = 2, .max = 256 },
|
|
/* Pineview only has one combined m divider, which we treat as m2. */
|
|
.m1 = { .min = 0, .max = 0 },
|
|
.m2 = { .min = 0, .max = 254 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 200000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_pineview_lvds = {
|
|
.dot = { .min = 20000, .max = 400000 },
|
|
.vco = { .min = 1700000, .max = 3500000 },
|
|
.n = { .min = 3, .max = 6 },
|
|
.m = { .min = 2, .max = 256 },
|
|
.m1 = { .min = 0, .max = 0 },
|
|
.m2 = { .min = 0, .max = 254 },
|
|
.p = { .min = 7, .max = 112 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 112000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
};
|
|
|
|
/* Ironlake / Sandybridge
|
|
*
|
|
* We calculate clock using (register_value + 2) for N/M1/M2, so here
|
|
* the range value for them is (actual_value - 2).
|
|
*/
|
|
static const intel_limit_t intel_limits_ironlake_dac = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 5 },
|
|
.m = { .min = 79, .max = 127 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 5, .max = 80 },
|
|
.p1 = { .min = 1, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 10, .p2_fast = 5 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_single_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 118 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 127 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 14, .max = 56 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 7, .p2_fast = 7 },
|
|
};
|
|
|
|
/* LVDS 100mhz refclk limits. */
|
|
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 2 },
|
|
.m = { .min = 79, .max = 126 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 28, .max = 112 },
|
|
.p1 = { .min = 2, .max = 8 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 14, .p2_fast = 14 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
|
|
.dot = { .min = 25000, .max = 350000 },
|
|
.vco = { .min = 1760000, .max = 3510000 },
|
|
.n = { .min = 1, .max = 3 },
|
|
.m = { .min = 79, .max = 126 },
|
|
.m1 = { .min = 12, .max = 22 },
|
|
.m2 = { .min = 5, .max = 9 },
|
|
.p = { .min = 14, .max = 42 },
|
|
.p1 = { .min = 2, .max = 6 },
|
|
.p2 = { .dot_limit = 225000,
|
|
.p2_slow = 7, .p2_fast = 7 },
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_vlv = {
|
|
/*
|
|
* These are the data rate limits (measured in fast clocks)
|
|
* since those are the strictest limits we have. The fast
|
|
* clock and actual rate limits are more relaxed, so checking
|
|
* them would make no difference.
|
|
*/
|
|
.dot = { .min = 25000 * 5, .max = 270000 * 5 },
|
|
.vco = { .min = 4000000, .max = 6000000 },
|
|
.n = { .min = 1, .max = 7 },
|
|
.m1 = { .min = 2, .max = 3 },
|
|
.m2 = { .min = 11, .max = 156 },
|
|
.p1 = { .min = 2, .max = 3 },
|
|
.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_chv = {
|
|
/*
|
|
* These are the data rate limits (measured in fast clocks)
|
|
* since those are the strictest limits we have. The fast
|
|
* clock and actual rate limits are more relaxed, so checking
|
|
* them would make no difference.
|
|
*/
|
|
.dot = { .min = 25000 * 5, .max = 540000 * 5},
|
|
.vco = { .min = 4860000, .max = 6700000 },
|
|
.n = { .min = 1, .max = 1 },
|
|
.m1 = { .min = 2, .max = 2 },
|
|
.m2 = { .min = 24 << 22, .max = 175 << 22 },
|
|
.p1 = { .min = 2, .max = 4 },
|
|
.p2 = { .p2_slow = 1, .p2_fast = 14 },
|
|
};
|
|
|
|
static void vlv_clock(int refclk, intel_clock_t *clock)
|
|
{
|
|
clock->m = clock->m1 * clock->m2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n == 0 || clock->p == 0))
|
|
return;
|
|
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
}
|
|
|
|
/**
|
|
* Returns whether any output on the specified pipe is of the specified type
|
|
*/
|
|
bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
|
|
if (encoder->type == type)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns whether any output on the specified pipe will have the specified
|
|
* type after a staged modeset is complete, i.e., the same as
|
|
* intel_pipe_has_type() but looking at encoder->new_crtc instead of
|
|
* encoder->crtc.
|
|
*/
|
|
static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_intel_encoder(dev, encoder)
|
|
if (encoder->new_crtc == crtc && encoder->type == type)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
|
|
int refclk)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
const intel_limit_t *limit;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_is_dual_link_lvds(dev)) {
|
|
if (refclk == 100000)
|
|
limit = &intel_limits_ironlake_dual_lvds_100m;
|
|
else
|
|
limit = &intel_limits_ironlake_dual_lvds;
|
|
} else {
|
|
if (refclk == 100000)
|
|
limit = &intel_limits_ironlake_single_lvds_100m;
|
|
else
|
|
limit = &intel_limits_ironlake_single_lvds;
|
|
}
|
|
} else
|
|
limit = &intel_limits_ironlake_dac;
|
|
|
|
return limit;
|
|
}
|
|
|
|
static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
const intel_limit_t *limit;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_is_dual_link_lvds(dev))
|
|
limit = &intel_limits_g4x_dual_channel_lvds;
|
|
else
|
|
limit = &intel_limits_g4x_single_channel_lvds;
|
|
} else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
|
|
intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
|
|
limit = &intel_limits_g4x_hdmi;
|
|
} else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
|
|
limit = &intel_limits_g4x_sdvo;
|
|
} else /* The option is for other outputs */
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
|
|
return limit;
|
|
}
|
|
|
|
static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
const intel_limit_t *limit;
|
|
|
|
if (HAS_PCH_SPLIT(dev))
|
|
limit = intel_ironlake_limit(crtc, refclk);
|
|
else if (IS_G4X(dev)) {
|
|
limit = intel_g4x_limit(crtc);
|
|
} else if (IS_PINEVIEW(dev)) {
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_pineview_lvds;
|
|
else
|
|
limit = &intel_limits_pineview_sdvo;
|
|
} else if (IS_CHERRYVIEW(dev)) {
|
|
limit = &intel_limits_chv;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
limit = &intel_limits_vlv;
|
|
} else if (!IS_GEN2(dev)) {
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_i9xx_lvds;
|
|
else
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
} else {
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_i8xx_lvds;
|
|
else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
|
|
limit = &intel_limits_i8xx_dvo;
|
|
else
|
|
limit = &intel_limits_i8xx_dac;
|
|
}
|
|
return limit;
|
|
}
|
|
|
|
/* m1 is reserved as 0 in Pineview, n is a ring counter */
|
|
static void pineview_clock(int refclk, intel_clock_t *clock)
|
|
{
|
|
clock->m = clock->m2 + 2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n == 0 || clock->p == 0))
|
|
return;
|
|
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
}
|
|
|
|
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
|
|
{
|
|
return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
|
|
}
|
|
|
|
static void i9xx_clock(int refclk, intel_clock_t *clock)
|
|
{
|
|
clock->m = i9xx_dpll_compute_m(clock);
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
|
|
return;
|
|
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
}
|
|
|
|
static void chv_clock(int refclk, intel_clock_t *clock)
|
|
{
|
|
clock->m = clock->m1 * clock->m2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
if (WARN_ON(clock->n == 0 || clock->p == 0))
|
|
return;
|
|
clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
|
|
clock->n << 22);
|
|
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
|
|
}
|
|
|
|
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
|
|
/**
|
|
* Returns whether the given set of divisors are valid for a given refclk with
|
|
* the given connectors.
|
|
*/
|
|
|
|
static bool intel_PLL_is_valid(struct drm_device *dev,
|
|
const intel_limit_t *limit,
|
|
const intel_clock_t *clock)
|
|
{
|
|
if (clock->n < limit->n.min || limit->n.max < clock->n)
|
|
INTELPllInvalid("n out of range\n");
|
|
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
|
|
INTELPllInvalid("p1 out of range\n");
|
|
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
|
|
INTELPllInvalid("m2 out of range\n");
|
|
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
|
|
INTELPllInvalid("m1 out of range\n");
|
|
|
|
if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
|
|
if (clock->m1 <= clock->m2)
|
|
INTELPllInvalid("m1 <= m2\n");
|
|
|
|
if (!IS_VALLEYVIEW(dev)) {
|
|
if (clock->p < limit->p.min || limit->p.max < clock->p)
|
|
INTELPllInvalid("p out of range\n");
|
|
if (clock->m < limit->m.min || limit->m.max < clock->m)
|
|
INTELPllInvalid("m out of range\n");
|
|
}
|
|
|
|
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
|
|
INTELPllInvalid("vco out of range\n");
|
|
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
|
|
* connector, etc., rather than just a single range.
|
|
*/
|
|
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
|
|
INTELPllInvalid("dot out of range\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
intel_clock_t clock;
|
|
int err = target;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
/*
|
|
* For LVDS just rely on its current settings for dual-channel.
|
|
* We haven't figured out how to reliably set up different
|
|
* single/dual channel state, if we even can.
|
|
*/
|
|
if (intel_is_dual_link_lvds(dev))
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
|
|
clock.m1++) {
|
|
for (clock.m2 = limit->m2.min;
|
|
clock.m2 <= limit->m2.max; clock.m2++) {
|
|
if (clock.m2 >= clock.m1)
|
|
break;
|
|
for (clock.n = limit->n.min;
|
|
clock.n <= limit->n.max; clock.n++) {
|
|
for (clock.p1 = limit->p1.min;
|
|
clock.p1 <= limit->p1.max; clock.p1++) {
|
|
int this_err;
|
|
|
|
i9xx_clock(refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
if (match_clock &&
|
|
clock.p != match_clock->p)
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err) {
|
|
*best_clock = clock;
|
|
err = this_err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (err != target);
|
|
}
|
|
|
|
static bool
|
|
pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
intel_clock_t clock;
|
|
int err = target;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
/*
|
|
* For LVDS just rely on its current settings for dual-channel.
|
|
* We haven't figured out how to reliably set up different
|
|
* single/dual channel state, if we even can.
|
|
*/
|
|
if (intel_is_dual_link_lvds(dev))
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
|
|
clock.m1++) {
|
|
for (clock.m2 = limit->m2.min;
|
|
clock.m2 <= limit->m2.max; clock.m2++) {
|
|
for (clock.n = limit->n.min;
|
|
clock.n <= limit->n.max; clock.n++) {
|
|
for (clock.p1 = limit->p1.min;
|
|
clock.p1 <= limit->p1.max; clock.p1++) {
|
|
int this_err;
|
|
|
|
pineview_clock(refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
if (match_clock &&
|
|
clock.p != match_clock->p)
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err) {
|
|
*best_clock = clock;
|
|
err = this_err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (err != target);
|
|
}
|
|
|
|
static bool
|
|
g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
intel_clock_t clock;
|
|
int max_n;
|
|
bool found;
|
|
/* approximately equals target * 0.00585 */
|
|
int err_most = (target >> 8) + (target >> 9);
|
|
found = false;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if (intel_is_dual_link_lvds(dev))
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
max_n = limit->n.max;
|
|
/* based on hardware requirement, prefer smaller n to precision */
|
|
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
|
|
/* based on hardware requirement, prefere larger m1,m2 */
|
|
for (clock.m1 = limit->m1.max;
|
|
clock.m1 >= limit->m1.min; clock.m1--) {
|
|
for (clock.m2 = limit->m2.max;
|
|
clock.m2 >= limit->m2.min; clock.m2--) {
|
|
for (clock.p1 = limit->p1.max;
|
|
clock.p1 >= limit->p1.min; clock.p1--) {
|
|
int this_err;
|
|
|
|
i9xx_clock(refclk, &clock);
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err_most) {
|
|
*best_clock = clock;
|
|
err_most = this_err;
|
|
max_n = clock.n;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static bool
|
|
vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
intel_clock_t clock;
|
|
unsigned int bestppm = 1000000;
|
|
/* min update 19.2 MHz */
|
|
int max_n = min(limit->n.max, refclk / 19200);
|
|
bool found = false;
|
|
|
|
target *= 5; /* fast clock */
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
/* based on hardware requirement, prefer smaller n to precision */
|
|
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
|
|
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
|
|
for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
|
|
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
|
|
clock.p = clock.p1 * clock.p2;
|
|
/* based on hardware requirement, prefer bigger m1,m2 values */
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
|
|
unsigned int ppm, diff;
|
|
|
|
clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
|
|
refclk * clock.m1);
|
|
|
|
vlv_clock(refclk, &clock);
|
|
|
|
if (!intel_PLL_is_valid(dev, limit,
|
|
&clock))
|
|
continue;
|
|
|
|
diff = abs(clock.dot - target);
|
|
ppm = div_u64(1000000ULL * diff, target);
|
|
|
|
if (ppm < 100 && clock.p > best_clock->p) {
|
|
bestppm = 0;
|
|
*best_clock = clock;
|
|
found = true;
|
|
}
|
|
|
|
if (bestppm >= 10 && ppm < bestppm - 10) {
|
|
bestppm = ppm;
|
|
*best_clock = clock;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
static bool
|
|
chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *match_clock,
|
|
intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
intel_clock_t clock;
|
|
uint64_t m2;
|
|
int found = false;
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
|
|
/*
|
|
* Based on hardware doc, the n always set to 1, and m1 always
|
|
* set to 2. If requires to support 200Mhz refclk, we need to
|
|
* revisit this because n may not 1 anymore.
|
|
*/
|
|
clock.n = 1, clock.m1 = 2;
|
|
target *= 5; /* fast clock */
|
|
|
|
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
|
|
for (clock.p2 = limit->p2.p2_fast;
|
|
clock.p2 >= limit->p2.p2_slow;
|
|
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
|
|
|
|
clock.p = clock.p1 * clock.p2;
|
|
|
|
m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
|
|
clock.n) << 22, refclk * clock.m1);
|
|
|
|
if (m2 > INT_MAX/clock.m1)
|
|
continue;
|
|
|
|
clock.m2 = m2;
|
|
|
|
chv_clock(refclk, &clock);
|
|
|
|
if (!intel_PLL_is_valid(dev, limit, &clock))
|
|
continue;
|
|
|
|
/* based on hardware requirement, prefer bigger p
|
|
*/
|
|
if (clock.p > best_clock->p) {
|
|
*best_clock = clock;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
bool intel_crtc_active(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
/* Be paranoid as we can arrive here with only partial
|
|
* state retrieved from the hardware during setup.
|
|
*
|
|
* We can ditch the adjusted_mode.crtc_clock check as soon
|
|
* as Haswell has gained clock readout/fastboot support.
|
|
*
|
|
* We can ditch the crtc->primary->fb check as soon as we can
|
|
* properly reconstruct framebuffers.
|
|
*/
|
|
return intel_crtc->active && crtc->primary->fb &&
|
|
intel_crtc->config.adjusted_mode.crtc_clock;
|
|
}
|
|
|
|
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
return intel_crtc->config.cpu_transcoder;
|
|
}
|
|
|
|
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg = PIPEDSL(pipe);
|
|
u32 line1, line2;
|
|
u32 line_mask;
|
|
|
|
if (IS_GEN2(dev))
|
|
line_mask = DSL_LINEMASK_GEN2;
|
|
else
|
|
line_mask = DSL_LINEMASK_GEN3;
|
|
|
|
line1 = I915_READ(reg) & line_mask;
|
|
mdelay(5);
|
|
line2 = I915_READ(reg) & line_mask;
|
|
|
|
return line1 == line2;
|
|
}
|
|
|
|
/*
|
|
* intel_wait_for_pipe_off - wait for pipe to turn off
|
|
* @crtc: crtc whose pipe to wait for
|
|
*
|
|
* After disabling a pipe, we can't wait for vblank in the usual way,
|
|
* spinning on the vblank interrupt status bit, since we won't actually
|
|
* see an interrupt when the pipe is disabled.
|
|
*
|
|
* On Gen4 and above:
|
|
* wait for the pipe register state bit to turn off
|
|
*
|
|
* Otherwise:
|
|
* wait for the display line value to settle (it usually
|
|
* ends up stopping at the start of the next frame).
|
|
*
|
|
*/
|
|
static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
int reg = PIPECONF(cpu_transcoder);
|
|
|
|
/* Wait for the Pipe State to go off */
|
|
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
|
|
100))
|
|
WARN(1, "pipe_off wait timed out\n");
|
|
} else {
|
|
/* Wait for the display line to settle */
|
|
if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
|
|
WARN(1, "pipe_off wait timed out\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ibx_digital_port_connected - is the specified port connected?
|
|
* @dev_priv: i915 private structure
|
|
* @port: the port to test
|
|
*
|
|
* Returns true if @port is connected, false otherwise.
|
|
*/
|
|
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *port)
|
|
{
|
|
u32 bit;
|
|
|
|
if (HAS_PCH_IBX(dev_priv->dev)) {
|
|
switch (port->port) {
|
|
case PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG;
|
|
break;
|
|
case PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG;
|
|
break;
|
|
case PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
} else {
|
|
switch (port->port) {
|
|
case PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG_CPT;
|
|
break;
|
|
case PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG_CPT;
|
|
break;
|
|
case PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG_CPT;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return I915_READ(SDEISR) & bit;
|
|
}
|
|
|
|
static const char *state_string(bool enabled)
|
|
{
|
|
return enabled ? "on" : "off";
|
|
}
|
|
|
|
/* Only for pre-ILK configs */
|
|
void assert_pll(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
reg = DPLL(pipe);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & DPLL_VCO_ENABLE);
|
|
WARN(cur_state != state,
|
|
"PLL state assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
|
|
/* XXX: the dsi pll is shared between MIPI DSI ports */
|
|
static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
|
|
{
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
cur_state = val & DSI_PLL_VCO_EN;
|
|
WARN(cur_state != state,
|
|
"DSI PLL state assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
|
|
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
|
|
|
|
struct intel_shared_dpll *
|
|
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
|
|
|
|
if (crtc->config.shared_dpll < 0)
|
|
return NULL;
|
|
|
|
return &dev_priv->shared_dplls[crtc->config.shared_dpll];
|
|
}
|
|
|
|
/* For ILK+ */
|
|
void assert_shared_dpll(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
bool state)
|
|
{
|
|
bool cur_state;
|
|
struct intel_dpll_hw_state hw_state;
|
|
|
|
if (WARN (!pll,
|
|
"asserting DPLL %s with no DPLL\n", state_string(state)))
|
|
return;
|
|
|
|
cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
|
|
WARN(cur_state != state,
|
|
"%s assertion failure (expected %s, current %s)\n",
|
|
pll->name, state_string(state), state_string(cur_state));
|
|
}
|
|
|
|
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
|
|
if (HAS_DDI(dev_priv->dev)) {
|
|
/* DDI does not have a specific FDI_TX register */
|
|
reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
|
|
} else {
|
|
reg = FDI_TX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & FDI_TX_ENABLE);
|
|
}
|
|
WARN(cur_state != state,
|
|
"FDI TX state assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
|
|
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
|
|
|
|
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & FDI_RX_ENABLE);
|
|
WARN(cur_state != state,
|
|
"FDI RX state assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
|
|
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
|
|
|
|
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
/* ILK FDI PLL is always enabled */
|
|
if (INTEL_INFO(dev_priv->dev)->gen == 5)
|
|
return;
|
|
|
|
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
|
|
if (HAS_DDI(dev_priv->dev))
|
|
return;
|
|
|
|
reg = FDI_TX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
|
|
}
|
|
|
|
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & FDI_RX_PLL_ENABLE);
|
|
WARN(cur_state != state,
|
|
"FDI RX PLL assertion failure (expected %s, current %s)\n",
|
|
state_string(state), state_string(cur_state));
|
|
}
|
|
|
|
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
int pp_reg;
|
|
u32 val;
|
|
enum pipe panel_pipe = PIPE_A;
|
|
bool locked = true;
|
|
|
|
if (WARN_ON(HAS_DDI(dev)))
|
|
return;
|
|
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
u32 port_sel;
|
|
|
|
pp_reg = PCH_PP_CONTROL;
|
|
port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
|
|
|
|
if (port_sel == PANEL_PORT_SELECT_LVDS &&
|
|
I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
|
|
panel_pipe = PIPE_B;
|
|
/* XXX: else fix for eDP */
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
/* presumably write lock depends on pipe, not port select */
|
|
pp_reg = VLV_PIPE_PP_CONTROL(pipe);
|
|
panel_pipe = pipe;
|
|
} else {
|
|
pp_reg = PP_CONTROL;
|
|
if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
|
|
panel_pipe = PIPE_B;
|
|
}
|
|
|
|
val = I915_READ(pp_reg);
|
|
if (!(val & PANEL_POWER_ON) ||
|
|
((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
|
|
locked = false;
|
|
|
|
WARN(panel_pipe == pipe && locked,
|
|
"panel assertion failure, pipe %c regs locked\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
static void assert_cursor(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
bool cur_state;
|
|
|
|
if (IS_845G(dev) || IS_I865G(dev))
|
|
cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
|
|
else
|
|
cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
|
|
|
|
WARN(cur_state != state,
|
|
"cursor on pipe %c assertion failure (expected %s, current %s)\n",
|
|
pipe_name(pipe), state_string(state), state_string(cur_state));
|
|
}
|
|
#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
|
|
#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
|
|
|
|
void assert_pipe(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
|
|
/* if we need the pipe quirk it must be always on */
|
|
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
state = true;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
|
|
cur_state = false;
|
|
} else {
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & PIPECONF_ENABLE);
|
|
}
|
|
|
|
WARN(cur_state != state,
|
|
"pipe %c assertion failure (expected %s, current %s)\n",
|
|
pipe_name(pipe), state_string(state), state_string(cur_state));
|
|
}
|
|
|
|
static void assert_plane(struct drm_i915_private *dev_priv,
|
|
enum plane plane, bool state)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool cur_state;
|
|
|
|
reg = DSPCNTR(plane);
|
|
val = I915_READ(reg);
|
|
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
|
|
WARN(cur_state != state,
|
|
"plane %c assertion failure (expected %s, current %s)\n",
|
|
plane_name(plane), state_string(state), state_string(cur_state));
|
|
}
|
|
|
|
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
|
|
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
|
|
|
|
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
int reg, i;
|
|
u32 val;
|
|
int cur_pipe;
|
|
|
|
/* Primary planes are fixed to pipes on gen4+ */
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
reg = DSPCNTR(pipe);
|
|
val = I915_READ(reg);
|
|
WARN(val & DISPLAY_PLANE_ENABLE,
|
|
"plane %c assertion failure, should be disabled but not\n",
|
|
plane_name(pipe));
|
|
return;
|
|
}
|
|
|
|
/* Need to check both planes against the pipe */
|
|
for_each_pipe(dev_priv, i) {
|
|
reg = DSPCNTR(i);
|
|
val = I915_READ(reg);
|
|
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
|
|
DISPPLANE_SEL_PIPE_SHIFT;
|
|
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
|
|
"plane %c assertion failure, should be off on pipe %c but is still active\n",
|
|
plane_name(i), pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
int reg, sprite;
|
|
u32 val;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9) {
|
|
for_each_sprite(pipe, sprite) {
|
|
val = I915_READ(PLANE_CTL(pipe, sprite));
|
|
WARN(val & PLANE_CTL_ENABLE,
|
|
"plane %d assertion failure, should be off on pipe %c but is still active\n",
|
|
sprite, pipe_name(pipe));
|
|
}
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
for_each_sprite(pipe, sprite) {
|
|
reg = SPCNTR(pipe, sprite);
|
|
val = I915_READ(reg);
|
|
WARN(val & SP_ENABLE,
|
|
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
|
|
sprite_name(pipe, sprite), pipe_name(pipe));
|
|
}
|
|
} else if (INTEL_INFO(dev)->gen >= 7) {
|
|
reg = SPRCTL(pipe);
|
|
val = I915_READ(reg);
|
|
WARN(val & SPRITE_ENABLE,
|
|
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
|
|
plane_name(pipe), pipe_name(pipe));
|
|
} else if (INTEL_INFO(dev)->gen >= 5) {
|
|
reg = DVSCNTR(pipe);
|
|
val = I915_READ(reg);
|
|
WARN(val & DVS_ENABLE,
|
|
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
|
|
plane_name(pipe), pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
static void assert_vblank_disabled(struct drm_crtc *crtc)
|
|
{
|
|
if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
|
|
drm_crtc_vblank_put(crtc);
|
|
}
|
|
|
|
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
bool enabled;
|
|
|
|
WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
|
|
|
|
val = I915_READ(PCH_DREF_CONTROL);
|
|
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
|
|
DREF_SUPERSPREAD_SOURCE_MASK));
|
|
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
|
|
}
|
|
|
|
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
bool enabled;
|
|
|
|
reg = PCH_TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
enabled = !!(val & TRANS_ENABLE);
|
|
WARN(enabled,
|
|
"transcoder assertion failed, should be off on pipe %c but is still active\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 port_sel, u32 val)
|
|
{
|
|
if ((val & DP_PORT_EN) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
|
|
u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
|
|
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
|
|
return false;
|
|
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
|
|
if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & DP_PIPE_MASK) != (pipe << 30))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & SDVO_ENABLE) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
|
|
return false;
|
|
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
|
|
if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & LVDS_PORT_EN) == 0)
|
|
return false;
|
|
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, u32 val)
|
|
{
|
|
if ((val & ADPA_DAC_ENABLE) == 0)
|
|
return false;
|
|
if (HAS_PCH_CPT(dev_priv->dev)) {
|
|
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
|
|
return false;
|
|
} else {
|
|
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, int reg, u32 port_sel)
|
|
{
|
|
u32 val = I915_READ(reg);
|
|
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
|
|
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
|
|
reg, pipe_name(pipe));
|
|
|
|
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
|
|
&& (val & DP_PIPEB_SELECT),
|
|
"IBX PCH dp port still using transcoder B\n");
|
|
}
|
|
|
|
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe, int reg)
|
|
{
|
|
u32 val = I915_READ(reg);
|
|
WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
|
|
reg, pipe_name(pipe));
|
|
|
|
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
|
|
&& (val & SDVO_PIPE_B_SELECT),
|
|
"IBX PCH hdmi port still using transcoder B\n");
|
|
}
|
|
|
|
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
int reg;
|
|
u32 val;
|
|
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
|
|
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
|
|
|
|
reg = PCH_ADPA;
|
|
val = I915_READ(reg);
|
|
WARN(adpa_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH VGA enabled on transcoder %c, should be disabled\n",
|
|
pipe_name(pipe));
|
|
|
|
reg = PCH_LVDS;
|
|
val = I915_READ(reg);
|
|
WARN(lvds_pipe_enabled(dev_priv, pipe, val),
|
|
"PCH LVDS enabled on transcoder %c, should be disabled\n",
|
|
pipe_name(pipe));
|
|
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
|
|
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
|
|
}
|
|
|
|
static void intel_init_dpio(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!IS_VALLEYVIEW(dev))
|
|
return;
|
|
|
|
/*
|
|
* IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
|
|
* CHV x1 PHY (DP/HDMI D)
|
|
* IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
|
|
*/
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
|
|
DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
|
|
} else {
|
|
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
|
|
}
|
|
}
|
|
|
|
static void vlv_enable_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int reg = DPLL(crtc->pipe);
|
|
u32 dpll = pipe_config->dpll_hw_state.dpll;
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
/* No really, not for ILK+ */
|
|
BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
|
|
|
|
/* PLL is protected by panel, make sure we can write it */
|
|
if (IS_MOBILE(dev_priv->dev))
|
|
assert_panel_unlocked(dev_priv, crtc->pipe);
|
|
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
|
|
DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
|
|
|
|
I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
|
|
POSTING_READ(DPLL_MD(crtc->pipe));
|
|
|
|
/* We do this three times for luck */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
}
|
|
|
|
static void chv_enable_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
u32 tmp;
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
/* Enable back the 10bit clock to display controller */
|
|
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
|
|
tmp |= DPIO_DCLKP_EN;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
|
|
|
|
/*
|
|
* Need to wait > 100ns between dclkp clock enable bit and PLL enable.
|
|
*/
|
|
udelay(1);
|
|
|
|
/* Enable PLL */
|
|
I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
|
|
|
|
/* Check PLL is locked */
|
|
if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
|
|
DRM_ERROR("PLL %d failed to lock\n", pipe);
|
|
|
|
/* not sure when this should be written */
|
|
I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
|
|
POSTING_READ(DPLL_MD(pipe));
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
static int intel_num_dvo_pipes(struct drm_device *dev)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
int count = 0;
|
|
|
|
for_each_intel_crtc(dev, crtc)
|
|
count += crtc->active &&
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void i9xx_enable_pll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int reg = DPLL(crtc->pipe);
|
|
u32 dpll = crtc->config.dpll_hw_state.dpll;
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
/* No really, not for ILK+ */
|
|
BUG_ON(INTEL_INFO(dev)->gen >= 5);
|
|
|
|
/* PLL is protected by panel, make sure we can write it */
|
|
if (IS_MOBILE(dev) && !IS_I830(dev))
|
|
assert_panel_unlocked(dev_priv, crtc->pipe);
|
|
|
|
/* Enable DVO 2x clock on both PLLs if necessary */
|
|
if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
|
|
/*
|
|
* It appears to be important that we don't enable this
|
|
* for the current pipe before otherwise configuring the
|
|
* PLL. No idea how this should be handled if multiple
|
|
* DVO outputs are enabled simultaneosly.
|
|
*/
|
|
dpll |= DPLL_DVO_2X_MODE;
|
|
I915_WRITE(DPLL(!crtc->pipe),
|
|
I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
|
|
}
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
I915_WRITE(DPLL_MD(crtc->pipe),
|
|
crtc->config.dpll_hw_state.dpll_md);
|
|
} else {
|
|
/* The pixel multiplier can only be updated once the
|
|
* DPLL is enabled and the clocks are stable.
|
|
*
|
|
* So write it again.
|
|
*/
|
|
I915_WRITE(reg, dpll);
|
|
}
|
|
|
|
/* We do this three times for luck */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
I915_WRITE(reg, dpll);
|
|
POSTING_READ(reg);
|
|
udelay(150); /* wait for warmup */
|
|
}
|
|
|
|
/**
|
|
* i9xx_disable_pll - disable a PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to disable
|
|
*
|
|
* Disable the PLL for @pipe, making sure the pipe is off first.
|
|
*
|
|
* Note! This is for pre-ILK only.
|
|
*/
|
|
static void i9xx_disable_pll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
/* Disable DVO 2x clock on both PLLs if necessary */
|
|
if (IS_I830(dev) &&
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
|
|
intel_num_dvo_pipes(dev) == 1) {
|
|
I915_WRITE(DPLL(PIPE_B),
|
|
I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
|
|
I915_WRITE(DPLL(PIPE_A),
|
|
I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
|
|
}
|
|
|
|
/* Don't disable pipe or pipe PLLs if needed */
|
|
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
return;
|
|
|
|
/* Make sure the pipe isn't still relying on us */
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
I915_WRITE(DPLL(pipe), 0);
|
|
POSTING_READ(DPLL(pipe));
|
|
}
|
|
|
|
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
|
|
{
|
|
u32 val = 0;
|
|
|
|
/* Make sure the pipe isn't still relying on us */
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
/*
|
|
* Leave integrated clock source and reference clock enabled for pipe B.
|
|
* The latter is needed for VGA hotplug / manual detection.
|
|
*/
|
|
if (pipe == PIPE_B)
|
|
val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
|
|
I915_WRITE(DPLL(pipe), val);
|
|
POSTING_READ(DPLL(pipe));
|
|
|
|
}
|
|
|
|
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
|
|
{
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
u32 val;
|
|
|
|
/* Make sure the pipe isn't still relying on us */
|
|
assert_pipe_disabled(dev_priv, pipe);
|
|
|
|
/* Set PLL en = 0 */
|
|
val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
|
|
if (pipe != PIPE_A)
|
|
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
|
|
I915_WRITE(DPLL(pipe), val);
|
|
POSTING_READ(DPLL(pipe));
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
/* Disable 10bit clock to display controller */
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
|
|
val &= ~DPIO_DCLKP_EN;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
|
|
|
|
/* disable left/right clock distribution */
|
|
if (pipe != PIPE_B) {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
|
|
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
|
|
} else {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
|
|
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *dport)
|
|
{
|
|
u32 port_mask;
|
|
int dpll_reg;
|
|
|
|
switch (dport->port) {
|
|
case PORT_B:
|
|
port_mask = DPLL_PORTB_READY_MASK;
|
|
dpll_reg = DPLL(0);
|
|
break;
|
|
case PORT_C:
|
|
port_mask = DPLL_PORTC_READY_MASK;
|
|
dpll_reg = DPLL(0);
|
|
break;
|
|
case PORT_D:
|
|
port_mask = DPLL_PORTD_READY_MASK;
|
|
dpll_reg = DPIO_PHY_STATUS;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
|
|
WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
|
|
port_name(dport->port), I915_READ(dpll_reg));
|
|
}
|
|
|
|
static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
|
|
|
|
if (WARN_ON(pll == NULL))
|
|
return;
|
|
|
|
WARN_ON(!pll->config.crtc_mask);
|
|
if (pll->active == 0) {
|
|
DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
|
|
WARN_ON(pll->on);
|
|
assert_shared_dpll_disabled(dev_priv, pll);
|
|
|
|
pll->mode_set(dev_priv, pll);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intel_enable_shared_dpll - enable PCH PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to enable
|
|
*
|
|
* The PCH PLL needs to be enabled before the PCH transcoder, since it
|
|
* drives the transcoder clock.
|
|
*/
|
|
static void intel_enable_shared_dpll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
|
|
|
|
if (WARN_ON(pll == NULL))
|
|
return;
|
|
|
|
if (WARN_ON(pll->config.crtc_mask == 0))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
|
|
pll->name, pll->active, pll->on,
|
|
crtc->base.base.id);
|
|
|
|
if (pll->active++) {
|
|
WARN_ON(!pll->on);
|
|
assert_shared_dpll_enabled(dev_priv, pll);
|
|
return;
|
|
}
|
|
WARN_ON(pll->on);
|
|
|
|
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
|
|
|
|
DRM_DEBUG_KMS("enabling %s\n", pll->name);
|
|
pll->enable(dev_priv, pll);
|
|
pll->on = true;
|
|
}
|
|
|
|
static void intel_disable_shared_dpll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
|
|
|
|
/* PCH only available on ILK+ */
|
|
BUG_ON(INTEL_INFO(dev)->gen < 5);
|
|
if (WARN_ON(pll == NULL))
|
|
return;
|
|
|
|
if (WARN_ON(pll->config.crtc_mask == 0))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
|
|
pll->name, pll->active, pll->on,
|
|
crtc->base.base.id);
|
|
|
|
if (WARN_ON(pll->active == 0)) {
|
|
assert_shared_dpll_disabled(dev_priv, pll);
|
|
return;
|
|
}
|
|
|
|
assert_shared_dpll_enabled(dev_priv, pll);
|
|
WARN_ON(!pll->on);
|
|
if (--pll->active)
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("disabling %s\n", pll->name);
|
|
pll->disable(dev_priv, pll);
|
|
pll->on = false;
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
|
|
}
|
|
|
|
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t reg, val, pipeconf_val;
|
|
|
|
/* PCH only available on ILK+ */
|
|
BUG_ON(!HAS_PCH_SPLIT(dev));
|
|
|
|
/* Make sure PCH DPLL is enabled */
|
|
assert_shared_dpll_enabled(dev_priv,
|
|
intel_crtc_to_shared_dpll(intel_crtc));
|
|
|
|
/* FDI must be feeding us bits for PCH ports */
|
|
assert_fdi_tx_enabled(dev_priv, pipe);
|
|
assert_fdi_rx_enabled(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
/* Workaround: Set the timing override bit before enabling the
|
|
* pch transcoder. */
|
|
reg = TRANS_CHICKEN2(pipe);
|
|
val = I915_READ(reg);
|
|
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(reg, val);
|
|
}
|
|
|
|
reg = PCH_TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
pipeconf_val = I915_READ(PIPECONF(pipe));
|
|
|
|
if (HAS_PCH_IBX(dev_priv->dev)) {
|
|
/*
|
|
* make the BPC in transcoder be consistent with
|
|
* that in pipeconf reg.
|
|
*/
|
|
val &= ~PIPECONF_BPC_MASK;
|
|
val |= pipeconf_val & PIPECONF_BPC_MASK;
|
|
}
|
|
|
|
val &= ~TRANS_INTERLACE_MASK;
|
|
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
|
|
if (HAS_PCH_IBX(dev_priv->dev) &&
|
|
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
|
|
val |= TRANS_LEGACY_INTERLACED_ILK;
|
|
else
|
|
val |= TRANS_INTERLACED;
|
|
else
|
|
val |= TRANS_PROGRESSIVE;
|
|
|
|
I915_WRITE(reg, val | TRANS_ENABLE);
|
|
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
|
|
DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
|
|
}
|
|
|
|
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum transcoder cpu_transcoder)
|
|
{
|
|
u32 val, pipeconf_val;
|
|
|
|
/* PCH only available on ILK+ */
|
|
BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
|
|
|
|
/* FDI must be feeding us bits for PCH ports */
|
|
assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
|
|
assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
|
|
|
|
/* Workaround: set timing override bit. */
|
|
val = I915_READ(_TRANSA_CHICKEN2);
|
|
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(_TRANSA_CHICKEN2, val);
|
|
|
|
val = TRANS_ENABLE;
|
|
pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
|
|
|
|
if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
|
|
PIPECONF_INTERLACED_ILK)
|
|
val |= TRANS_INTERLACED;
|
|
else
|
|
val |= TRANS_PROGRESSIVE;
|
|
|
|
I915_WRITE(LPT_TRANSCONF, val);
|
|
if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
|
|
DRM_ERROR("Failed to enable PCH transcoder\n");
|
|
}
|
|
|
|
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
uint32_t reg, val;
|
|
|
|
/* FDI relies on the transcoder */
|
|
assert_fdi_tx_disabled(dev_priv, pipe);
|
|
assert_fdi_rx_disabled(dev_priv, pipe);
|
|
|
|
/* Ports must be off as well */
|
|
assert_pch_ports_disabled(dev_priv, pipe);
|
|
|
|
reg = PCH_TRANSCONF(pipe);
|
|
val = I915_READ(reg);
|
|
val &= ~TRANS_ENABLE;
|
|
I915_WRITE(reg, val);
|
|
/* wait for PCH transcoder off, transcoder state */
|
|
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
|
|
DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
|
|
|
|
if (!HAS_PCH_IBX(dev)) {
|
|
/* Workaround: Clear the timing override chicken bit again. */
|
|
reg = TRANS_CHICKEN2(pipe);
|
|
val = I915_READ(reg);
|
|
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(reg, val);
|
|
}
|
|
}
|
|
|
|
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
val = I915_READ(LPT_TRANSCONF);
|
|
val &= ~TRANS_ENABLE;
|
|
I915_WRITE(LPT_TRANSCONF, val);
|
|
/* wait for PCH transcoder off, transcoder state */
|
|
if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
|
|
DRM_ERROR("Failed to disable PCH transcoder\n");
|
|
|
|
/* Workaround: clear timing override bit. */
|
|
val = I915_READ(_TRANSA_CHICKEN2);
|
|
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
I915_WRITE(_TRANSA_CHICKEN2, val);
|
|
}
|
|
|
|
/**
|
|
* intel_enable_pipe - enable a pipe, asserting requirements
|
|
* @crtc: crtc responsible for the pipe
|
|
*
|
|
* Enable @crtc's pipe, making sure that various hardware specific requirements
|
|
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
|
|
*/
|
|
static void intel_enable_pipe(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe = crtc->pipe;
|
|
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
|
|
pipe);
|
|
enum pipe pch_transcoder;
|
|
int reg;
|
|
u32 val;
|
|
|
|
assert_planes_disabled(dev_priv, pipe);
|
|
assert_cursor_disabled(dev_priv, pipe);
|
|
assert_sprites_disabled(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_LPT(dev_priv->dev))
|
|
pch_transcoder = TRANSCODER_A;
|
|
else
|
|
pch_transcoder = pipe;
|
|
|
|
/*
|
|
* A pipe without a PLL won't actually be able to drive bits from
|
|
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
|
|
* need the check.
|
|
*/
|
|
if (!HAS_PCH_SPLIT(dev_priv->dev))
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
|
|
assert_dsi_pll_enabled(dev_priv);
|
|
else
|
|
assert_pll_enabled(dev_priv, pipe);
|
|
else {
|
|
if (crtc->config.has_pch_encoder) {
|
|
/* if driving the PCH, we need FDI enabled */
|
|
assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
|
|
assert_fdi_tx_pll_enabled(dev_priv,
|
|
(enum pipe) cpu_transcoder);
|
|
}
|
|
/* FIXME: assert CPU port conditions for SNB+ */
|
|
}
|
|
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
if (val & PIPECONF_ENABLE) {
|
|
WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
|
|
return;
|
|
}
|
|
|
|
I915_WRITE(reg, val | PIPECONF_ENABLE);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
/**
|
|
* intel_disable_pipe - disable a pipe, asserting requirements
|
|
* @crtc: crtc whose pipes is to be disabled
|
|
*
|
|
* Disable the pipe of @crtc, making sure that various hardware
|
|
* specific requirements are met, if applicable, e.g. plane
|
|
* disabled, panel fitter off, etc.
|
|
*
|
|
* Will wait until the pipe has shut down before returning.
|
|
*/
|
|
static void intel_disable_pipe(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
|
|
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
|
|
enum pipe pipe = crtc->pipe;
|
|
int reg;
|
|
u32 val;
|
|
|
|
/*
|
|
* Make sure planes won't keep trying to pump pixels to us,
|
|
* or we might hang the display.
|
|
*/
|
|
assert_planes_disabled(dev_priv, pipe);
|
|
assert_cursor_disabled(dev_priv, pipe);
|
|
assert_sprites_disabled(dev_priv, pipe);
|
|
|
|
reg = PIPECONF(cpu_transcoder);
|
|
val = I915_READ(reg);
|
|
if ((val & PIPECONF_ENABLE) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Double wide has implications for planes
|
|
* so best keep it disabled when not needed.
|
|
*/
|
|
if (crtc->config.double_wide)
|
|
val &= ~PIPECONF_DOUBLE_WIDE;
|
|
|
|
/* Don't disable pipe or pipe PLLs if needed */
|
|
if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
|
|
!(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
val &= ~PIPECONF_ENABLE;
|
|
|
|
I915_WRITE(reg, val);
|
|
if ((val & PIPECONF_ENABLE) == 0)
|
|
intel_wait_for_pipe_off(crtc);
|
|
}
|
|
|
|
/*
|
|
* Plane regs are double buffered, going from enabled->disabled needs a
|
|
* trigger in order to latch. The display address reg provides this.
|
|
*/
|
|
void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
|
|
enum plane plane)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
|
|
|
|
I915_WRITE(reg, I915_READ(reg));
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
/**
|
|
* intel_enable_primary_hw_plane - enable the primary plane on a given pipe
|
|
* @plane: plane to be enabled
|
|
* @crtc: crtc for the plane
|
|
*
|
|
* Enable @plane on @crtc, making sure that the pipe is running first.
|
|
*/
|
|
static void intel_enable_primary_hw_plane(struct drm_plane *plane,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = plane->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
/* If the pipe isn't enabled, we can't pump pixels and may hang */
|
|
assert_pipe_enabled(dev_priv, intel_crtc->pipe);
|
|
|
|
if (intel_crtc->primary_enabled)
|
|
return;
|
|
|
|
intel_crtc->primary_enabled = true;
|
|
|
|
dev_priv->display.update_primary_plane(crtc, plane->fb,
|
|
crtc->x, crtc->y);
|
|
|
|
/*
|
|
* BDW signals flip done immediately if the plane
|
|
* is disabled, even if the plane enable is already
|
|
* armed to occur at the next vblank :(
|
|
*/
|
|
if (IS_BROADWELL(dev))
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
}
|
|
|
|
/**
|
|
* intel_disable_primary_hw_plane - disable the primary hardware plane
|
|
* @plane: plane to be disabled
|
|
* @crtc: crtc for the plane
|
|
*
|
|
* Disable @plane on @crtc, making sure that the pipe is running first.
|
|
*/
|
|
static void intel_disable_primary_hw_plane(struct drm_plane *plane,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = plane->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
assert_pipe_enabled(dev_priv, intel_crtc->pipe);
|
|
|
|
if (!intel_crtc->primary_enabled)
|
|
return;
|
|
|
|
intel_crtc->primary_enabled = false;
|
|
|
|
dev_priv->display.update_primary_plane(crtc, plane->fb,
|
|
crtc->x, crtc->y);
|
|
}
|
|
|
|
static bool need_vtd_wa(struct drm_device *dev)
|
|
{
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static int intel_align_height(struct drm_device *dev, int height, bool tiled)
|
|
{
|
|
int tile_height;
|
|
|
|
tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
|
|
return ALIGN(height, tile_height);
|
|
}
|
|
|
|
int
|
|
intel_pin_and_fence_fb_obj(struct drm_plane *plane,
|
|
struct drm_framebuffer *fb,
|
|
struct intel_engine_cs *pipelined)
|
|
{
|
|
struct drm_device *dev = fb->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
u32 alignment;
|
|
int ret;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
|
|
switch (obj->tiling_mode) {
|
|
case I915_TILING_NONE:
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
alignment = 256 * 1024;
|
|
else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
|
|
alignment = 128 * 1024;
|
|
else if (INTEL_INFO(dev)->gen >= 4)
|
|
alignment = 4 * 1024;
|
|
else
|
|
alignment = 64 * 1024;
|
|
break;
|
|
case I915_TILING_X:
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
alignment = 256 * 1024;
|
|
else {
|
|
/* pin() will align the object as required by fence */
|
|
alignment = 0;
|
|
}
|
|
break;
|
|
case I915_TILING_Y:
|
|
WARN(1, "Y tiled bo slipped through, driver bug!\n");
|
|
return -EINVAL;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
/* Note that the w/a also requires 64 PTE of padding following the
|
|
* bo. We currently fill all unused PTE with the shadow page and so
|
|
* we should always have valid PTE following the scanout preventing
|
|
* the VT-d warning.
|
|
*/
|
|
if (need_vtd_wa(dev) && alignment < 256 * 1024)
|
|
alignment = 256 * 1024;
|
|
|
|
/*
|
|
* Global gtt pte registers are special registers which actually forward
|
|
* writes to a chunk of system memory. Which means that there is no risk
|
|
* that the register values disappear as soon as we call
|
|
* intel_runtime_pm_put(), so it is correct to wrap only the
|
|
* pin/unpin/fence and not more.
|
|
*/
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
dev_priv->mm.interruptible = false;
|
|
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
|
|
if (ret)
|
|
goto err_interruptible;
|
|
|
|
/* Install a fence for tiled scan-out. Pre-i965 always needs a
|
|
* fence, whereas 965+ only requires a fence if using
|
|
* framebuffer compression. For simplicity, we always install
|
|
* a fence as the cost is not that onerous.
|
|
*/
|
|
ret = i915_gem_object_get_fence(obj);
|
|
if (ret)
|
|
goto err_unpin;
|
|
|
|
i915_gem_object_pin_fence(obj);
|
|
|
|
dev_priv->mm.interruptible = true;
|
|
intel_runtime_pm_put(dev_priv);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
i915_gem_object_unpin_from_display_plane(obj);
|
|
err_interruptible:
|
|
dev_priv->mm.interruptible = true;
|
|
intel_runtime_pm_put(dev_priv);
|
|
return ret;
|
|
}
|
|
|
|
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
|
|
|
|
i915_gem_object_unpin_fence(obj);
|
|
// i915_gem_object_unpin_from_display_plane(obj);
|
|
}
|
|
|
|
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
|
|
* is assumed to be a power-of-two. */
|
|
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
|
|
unsigned int tiling_mode,
|
|
unsigned int cpp,
|
|
unsigned int pitch)
|
|
{
|
|
if (tiling_mode != I915_TILING_NONE) {
|
|
unsigned int tile_rows, tiles;
|
|
|
|
tile_rows = *y / 8;
|
|
*y %= 8;
|
|
|
|
tiles = *x / (512/cpp);
|
|
*x %= 512/cpp;
|
|
|
|
return tile_rows * pitch * 8 + tiles * 4096;
|
|
} else {
|
|
unsigned int offset;
|
|
|
|
offset = *y * pitch + *x * cpp;
|
|
*y = 0;
|
|
*x = (offset & 4095) / cpp;
|
|
return offset & -4096;
|
|
}
|
|
}
|
|
|
|
int intel_format_to_fourcc(int format)
|
|
{
|
|
switch (format) {
|
|
case DISPPLANE_8BPP:
|
|
return DRM_FORMAT_C8;
|
|
case DISPPLANE_BGRX555:
|
|
return DRM_FORMAT_XRGB1555;
|
|
case DISPPLANE_BGRX565:
|
|
return DRM_FORMAT_RGB565;
|
|
default:
|
|
case DISPPLANE_BGRX888:
|
|
return DRM_FORMAT_XRGB8888;
|
|
case DISPPLANE_RGBX888:
|
|
return DRM_FORMAT_XBGR8888;
|
|
case DISPPLANE_BGRX101010:
|
|
return DRM_FORMAT_XRGB2101010;
|
|
case DISPPLANE_RGBX101010:
|
|
return DRM_FORMAT_XBGR2101010;
|
|
}
|
|
}
|
|
|
|
static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
|
|
struct intel_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_gem_object *obj = NULL;
|
|
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
|
|
u32 base = plane_config->base;
|
|
|
|
if (plane_config->size == 0)
|
|
return false;
|
|
|
|
obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
|
|
plane_config->size);
|
|
if (!obj)
|
|
return false;
|
|
|
|
obj->map_and_fenceable=true;
|
|
main_fb_obj = obj;
|
|
|
|
if (plane_config->tiled) {
|
|
obj->tiling_mode = I915_TILING_X;
|
|
obj->stride = crtc->base.primary->fb->pitches[0];
|
|
}
|
|
|
|
mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
|
|
mode_cmd.width = crtc->base.primary->fb->width;
|
|
mode_cmd.height = crtc->base.primary->fb->height;
|
|
mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
|
|
&mode_cmd, obj)) {
|
|
DRM_DEBUG_KMS("intel fb init failed\n");
|
|
goto out_unref_obj;
|
|
}
|
|
|
|
obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
DRM_DEBUG_KMS("plane fb obj %p\n", obj);
|
|
return true;
|
|
|
|
out_unref_obj:
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return false;
|
|
}
|
|
|
|
static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
|
|
struct intel_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *c;
|
|
struct intel_crtc *i;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
if (!intel_crtc->base.primary->fb)
|
|
return;
|
|
|
|
if (intel_alloc_plane_obj(intel_crtc, plane_config))
|
|
return;
|
|
|
|
kfree(intel_crtc->base.primary->fb);
|
|
intel_crtc->base.primary->fb = NULL;
|
|
|
|
/*
|
|
* Failed to alloc the obj, check to see if we should share
|
|
* an fb with another CRTC instead
|
|
*/
|
|
for_each_crtc(dev, c) {
|
|
i = to_intel_crtc(c);
|
|
|
|
if (c == &intel_crtc->base)
|
|
continue;
|
|
|
|
if (!i->active)
|
|
continue;
|
|
|
|
obj = intel_fb_obj(c->primary->fb);
|
|
if (obj == NULL)
|
|
continue;
|
|
|
|
if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
|
|
if (obj->tiling_mode != I915_TILING_NONE)
|
|
dev_priv->preserve_bios_swizzle = true;
|
|
|
|
drm_framebuffer_reference(c->primary->fb);
|
|
intel_crtc->base.primary->fb = c->primary->fb;
|
|
obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void i9xx_update_primary_plane(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
int x, int y)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_i915_gem_object *obj;
|
|
int plane = intel_crtc->plane;
|
|
unsigned long linear_offset;
|
|
u32 dspcntr;
|
|
u32 reg = DSPCNTR(plane);
|
|
int pixel_size;
|
|
|
|
if (!intel_crtc->primary_enabled) {
|
|
I915_WRITE(reg, 0);
|
|
if (INTEL_INFO(dev)->gen >= 4)
|
|
I915_WRITE(DSPSURF(plane), 0);
|
|
else
|
|
I915_WRITE(DSPADDR(plane), 0);
|
|
POSTING_READ(reg);
|
|
return;
|
|
}
|
|
|
|
obj = intel_fb_obj(fb);
|
|
if (WARN_ON(obj == NULL))
|
|
return;
|
|
|
|
pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
|
|
|
|
dspcntr = DISPPLANE_GAMMA_ENABLE;
|
|
|
|
dspcntr |= DISPLAY_PLANE_ENABLE;
|
|
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
if (intel_crtc->pipe == PIPE_B)
|
|
dspcntr |= DISPPLANE_SEL_PIPE_B;
|
|
|
|
/* pipesrc and dspsize control the size that is scaled from,
|
|
* which should always be the user's requested size.
|
|
*/
|
|
I915_WRITE(DSPSIZE(plane),
|
|
((intel_crtc->config.pipe_src_h - 1) << 16) |
|
|
(intel_crtc->config.pipe_src_w - 1));
|
|
I915_WRITE(DSPPOS(plane), 0);
|
|
} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
|
|
I915_WRITE(PRIMSIZE(plane),
|
|
((intel_crtc->config.pipe_src_h - 1) << 16) |
|
|
(intel_crtc->config.pipe_src_w - 1));
|
|
I915_WRITE(PRIMPOS(plane), 0);
|
|
I915_WRITE(PRIMCNSTALPHA(plane), 0);
|
|
}
|
|
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
dspcntr |= DISPPLANE_8BPP;
|
|
break;
|
|
case DRM_FORMAT_XRGB1555:
|
|
case DRM_FORMAT_ARGB1555:
|
|
dspcntr |= DISPPLANE_BGRX555;
|
|
break;
|
|
case DRM_FORMAT_RGB565:
|
|
dspcntr |= DISPPLANE_BGRX565;
|
|
break;
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
dspcntr |= DISPPLANE_BGRX888;
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
dspcntr |= DISPPLANE_RGBX888;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_ARGB2101010:
|
|
dspcntr |= DISPPLANE_BGRX101010;
|
|
break;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_ABGR2101010:
|
|
dspcntr |= DISPPLANE_RGBX101010;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4 &&
|
|
obj->tiling_mode != I915_TILING_NONE)
|
|
dspcntr |= DISPPLANE_TILED;
|
|
|
|
if (IS_G4X(dev))
|
|
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
|
|
|
|
linear_offset = y * fb->pitches[0] + x * pixel_size;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
intel_crtc->dspaddr_offset =
|
|
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
|
|
pixel_size,
|
|
fb->pitches[0]);
|
|
linear_offset -= intel_crtc->dspaddr_offset;
|
|
} else {
|
|
intel_crtc->dspaddr_offset = linear_offset;
|
|
}
|
|
|
|
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
|
|
dspcntr |= DISPPLANE_ROTATE_180;
|
|
|
|
x += (intel_crtc->config.pipe_src_w - 1);
|
|
y += (intel_crtc->config.pipe_src_h - 1);
|
|
|
|
/* Finding the last pixel of the last line of the display
|
|
data and adding to linear_offset*/
|
|
linear_offset +=
|
|
(intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
|
|
(intel_crtc->config.pipe_src_w - 1) * pixel_size;
|
|
}
|
|
|
|
I915_WRITE(reg, dspcntr);
|
|
|
|
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
|
|
i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
|
|
fb->pitches[0]);
|
|
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
I915_WRITE(DSPSURF(plane),
|
|
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
|
|
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
|
|
I915_WRITE(DSPLINOFF(plane), linear_offset);
|
|
} else
|
|
I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static void ironlake_update_primary_plane(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
int x, int y)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_i915_gem_object *obj;
|
|
int plane = intel_crtc->plane;
|
|
unsigned long linear_offset;
|
|
u32 dspcntr;
|
|
u32 reg = DSPCNTR(plane);
|
|
int pixel_size;
|
|
|
|
if (!intel_crtc->primary_enabled) {
|
|
I915_WRITE(reg, 0);
|
|
I915_WRITE(DSPSURF(plane), 0);
|
|
POSTING_READ(reg);
|
|
return;
|
|
}
|
|
|
|
obj = intel_fb_obj(fb);
|
|
if (WARN_ON(obj == NULL))
|
|
return;
|
|
|
|
pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
|
|
|
|
dspcntr = DISPPLANE_GAMMA_ENABLE;
|
|
|
|
dspcntr |= DISPLAY_PLANE_ENABLE;
|
|
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
|
|
dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
|
|
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
dspcntr |= DISPPLANE_8BPP;
|
|
break;
|
|
case DRM_FORMAT_RGB565:
|
|
dspcntr |= DISPPLANE_BGRX565;
|
|
break;
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
dspcntr |= DISPPLANE_BGRX888;
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
dspcntr |= DISPPLANE_RGBX888;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_ARGB2101010:
|
|
dspcntr |= DISPPLANE_BGRX101010;
|
|
break;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_ABGR2101010:
|
|
dspcntr |= DISPPLANE_RGBX101010;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (obj->tiling_mode != I915_TILING_NONE)
|
|
dspcntr |= DISPPLANE_TILED;
|
|
|
|
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
|
|
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
|
|
|
|
linear_offset = y * fb->pitches[0] + x * pixel_size;
|
|
intel_crtc->dspaddr_offset =
|
|
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
|
|
pixel_size,
|
|
fb->pitches[0]);
|
|
linear_offset -= intel_crtc->dspaddr_offset;
|
|
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
|
|
dspcntr |= DISPPLANE_ROTATE_180;
|
|
|
|
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
|
|
x += (intel_crtc->config.pipe_src_w - 1);
|
|
y += (intel_crtc->config.pipe_src_h - 1);
|
|
|
|
/* Finding the last pixel of the last line of the display
|
|
data and adding to linear_offset*/
|
|
linear_offset +=
|
|
(intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
|
|
(intel_crtc->config.pipe_src_w - 1) * pixel_size;
|
|
}
|
|
}
|
|
|
|
I915_WRITE(reg, dspcntr);
|
|
|
|
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
|
|
i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
|
|
fb->pitches[0]);
|
|
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
|
|
I915_WRITE(DSPSURF(plane),
|
|
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
|
|
I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
|
|
} else {
|
|
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
|
|
I915_WRITE(DSPLINOFF(plane), linear_offset);
|
|
}
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static void skylake_update_primary_plane(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
int x, int y)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_framebuffer *intel_fb;
|
|
struct drm_i915_gem_object *obj;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 plane_ctl, stride;
|
|
|
|
if (!intel_crtc->primary_enabled) {
|
|
I915_WRITE(PLANE_CTL(pipe, 0), 0);
|
|
I915_WRITE(PLANE_SURF(pipe, 0), 0);
|
|
POSTING_READ(PLANE_CTL(pipe, 0));
|
|
return;
|
|
}
|
|
|
|
plane_ctl = PLANE_CTL_ENABLE |
|
|
PLANE_CTL_PIPE_GAMMA_ENABLE |
|
|
PLANE_CTL_PIPE_CSC_ENABLE;
|
|
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_RGB565:
|
|
plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
|
|
break;
|
|
case DRM_FORMAT_XRGB8888:
|
|
plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
plane_ctl |= PLANE_CTL_ORDER_RGBX;
|
|
plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
|
|
break;
|
|
case DRM_FORMAT_XBGR2101010:
|
|
plane_ctl |= PLANE_CTL_ORDER_RGBX;
|
|
plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
intel_fb = to_intel_framebuffer(fb);
|
|
obj = intel_fb->obj;
|
|
|
|
/*
|
|
* The stride is either expressed as a multiple of 64 bytes chunks for
|
|
* linear buffers or in number of tiles for tiled buffers.
|
|
*/
|
|
switch (obj->tiling_mode) {
|
|
case I915_TILING_NONE:
|
|
stride = fb->pitches[0] >> 6;
|
|
break;
|
|
case I915_TILING_X:
|
|
plane_ctl |= PLANE_CTL_TILED_X;
|
|
stride = fb->pitches[0] >> 9;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
|
|
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
|
|
plane_ctl |= PLANE_CTL_ROTATE_180;
|
|
|
|
I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
|
|
|
|
DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
|
|
i915_gem_obj_ggtt_offset(obj),
|
|
x, y, fb->width, fb->height,
|
|
fb->pitches[0]);
|
|
|
|
I915_WRITE(PLANE_POS(pipe, 0), 0);
|
|
I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
|
|
I915_WRITE(PLANE_SIZE(pipe, 0),
|
|
(intel_crtc->config.pipe_src_h - 1) << 16 |
|
|
(intel_crtc->config.pipe_src_w - 1));
|
|
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
|
|
I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
|
|
|
|
POSTING_READ(PLANE_SURF(pipe, 0));
|
|
}
|
|
|
|
/* Assume fb object is pinned & idle & fenced and just update base pointers */
|
|
static int
|
|
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
|
|
int x, int y, enum mode_set_atomic state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->display.disable_fbc)
|
|
dev_priv->display.disable_fbc(dev);
|
|
|
|
dev_priv->display.update_primary_plane(crtc, fb, x, y);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
static void intel_complete_page_flips(struct drm_device *dev)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
|
|
for_each_crtc(dev, crtc) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum plane plane = intel_crtc->plane;
|
|
|
|
intel_prepare_page_flip(dev, plane);
|
|
intel_finish_page_flip_plane(dev, plane);
|
|
}
|
|
}
|
|
|
|
static void intel_update_primary_planes(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc;
|
|
|
|
for_each_crtc(dev, crtc) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
drm_modeset_lock(&crtc->mutex, NULL);
|
|
/*
|
|
* FIXME: Once we have proper support for primary planes (and
|
|
* disabling them without disabling the entire crtc) allow again
|
|
* a NULL crtc->primary->fb.
|
|
*/
|
|
if (intel_crtc->active && crtc->primary->fb)
|
|
dev_priv->display.update_primary_plane(crtc,
|
|
crtc->primary->fb,
|
|
crtc->x,
|
|
crtc->y);
|
|
drm_modeset_unlock(&crtc->mutex);
|
|
}
|
|
}
|
|
|
|
void intel_prepare_reset(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *crtc;
|
|
|
|
/* no reset support for gen2 */
|
|
if (IS_GEN2(dev))
|
|
return;
|
|
|
|
/* reset doesn't touch the display */
|
|
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
|
|
return;
|
|
|
|
drm_modeset_lock_all(dev);
|
|
|
|
/*
|
|
* Disabling the crtcs gracefully seems nicer. Also the
|
|
* g33 docs say we should at least disable all the planes.
|
|
*/
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (crtc->active)
|
|
dev_priv->display.crtc_disable(&crtc->base);
|
|
}
|
|
}
|
|
|
|
void intel_finish_reset(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
/*
|
|
* Flips in the rings will be nuked by the reset,
|
|
* so complete all pending flips so that user space
|
|
* will get its events and not get stuck.
|
|
*/
|
|
intel_complete_page_flips(dev);
|
|
|
|
/* no reset support for gen2 */
|
|
if (IS_GEN2(dev))
|
|
return;
|
|
|
|
/* reset doesn't touch the display */
|
|
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
|
|
/*
|
|
* Flips in the rings have been nuked by the reset,
|
|
* so update the base address of all primary
|
|
* planes to the the last fb to make sure we're
|
|
* showing the correct fb after a reset.
|
|
*/
|
|
intel_update_primary_planes(dev);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The display has been reset as well,
|
|
* so need a full re-initialization.
|
|
*/
|
|
intel_runtime_pm_disable_interrupts(dev_priv);
|
|
intel_runtime_pm_enable_interrupts(dev_priv);
|
|
|
|
intel_modeset_init_hw(dev);
|
|
|
|
spin_lock_irq(&dev_priv->irq_lock);
|
|
if (dev_priv->display.hpd_irq_setup)
|
|
dev_priv->display.hpd_irq_setup(dev);
|
|
spin_unlock_irq(&dev_priv->irq_lock);
|
|
|
|
intel_modeset_setup_hw_state(dev, true);
|
|
|
|
intel_hpd_init(dev_priv);
|
|
|
|
drm_modeset_unlock_all(dev);
|
|
}
|
|
|
|
static int
|
|
intel_finish_fb(struct drm_framebuffer *old_fb)
|
|
{
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
bool was_interruptible = dev_priv->mm.interruptible;
|
|
int ret;
|
|
|
|
/* Big Hammer, we also need to ensure that any pending
|
|
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
|
|
* current scanout is retired before unpinning the old
|
|
* framebuffer.
|
|
*
|
|
* This should only fail upon a hung GPU, in which case we
|
|
* can safely continue.
|
|
*/
|
|
dev_priv->mm.interruptible = false;
|
|
ret = i915_gem_object_finish_gpu(obj);
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
bool pending;
|
|
|
|
if (i915_reset_in_progress(&dev_priv->gpu_error) ||
|
|
intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
|
|
return false;
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
pending = to_intel_crtc(crtc)->unpin_work != NULL;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
return pending;
|
|
}
|
|
#endif
|
|
|
|
static void intel_update_pipe_size(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const struct drm_display_mode *adjusted_mode;
|
|
|
|
if (!i915.fastboot)
|
|
return;
|
|
|
|
/*
|
|
* Update pipe size and adjust fitter if needed: the reason for this is
|
|
* that in compute_mode_changes we check the native mode (not the pfit
|
|
* mode) to see if we can flip rather than do a full mode set. In the
|
|
* fastboot case, we'll flip, but if we don't update the pipesrc and
|
|
* pfit state, we'll end up with a big fb scanned out into the wrong
|
|
* sized surface.
|
|
*
|
|
* To fix this properly, we need to hoist the checks up into
|
|
* compute_mode_changes (or above), check the actual pfit state and
|
|
* whether the platform allows pfit disable with pipe active, and only
|
|
* then update the pipesrc and pfit state, even on the flip path.
|
|
*/
|
|
|
|
adjusted_mode = &crtc->config.adjusted_mode;
|
|
|
|
I915_WRITE(PIPESRC(crtc->pipe),
|
|
((adjusted_mode->crtc_hdisplay - 1) << 16) |
|
|
(adjusted_mode->crtc_vdisplay - 1));
|
|
if (!crtc->config.pch_pfit.enabled &&
|
|
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
|
|
I915_WRITE(PF_CTL(crtc->pipe), 0);
|
|
I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
|
|
I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
|
|
}
|
|
crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
|
|
crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
|
|
}
|
|
|
|
static int
|
|
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
|
|
struct drm_framebuffer *fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
struct drm_framebuffer *old_fb = crtc->primary->fb;
|
|
struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
|
|
int ret;
|
|
|
|
|
|
/* no fb bound */
|
|
if (!fb) {
|
|
DRM_ERROR("No FB bound\n");
|
|
return 0;
|
|
}
|
|
|
|
if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
|
|
DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
|
|
plane_name(intel_crtc->plane),
|
|
INTEL_INFO(dev)->num_pipes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
|
|
if (ret == 0)
|
|
i915_gem_track_fb(old_obj, intel_fb_obj(fb),
|
|
INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
if (ret != 0) {
|
|
DRM_ERROR("pin & fence failed\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_priv->display.update_primary_plane(crtc, fb, x, y);
|
|
|
|
if (intel_crtc->active)
|
|
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
|
|
crtc->primary->fb = fb;
|
|
crtc->x = x;
|
|
crtc->y = y;
|
|
|
|
if (old_fb) {
|
|
if (intel_crtc->active && old_fb != fb)
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_unpin_fb_obj(old_obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_fdi_normal_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
/* enable normal train */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (IS_IVYBRIDGE(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
|
|
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_NONE;
|
|
}
|
|
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
|
|
|
|
/* wait one idle pattern time */
|
|
POSTING_READ(reg);
|
|
udelay(1000);
|
|
|
|
/* IVB wants error correction enabled */
|
|
if (IS_IVYBRIDGE(dev))
|
|
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
|
|
FDI_FE_ERRC_ENABLE);
|
|
}
|
|
|
|
static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
|
|
{
|
|
return crtc->base.enabled && crtc->active &&
|
|
crtc->config.has_pch_encoder;
|
|
}
|
|
|
|
static void ivb_modeset_global_resources(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *pipe_B_crtc =
|
|
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
|
|
struct intel_crtc *pipe_C_crtc =
|
|
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
|
|
uint32_t temp;
|
|
|
|
/*
|
|
* When everything is off disable fdi C so that we could enable fdi B
|
|
* with all lanes. Note that we don't care about enabled pipes without
|
|
* an enabled pch encoder.
|
|
*/
|
|
if (!pipe_has_enabled_pch(pipe_B_crtc) &&
|
|
!pipe_has_enabled_pch(pipe_C_crtc)) {
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
|
|
|
|
temp = I915_READ(SOUTH_CHICKEN1);
|
|
temp &= ~FDI_BC_BIFURCATION_SELECT;
|
|
DRM_DEBUG_KMS("disabling fdi C rx\n");
|
|
I915_WRITE(SOUTH_CHICKEN1, temp);
|
|
}
|
|
}
|
|
|
|
/* The FDI link training functions for ILK/Ibexpeak. */
|
|
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp, tries;
|
|
|
|
/* FDI needs bits from pipe first */
|
|
assert_pipe_enabled(dev_priv, pipe);
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
I915_READ(reg);
|
|
udelay(150);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_DP_PORT_WIDTH_MASK;
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
/* Ironlake workaround, enable clock pointer after FDI enable*/
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
|
|
FDI_RX_PHASE_SYNC_POINTER_EN);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
for (tries = 0; tries < 5; tries++) {
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if ((temp & FDI_RX_BIT_LOCK)) {
|
|
DRM_DEBUG_KMS("FDI train 1 done.\n");
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
break;
|
|
}
|
|
}
|
|
if (tries == 5)
|
|
DRM_ERROR("FDI train 1 fail!\n");
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
reg = FDI_RX_IIR(pipe);
|
|
for (tries = 0; tries < 5; tries++) {
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_SYMBOL_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done.\n");
|
|
break;
|
|
}
|
|
}
|
|
if (tries == 5)
|
|
DRM_ERROR("FDI train 2 fail!\n");
|
|
|
|
DRM_DEBUG_KMS("FDI train done\n");
|
|
|
|
}
|
|
|
|
static const int snb_b_fdi_train_param[] = {
|
|
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
|
|
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
|
|
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
|
|
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
|
|
};
|
|
|
|
/* The FDI link training functions for SNB/Cougarpoint. */
|
|
static void gen6_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp, i, retry;
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_DP_PORT_WIDTH_MASK;
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
/* SNB-B */
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
I915_WRITE(FDI_RX_MISC(pipe),
|
|
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
}
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
if (temp & FDI_RX_BIT_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 1 done.\n");
|
|
break;
|
|
}
|
|
udelay(50);
|
|
}
|
|
if (retry < 5)
|
|
break;
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 1 fail!\n");
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
if (IS_GEN6(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
/* SNB-B */
|
|
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
}
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[i];
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(500);
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
if (temp & FDI_RX_SYMBOL_LOCK) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done.\n");
|
|
break;
|
|
}
|
|
udelay(50);
|
|
}
|
|
if (retry < 5)
|
|
break;
|
|
}
|
|
if (i == 4)
|
|
DRM_ERROR("FDI train 2 fail!\n");
|
|
|
|
DRM_DEBUG_KMS("FDI train done.\n");
|
|
}
|
|
|
|
/* Manual link training for Ivy Bridge A0 parts */
|
|
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp, i, j;
|
|
|
|
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
reg = FDI_RX_IMR(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(150);
|
|
|
|
DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
|
|
I915_READ(FDI_RX_IIR(pipe)));
|
|
|
|
/* Try each vswing and preemphasis setting twice before moving on */
|
|
for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
|
|
/* disable first in case we need to retry */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
|
|
temp &= ~FDI_TX_ENABLE;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_AUTO;
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp &= ~FDI_RX_ENABLE;
|
|
I915_WRITE(reg, temp);
|
|
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_DP_PORT_WIDTH_MASK;
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
|
|
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
|
|
temp |= snb_b_fdi_train_param[j/2];
|
|
temp |= FDI_COMPOSITE_SYNC;
|
|
I915_WRITE(reg, temp | FDI_TX_ENABLE);
|
|
|
|
I915_WRITE(FDI_RX_MISC(pipe),
|
|
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
temp |= FDI_COMPOSITE_SYNC;
|
|
I915_WRITE(reg, temp | FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(1); /* should be 0.5us */
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_BIT_LOCK ||
|
|
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
|
|
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
|
|
i);
|
|
break;
|
|
}
|
|
udelay(1); /* should be 0.5us */
|
|
}
|
|
if (i == 4) {
|
|
DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
|
|
continue;
|
|
}
|
|
|
|
/* Train 2 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(2); /* should be 1.5us */
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
reg = FDI_RX_IIR(pipe);
|
|
temp = I915_READ(reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if (temp & FDI_RX_SYMBOL_LOCK ||
|
|
(I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
|
|
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
|
|
i);
|
|
goto train_done;
|
|
}
|
|
udelay(2); /* should be 1.5us */
|
|
}
|
|
if (i == 4)
|
|
DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
|
|
}
|
|
|
|
train_done:
|
|
DRM_DEBUG_KMS("FDI train done.\n");
|
|
}
|
|
|
|
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
|
|
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
|
|
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
/* Switch from Rawclk to PCDclk */
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp | FDI_PCDCLK);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(200);
|
|
|
|
/* Enable CPU FDI TX PLL, always on for Ironlake */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
|
|
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
}
|
|
|
|
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
/* Switch from PCDclk to Rawclk */
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_PCDCLK);
|
|
|
|
/* Disable CPU FDI TX PLL */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
|
|
|
|
/* Wait for the clocks to turn off. */
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
|
|
static void ironlake_fdi_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
/* disable CPU FDI tx and PCH FDI rx */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
|
|
POSTING_READ(reg);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(0x7 << 16);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
|
|
/* Ironlake workaround, disable clock pointer after downing FDI */
|
|
if (HAS_PCH_IBX(dev))
|
|
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
|
|
|
|
/* still set train pattern 1 */
|
|
reg = FDI_TX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(reg, temp);
|
|
|
|
reg = FDI_RX_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
if (HAS_PCH_CPT(dev)) {
|
|
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
} else {
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
}
|
|
/* BPC in FDI rx is consistent with that in PIPECONF */
|
|
temp &= ~(0x07 << 16);
|
|
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
|
|
I915_WRITE(reg, temp);
|
|
|
|
POSTING_READ(reg);
|
|
udelay(100);
|
|
}
|
|
|
|
bool intel_has_pending_fb_unpin(struct drm_device *dev)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
|
|
/* Note that we don't need to be called with mode_config.lock here
|
|
* as our list of CRTC objects is static for the lifetime of the
|
|
* device and so cannot disappear as we iterate. Similarly, we can
|
|
* happily treat the predicates as racy, atomic checks as userspace
|
|
* cannot claim and pin a new fb without at least acquring the
|
|
* struct_mutex and so serialising with us.
|
|
*/
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (atomic_read(&crtc->unpin_work_count) == 0)
|
|
continue;
|
|
|
|
if (crtc->unpin_work)
|
|
intel_wait_for_vblank(dev, crtc->pipe);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#if 0
|
|
void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
|
|
if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
|
|
!intel_crtc_has_pending_flip(crtc),
|
|
60*HZ) == 0)) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
if (intel_crtc->unpin_work) {
|
|
WARN_ONCE(1, "Removing stuck page flip\n");
|
|
page_flip_completed(intel_crtc);
|
|
}
|
|
spin_unlock_irq(&dev->event_lock);
|
|
}
|
|
|
|
if (crtc->primary->fb) {
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_finish_fb(crtc->primary->fb);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Program iCLKIP clock to the desired frequency */
|
|
static void lpt_program_iclkip(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
|
|
u32 divsel, phaseinc, auxdiv, phasedir = 0;
|
|
u32 temp;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
/* It is necessary to ungate the pixclk gate prior to programming
|
|
* the divisors, and gate it back when it is done.
|
|
*/
|
|
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
|
|
|
|
/* Disable SSCCTL */
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL6,
|
|
intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
|
|
SBI_SSCCTL_DISABLE,
|
|
SBI_ICLK);
|
|
|
|
/* 20MHz is a corner case which is out of range for the 7-bit divisor */
|
|
if (clock == 20000) {
|
|
auxdiv = 1;
|
|
divsel = 0x41;
|
|
phaseinc = 0x20;
|
|
} else {
|
|
/* The iCLK virtual clock root frequency is in MHz,
|
|
* but the adjusted_mode->crtc_clock in in KHz. To get the
|
|
* divisors, it is necessary to divide one by another, so we
|
|
* convert the virtual clock precision to KHz here for higher
|
|
* precision.
|
|
*/
|
|
u32 iclk_virtual_root_freq = 172800 * 1000;
|
|
u32 iclk_pi_range = 64;
|
|
u32 desired_divisor, msb_divisor_value, pi_value;
|
|
|
|
desired_divisor = (iclk_virtual_root_freq / clock);
|
|
msb_divisor_value = desired_divisor / iclk_pi_range;
|
|
pi_value = desired_divisor % iclk_pi_range;
|
|
|
|
auxdiv = 0;
|
|
divsel = msb_divisor_value - 2;
|
|
phaseinc = pi_value;
|
|
}
|
|
|
|
/* This should not happen with any sane values */
|
|
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
|
|
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
|
|
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
|
|
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
|
|
|
|
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
|
|
clock,
|
|
auxdiv,
|
|
divsel,
|
|
phasedir,
|
|
phaseinc);
|
|
|
|
/* Program SSCDIVINTPHASE6 */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
|
|
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
|
|
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
|
|
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
|
|
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
|
|
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
|
|
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
|
|
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
|
|
|
|
/* Program SSCAUXDIV */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
|
|
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
|
|
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
|
|
intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
|
|
|
|
/* Enable modulator and associated divider */
|
|
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
|
|
temp &= ~SBI_SSCCTL_DISABLE;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
|
|
|
|
/* Wait for initialization time */
|
|
udelay(24);
|
|
|
|
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
|
|
enum pipe pch_transcoder)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
|
|
|
|
I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
|
|
I915_READ(HTOTAL(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
|
|
I915_READ(HBLANK(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
|
|
I915_READ(HSYNC(cpu_transcoder)));
|
|
|
|
I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
|
|
I915_READ(VTOTAL(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
|
|
I915_READ(VBLANK(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
|
|
I915_READ(VSYNC(cpu_transcoder)));
|
|
I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
|
|
I915_READ(VSYNCSHIFT(cpu_transcoder)));
|
|
}
|
|
|
|
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t temp;
|
|
|
|
temp = I915_READ(SOUTH_CHICKEN1);
|
|
if (temp & FDI_BC_BIFURCATION_SELECT)
|
|
return;
|
|
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
|
|
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
|
|
|
|
temp |= FDI_BC_BIFURCATION_SELECT;
|
|
DRM_DEBUG_KMS("enabling fdi C rx\n");
|
|
I915_WRITE(SOUTH_CHICKEN1, temp);
|
|
POSTING_READ(SOUTH_CHICKEN1);
|
|
}
|
|
|
|
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
switch (intel_crtc->pipe) {
|
|
case PIPE_A:
|
|
break;
|
|
case PIPE_B:
|
|
if (intel_crtc->config.fdi_lanes > 2)
|
|
WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
|
|
else
|
|
cpt_enable_fdi_bc_bifurcation(dev);
|
|
|
|
break;
|
|
case PIPE_C:
|
|
cpt_enable_fdi_bc_bifurcation(dev);
|
|
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable PCH resources required for PCH ports:
|
|
* - PCH PLLs
|
|
* - FDI training & RX/TX
|
|
* - update transcoder timings
|
|
* - DP transcoding bits
|
|
* - transcoder
|
|
*/
|
|
static void ironlake_pch_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
assert_pch_transcoder_disabled(dev_priv, pipe);
|
|
|
|
if (IS_IVYBRIDGE(dev))
|
|
ivybridge_update_fdi_bc_bifurcation(intel_crtc);
|
|
|
|
/* Write the TU size bits before fdi link training, so that error
|
|
* detection works. */
|
|
I915_WRITE(FDI_RX_TUSIZE1(pipe),
|
|
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
|
|
|
|
/* For PCH output, training FDI link */
|
|
dev_priv->display.fdi_link_train(crtc);
|
|
|
|
/* We need to program the right clock selection before writing the pixel
|
|
* mutliplier into the DPLL. */
|
|
if (HAS_PCH_CPT(dev)) {
|
|
u32 sel;
|
|
|
|
temp = I915_READ(PCH_DPLL_SEL);
|
|
temp |= TRANS_DPLL_ENABLE(pipe);
|
|
sel = TRANS_DPLLB_SEL(pipe);
|
|
if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
|
|
temp |= sel;
|
|
else
|
|
temp &= ~sel;
|
|
I915_WRITE(PCH_DPLL_SEL, temp);
|
|
}
|
|
|
|
/* XXX: pch pll's can be enabled any time before we enable the PCH
|
|
* transcoder, and we actually should do this to not upset any PCH
|
|
* transcoder that already use the clock when we share it.
|
|
*
|
|
* Note that enable_shared_dpll tries to do the right thing, but
|
|
* get_shared_dpll unconditionally resets the pll - we need that to have
|
|
* the right LVDS enable sequence. */
|
|
intel_enable_shared_dpll(intel_crtc);
|
|
|
|
/* set transcoder timing, panel must allow it */
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
|
|
|
|
intel_fdi_normal_train(crtc);
|
|
|
|
/* For PCH DP, enable TRANS_DP_CTL */
|
|
if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
|
|
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
|
|
reg = TRANS_DP_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(TRANS_DP_PORT_SEL_MASK |
|
|
TRANS_DP_SYNC_MASK |
|
|
TRANS_DP_BPC_MASK);
|
|
temp |= (TRANS_DP_OUTPUT_ENABLE |
|
|
TRANS_DP_ENH_FRAMING);
|
|
temp |= bpc << 9; /* same format but at 11:9 */
|
|
|
|
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
|
|
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
|
|
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
|
|
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
|
|
|
|
switch (intel_trans_dp_port_sel(crtc)) {
|
|
case PCH_DP_B:
|
|
temp |= TRANS_DP_PORT_SEL_B;
|
|
break;
|
|
case PCH_DP_C:
|
|
temp |= TRANS_DP_PORT_SEL_C;
|
|
break;
|
|
case PCH_DP_D:
|
|
temp |= TRANS_DP_PORT_SEL_D;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
I915_WRITE(reg, temp);
|
|
}
|
|
|
|
ironlake_enable_pch_transcoder(dev_priv, pipe);
|
|
}
|
|
|
|
static void lpt_pch_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
|
|
|
|
assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
|
|
|
|
lpt_program_iclkip(crtc);
|
|
|
|
/* Set transcoder timing. */
|
|
ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
|
|
|
|
lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
|
|
}
|
|
|
|
void intel_put_shared_dpll(struct intel_crtc *crtc)
|
|
{
|
|
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
|
|
|
|
if (pll == NULL)
|
|
return;
|
|
|
|
if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
|
|
WARN(1, "bad %s crtc mask\n", pll->name);
|
|
return;
|
|
}
|
|
|
|
pll->config.crtc_mask &= ~(1 << crtc->pipe);
|
|
if (pll->config.crtc_mask == 0) {
|
|
WARN_ON(pll->on);
|
|
WARN_ON(pll->active);
|
|
}
|
|
|
|
crtc->config.shared_dpll = DPLL_ID_PRIVATE;
|
|
}
|
|
|
|
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id i;
|
|
|
|
if (HAS_PCH_IBX(dev_priv->dev)) {
|
|
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
|
|
i = (enum intel_dpll_id) crtc->pipe;
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
|
|
crtc->base.base.id, pll->name);
|
|
|
|
WARN_ON(pll->new_config->crtc_mask);
|
|
|
|
goto found;
|
|
}
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
/* Only want to check enabled timings first */
|
|
if (pll->new_config->crtc_mask == 0)
|
|
continue;
|
|
|
|
if (memcmp(&crtc->new_config->dpll_hw_state,
|
|
&pll->new_config->hw_state,
|
|
sizeof(pll->new_config->hw_state)) == 0) {
|
|
DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
|
|
crtc->base.base.id, pll->name,
|
|
pll->new_config->crtc_mask,
|
|
pll->active);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* Ok no matching timings, maybe there's a free one? */
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
pll = &dev_priv->shared_dplls[i];
|
|
if (pll->new_config->crtc_mask == 0) {
|
|
DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
|
|
crtc->base.base.id, pll->name);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
if (pll->new_config->crtc_mask == 0)
|
|
pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
|
|
|
|
crtc->new_config->shared_dpll = i;
|
|
DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
|
|
pipe_name(crtc->pipe));
|
|
|
|
pll->new_config->crtc_mask |= 1 << crtc->pipe;
|
|
|
|
return pll;
|
|
}
|
|
|
|
/**
|
|
* intel_shared_dpll_start_config - start a new PLL staged config
|
|
* @dev_priv: DRM device
|
|
* @clear_pipes: mask of pipes that will have their PLLs freed
|
|
*
|
|
* Starts a new PLL staged config, copying the current config but
|
|
* releasing the references of pipes specified in clear_pipes.
|
|
*/
|
|
static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
|
|
unsigned clear_pipes)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id i;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
pll->new_config = kmemdup(&pll->config, sizeof pll->config,
|
|
GFP_KERNEL);
|
|
if (!pll->new_config)
|
|
goto cleanup;
|
|
|
|
pll->new_config->crtc_mask &= ~clear_pipes;
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
while (--i >= 0) {
|
|
pll = &dev_priv->shared_dplls[i];
|
|
kfree(pll->new_config);
|
|
pll->new_config = NULL;
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id i;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
WARN_ON(pll->new_config == &pll->config);
|
|
|
|
pll->config = *pll->new_config;
|
|
kfree(pll->new_config);
|
|
pll->new_config = NULL;
|
|
}
|
|
}
|
|
|
|
static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id i;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
WARN_ON(pll->new_config == &pll->config);
|
|
|
|
kfree(pll->new_config);
|
|
pll->new_config = NULL;
|
|
}
|
|
}
|
|
|
|
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int dslreg = PIPEDSL(pipe);
|
|
u32 temp;
|
|
|
|
temp = I915_READ(dslreg);
|
|
udelay(500);
|
|
if (wait_for(I915_READ(dslreg) != temp, 5)) {
|
|
if (wait_for(I915_READ(dslreg) != temp, 5))
|
|
DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
|
|
}
|
|
}
|
|
|
|
static void skylake_pfit_enable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
|
|
if (crtc->config.pch_pfit.enabled) {
|
|
I915_WRITE(PS_CTL(pipe), PS_ENABLE);
|
|
I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
|
|
I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
|
|
}
|
|
}
|
|
|
|
static void ironlake_pfit_enable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
|
|
if (crtc->config.pch_pfit.enabled) {
|
|
/* Force use of hard-coded filter coefficients
|
|
* as some pre-programmed values are broken,
|
|
* e.g. x201.
|
|
*/
|
|
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
|
|
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
|
|
PF_PIPE_SEL_IVB(pipe));
|
|
else
|
|
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
|
|
I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
|
|
I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
|
|
}
|
|
}
|
|
|
|
static void intel_enable_planes(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
enum pipe pipe = to_intel_crtc(crtc)->pipe;
|
|
struct drm_plane *plane;
|
|
struct intel_plane *intel_plane;
|
|
|
|
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
|
|
intel_plane = to_intel_plane(plane);
|
|
if (intel_plane->pipe == pipe)
|
|
intel_plane_restore(&intel_plane->base);
|
|
}
|
|
}
|
|
|
|
static void intel_disable_planes(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
enum pipe pipe = to_intel_crtc(crtc)->pipe;
|
|
struct drm_plane *plane;
|
|
struct intel_plane *intel_plane;
|
|
|
|
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
|
|
intel_plane = to_intel_plane(plane);
|
|
if (intel_plane->pipe == pipe)
|
|
intel_plane_disable(&intel_plane->base);
|
|
}
|
|
}
|
|
|
|
void hsw_enable_ips(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!crtc->config.ips_enabled)
|
|
return;
|
|
|
|
/* We can only enable IPS after we enable a plane and wait for a vblank */
|
|
intel_wait_for_vblank(dev, crtc->pipe);
|
|
|
|
assert_plane_enabled(dev_priv, crtc->plane);
|
|
if (IS_BROADWELL(dev)) {
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
/* Quoting Art Runyan: "its not safe to expect any particular
|
|
* value in IPS_CTL bit 31 after enabling IPS through the
|
|
* mailbox." Moreover, the mailbox may return a bogus state,
|
|
* so we need to just enable it and continue on.
|
|
*/
|
|
} else {
|
|
I915_WRITE(IPS_CTL, IPS_ENABLE);
|
|
/* The bit only becomes 1 in the next vblank, so this wait here
|
|
* is essentially intel_wait_for_vblank. If we don't have this
|
|
* and don't wait for vblanks until the end of crtc_enable, then
|
|
* the HW state readout code will complain that the expected
|
|
* IPS_CTL value is not the one we read. */
|
|
if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
|
|
DRM_ERROR("Timed out waiting for IPS enable\n");
|
|
}
|
|
}
|
|
|
|
void hsw_disable_ips(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!crtc->config.ips_enabled)
|
|
return;
|
|
|
|
assert_plane_enabled(dev_priv, crtc->plane);
|
|
if (IS_BROADWELL(dev)) {
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
/* wait for pcode to finish disabling IPS, which may take up to 42ms */
|
|
if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
|
|
DRM_ERROR("Timed out waiting for IPS disable\n");
|
|
} else {
|
|
I915_WRITE(IPS_CTL, 0);
|
|
POSTING_READ(IPS_CTL);
|
|
}
|
|
|
|
/* We need to wait for a vblank before we can disable the plane. */
|
|
intel_wait_for_vblank(dev, crtc->pipe);
|
|
}
|
|
|
|
/** Loads the palette/gamma unit for the CRTC with the prepared values */
|
|
static void intel_crtc_load_lut(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
int palreg = PALETTE(pipe);
|
|
int i;
|
|
bool reenable_ips = false;
|
|
|
|
/* The clocks have to be on to load the palette. */
|
|
if (!crtc->enabled || !intel_crtc->active)
|
|
return;
|
|
|
|
if (!HAS_PCH_SPLIT(dev_priv->dev)) {
|
|
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
|
|
assert_dsi_pll_enabled(dev_priv);
|
|
else
|
|
assert_pll_enabled(dev_priv, pipe);
|
|
}
|
|
|
|
/* use legacy palette for Ironlake */
|
|
if (!HAS_GMCH_DISPLAY(dev))
|
|
palreg = LGC_PALETTE(pipe);
|
|
|
|
/* Workaround : Do not read or write the pipe palette/gamma data while
|
|
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
|
|
*/
|
|
if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
|
|
((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
|
|
GAMMA_MODE_MODE_SPLIT)) {
|
|
hsw_disable_ips(intel_crtc);
|
|
reenable_ips = true;
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
I915_WRITE(palreg + 4 * i,
|
|
(intel_crtc->lut_r[i] << 16) |
|
|
(intel_crtc->lut_g[i] << 8) |
|
|
intel_crtc->lut_b[i]);
|
|
}
|
|
|
|
if (reenable_ips)
|
|
hsw_enable_ips(intel_crtc);
|
|
}
|
|
|
|
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
|
|
{
|
|
if (!enable && intel_crtc->overlay) {
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->mm.interruptible = false;
|
|
// (void) intel_overlay_switch_off(intel_crtc->overlay);
|
|
dev_priv->mm.interruptible = true;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/* Let userspace switch the overlay on again. In most cases userspace
|
|
* has to recompute where to put it anyway.
|
|
*/
|
|
}
|
|
|
|
static void intel_crtc_enable_planes(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
intel_enable_primary_hw_plane(crtc->primary, crtc);
|
|
intel_enable_planes(crtc);
|
|
intel_crtc_update_cursor(crtc, true);
|
|
intel_crtc_dpms_overlay(intel_crtc, true);
|
|
|
|
hsw_enable_ips(intel_crtc);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/*
|
|
* FIXME: Once we grow proper nuclear flip support out of this we need
|
|
* to compute the mask of flip planes precisely. For the time being
|
|
* consider this a flip from a NULL plane.
|
|
*/
|
|
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
|
|
}
|
|
|
|
static void intel_crtc_disable_planes(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
|
|
|
|
if (dev_priv->fbc.plane == plane)
|
|
intel_disable_fbc(dev);
|
|
|
|
hsw_disable_ips(intel_crtc);
|
|
|
|
intel_crtc_dpms_overlay(intel_crtc, false);
|
|
intel_crtc_update_cursor(crtc, false);
|
|
intel_disable_planes(crtc);
|
|
intel_disable_primary_hw_plane(crtc->primary, crtc);
|
|
|
|
/*
|
|
* FIXME: Once we grow proper nuclear flip support out of this we need
|
|
* to compute the mask of flip planes precisely. For the time being
|
|
* consider this a flip to a NULL plane.
|
|
*/
|
|
// intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
|
|
}
|
|
|
|
static void ironlake_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
if (intel_crtc->active)
|
|
return;
|
|
|
|
if (intel_crtc->config.has_pch_encoder)
|
|
intel_prepare_shared_dpll(intel_crtc);
|
|
|
|
if (intel_crtc->config.has_dp_encoder)
|
|
intel_dp_set_m_n(intel_crtc);
|
|
|
|
intel_set_pipe_timings(intel_crtc);
|
|
|
|
if (intel_crtc->config.has_pch_encoder) {
|
|
intel_cpu_transcoder_set_m_n(intel_crtc,
|
|
&intel_crtc->config.fdi_m_n, NULL);
|
|
}
|
|
|
|
ironlake_set_pipeconf(crtc);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
if (intel_crtc->config.has_pch_encoder) {
|
|
/* Note: FDI PLL enabling _must_ be done before we enable the
|
|
* cpu pipes, hence this is separate from all the other fdi/pch
|
|
* enabling. */
|
|
ironlake_fdi_pll_enable(intel_crtc);
|
|
} else {
|
|
assert_fdi_tx_disabled(dev_priv, pipe);
|
|
assert_fdi_rx_disabled(dev_priv, pipe);
|
|
}
|
|
|
|
ironlake_pfit_enable(intel_crtc);
|
|
|
|
/*
|
|
* On ILK+ LUT must be loaded before the pipe is running but with
|
|
* clocks enabled
|
|
*/
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
intel_update_watermarks(crtc);
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
if (intel_crtc->config.has_pch_encoder)
|
|
ironlake_pch_enable(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
|
|
if (HAS_PCH_CPT(dev))
|
|
cpt_verify_modeset(dev, intel_crtc->pipe);
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
intel_crtc_enable_planes(crtc);
|
|
}
|
|
|
|
/* IPS only exists on ULT machines and is tied to pipe A. */
|
|
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
|
|
{
|
|
return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
|
|
}
|
|
|
|
/*
|
|
* This implements the workaround described in the "notes" section of the mode
|
|
* set sequence documentation. When going from no pipes or single pipe to
|
|
* multiple pipes, and planes are enabled after the pipe, we need to wait at
|
|
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
|
|
*/
|
|
static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_crtc *crtc_it, *other_active_crtc = NULL;
|
|
|
|
/* We want to get the other_active_crtc only if there's only 1 other
|
|
* active crtc. */
|
|
for_each_intel_crtc(dev, crtc_it) {
|
|
if (!crtc_it->active || crtc_it == crtc)
|
|
continue;
|
|
|
|
if (other_active_crtc)
|
|
return;
|
|
|
|
other_active_crtc = crtc_it;
|
|
}
|
|
if (!other_active_crtc)
|
|
return;
|
|
|
|
intel_wait_for_vblank(dev, other_active_crtc->pipe);
|
|
intel_wait_for_vblank(dev, other_active_crtc->pipe);
|
|
}
|
|
|
|
static void haswell_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
if (intel_crtc->active)
|
|
return;
|
|
|
|
if (intel_crtc_to_shared_dpll(intel_crtc))
|
|
intel_enable_shared_dpll(intel_crtc);
|
|
|
|
if (intel_crtc->config.has_dp_encoder)
|
|
intel_dp_set_m_n(intel_crtc);
|
|
|
|
intel_set_pipe_timings(intel_crtc);
|
|
|
|
if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
|
|
I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
|
|
intel_crtc->config.pixel_multiplier - 1);
|
|
}
|
|
|
|
if (intel_crtc->config.has_pch_encoder) {
|
|
intel_cpu_transcoder_set_m_n(intel_crtc,
|
|
&intel_crtc->config.fdi_m_n, NULL);
|
|
}
|
|
|
|
haswell_set_pipeconf(crtc);
|
|
|
|
intel_set_pipe_csc(crtc);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
if (intel_crtc->config.has_pch_encoder) {
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
|
|
true);
|
|
dev_priv->display.fdi_link_train(crtc);
|
|
}
|
|
|
|
intel_ddi_enable_pipe_clock(intel_crtc);
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
skylake_pfit_enable(intel_crtc);
|
|
else
|
|
ironlake_pfit_enable(intel_crtc);
|
|
|
|
/*
|
|
* On ILK+ LUT must be loaded before the pipe is running but with
|
|
* clocks enabled
|
|
*/
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
intel_ddi_set_pipe_settings(crtc);
|
|
intel_ddi_enable_transcoder_func(crtc);
|
|
|
|
intel_update_watermarks(crtc);
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
if (intel_crtc->config.has_pch_encoder)
|
|
lpt_pch_enable(crtc);
|
|
|
|
if (intel_crtc->config.dp_encoder_is_mst)
|
|
intel_ddi_set_vc_payload_alloc(crtc, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
encoder->enable(encoder);
|
|
intel_opregion_notify_encoder(encoder, true);
|
|
}
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
/* If we change the relative order between pipe/planes enabling, we need
|
|
* to change the workaround. */
|
|
haswell_mode_set_planes_workaround(intel_crtc);
|
|
intel_crtc_enable_planes(crtc);
|
|
}
|
|
|
|
static void skylake_pfit_disable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
|
|
/* To avoid upsetting the power well on haswell only disable the pfit if
|
|
* it's in use. The hw state code will make sure we get this right. */
|
|
if (crtc->config.pch_pfit.enabled) {
|
|
I915_WRITE(PS_CTL(pipe), 0);
|
|
I915_WRITE(PS_WIN_POS(pipe), 0);
|
|
I915_WRITE(PS_WIN_SZ(pipe), 0);
|
|
}
|
|
}
|
|
|
|
static void ironlake_pfit_disable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
|
|
/* To avoid upsetting the power well on haswell only disable the pfit if
|
|
* it's in use. The hw state code will make sure we get this right. */
|
|
if (crtc->config.pch_pfit.enabled) {
|
|
I915_WRITE(PF_CTL(pipe), 0);
|
|
I915_WRITE(PF_WIN_POS(pipe), 0);
|
|
I915_WRITE(PF_WIN_SZ(pipe), 0);
|
|
}
|
|
}
|
|
|
|
static void ironlake_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
u32 reg, temp;
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
intel_crtc_disable_planes(crtc);
|
|
|
|
drm_crtc_vblank_off(crtc);
|
|
assert_vblank_disabled(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->disable(encoder);
|
|
|
|
if (intel_crtc->config.has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
|
|
intel_disable_pipe(intel_crtc);
|
|
|
|
ironlake_pfit_disable(intel_crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
if (intel_crtc->config.has_pch_encoder) {
|
|
ironlake_fdi_disable(crtc);
|
|
|
|
ironlake_disable_pch_transcoder(dev_priv, pipe);
|
|
|
|
if (HAS_PCH_CPT(dev)) {
|
|
/* disable TRANS_DP_CTL */
|
|
reg = TRANS_DP_CTL(pipe);
|
|
temp = I915_READ(reg);
|
|
temp &= ~(TRANS_DP_OUTPUT_ENABLE |
|
|
TRANS_DP_PORT_SEL_MASK);
|
|
temp |= TRANS_DP_PORT_SEL_NONE;
|
|
I915_WRITE(reg, temp);
|
|
|
|
/* disable DPLL_SEL */
|
|
temp = I915_READ(PCH_DPLL_SEL);
|
|
temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
|
|
I915_WRITE(PCH_DPLL_SEL, temp);
|
|
}
|
|
|
|
/* disable PCH DPLL */
|
|
intel_disable_shared_dpll(intel_crtc);
|
|
|
|
ironlake_fdi_pll_disable(intel_crtc);
|
|
}
|
|
|
|
intel_crtc->active = false;
|
|
intel_update_watermarks(crtc);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
static void haswell_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
intel_crtc_disable_planes(crtc);
|
|
|
|
drm_crtc_vblank_off(crtc);
|
|
assert_vblank_disabled(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder) {
|
|
intel_opregion_notify_encoder(encoder, false);
|
|
encoder->disable(encoder);
|
|
}
|
|
|
|
if (intel_crtc->config.has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
|
|
false);
|
|
intel_disable_pipe(intel_crtc);
|
|
|
|
if (intel_crtc->config.dp_encoder_is_mst)
|
|
intel_ddi_set_vc_payload_alloc(crtc, false);
|
|
|
|
intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
skylake_pfit_disable(intel_crtc);
|
|
else
|
|
ironlake_pfit_disable(intel_crtc);
|
|
|
|
intel_ddi_disable_pipe_clock(intel_crtc);
|
|
|
|
if (intel_crtc->config.has_pch_encoder) {
|
|
lpt_disable_pch_transcoder(dev_priv);
|
|
intel_ddi_fdi_disable(crtc);
|
|
}
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
intel_crtc->active = false;
|
|
intel_update_watermarks(crtc);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (intel_crtc_to_shared_dpll(intel_crtc))
|
|
intel_disable_shared_dpll(intel_crtc);
|
|
}
|
|
|
|
static void ironlake_crtc_off(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
intel_put_shared_dpll(intel_crtc);
|
|
}
|
|
|
|
|
|
static void i9xx_pfit_enable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc_config *pipe_config = &crtc->config;
|
|
|
|
if (!crtc->config.gmch_pfit.control)
|
|
return;
|
|
|
|
/*
|
|
* The panel fitter should only be adjusted whilst the pipe is disabled,
|
|
* according to register description and PRM.
|
|
*/
|
|
WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
|
|
I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
|
|
|
|
/* Border color in case we don't scale up to the full screen. Black by
|
|
* default, change to something else for debugging. */
|
|
I915_WRITE(BCLRPAT(crtc->pipe), 0);
|
|
}
|
|
|
|
static enum intel_display_power_domain port_to_power_domain(enum port port)
|
|
{
|
|
switch (port) {
|
|
case PORT_A:
|
|
return POWER_DOMAIN_PORT_DDI_A_4_LANES;
|
|
case PORT_B:
|
|
return POWER_DOMAIN_PORT_DDI_B_4_LANES;
|
|
case PORT_C:
|
|
return POWER_DOMAIN_PORT_DDI_C_4_LANES;
|
|
case PORT_D:
|
|
return POWER_DOMAIN_PORT_DDI_D_4_LANES;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return POWER_DOMAIN_PORT_OTHER;
|
|
}
|
|
}
|
|
|
|
#define for_each_power_domain(domain, mask) \
|
|
for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
|
|
if ((1 << (domain)) & (mask))
|
|
|
|
enum intel_display_power_domain
|
|
intel_display_port_power_domain(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct intel_digital_port *intel_dig_port;
|
|
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_UNKNOWN:
|
|
/* Only DDI platforms should ever use this output type */
|
|
WARN_ON_ONCE(!HAS_DDI(dev));
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
case INTEL_OUTPUT_HDMI:
|
|
case INTEL_OUTPUT_EDP:
|
|
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
|
|
return port_to_power_domain(intel_dig_port->port);
|
|
case INTEL_OUTPUT_DP_MST:
|
|
intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
|
|
return port_to_power_domain(intel_dig_port->port);
|
|
case INTEL_OUTPUT_ANALOG:
|
|
return POWER_DOMAIN_PORT_CRT;
|
|
case INTEL_OUTPUT_DSI:
|
|
return POWER_DOMAIN_PORT_DSI;
|
|
default:
|
|
return POWER_DOMAIN_PORT_OTHER;
|
|
}
|
|
}
|
|
|
|
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *intel_encoder;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
unsigned long mask;
|
|
enum transcoder transcoder;
|
|
|
|
transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
|
|
|
|
mask = BIT(POWER_DOMAIN_PIPE(pipe));
|
|
mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
|
|
if (intel_crtc->config.pch_pfit.enabled ||
|
|
intel_crtc->config.pch_pfit.force_thru)
|
|
mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
|
|
mask |= BIT(intel_display_port_power_domain(intel_encoder));
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void modeset_update_crtc_power_domains(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
|
|
struct intel_crtc *crtc;
|
|
|
|
/*
|
|
* First get all needed power domains, then put all unneeded, to avoid
|
|
* any unnecessary toggling of the power wells.
|
|
*/
|
|
for_each_intel_crtc(dev, crtc) {
|
|
enum intel_display_power_domain domain;
|
|
|
|
if (!crtc->base.enabled)
|
|
continue;
|
|
|
|
pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
|
|
|
|
for_each_power_domain(domain, pipe_domains[crtc->pipe])
|
|
intel_display_power_get(dev_priv, domain);
|
|
}
|
|
|
|
if (dev_priv->display.modeset_global_resources)
|
|
dev_priv->display.modeset_global_resources(dev);
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
enum intel_display_power_domain domain;
|
|
|
|
for_each_power_domain(domain, crtc->enabled_power_domains)
|
|
intel_display_power_put(dev_priv, domain);
|
|
|
|
crtc->enabled_power_domains = pipe_domains[crtc->pipe];
|
|
}
|
|
|
|
intel_display_set_init_power(dev_priv, false);
|
|
}
|
|
|
|
/* returns HPLL frequency in kHz */
|
|
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
|
|
{
|
|
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
|
|
|
|
/* Obtain SKU information */
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
|
|
CCK_FUSE_HPLL_FREQ_MASK;
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
return vco_freq[hpll_freq] * 1000;
|
|
}
|
|
|
|
static void vlv_update_cdclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
|
|
DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
|
|
dev_priv->vlv_cdclk_freq);
|
|
|
|
/*
|
|
* Program the gmbus_freq based on the cdclk frequency.
|
|
* BSpec erroneously claims we should aim for 4MHz, but
|
|
* in fact 1MHz is the correct frequency.
|
|
*/
|
|
I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
|
|
}
|
|
|
|
/* Adjust CDclk dividers to allow high res or save power if possible */
|
|
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val, cmd;
|
|
|
|
WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
|
|
|
|
if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
|
|
cmd = 2;
|
|
else if (cdclk == 266667)
|
|
cmd = 1;
|
|
else
|
|
cmd = 0;
|
|
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
|
|
val &= ~DSPFREQGUAR_MASK;
|
|
val |= (cmd << DSPFREQGUAR_SHIFT);
|
|
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
|
|
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
|
|
DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
|
|
50)) {
|
|
DRM_ERROR("timed out waiting for CDclk change\n");
|
|
}
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
if (cdclk == 400000) {
|
|
u32 divider;
|
|
|
|
divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
/* adjust cdclk divider */
|
|
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
|
|
val &= ~DISPLAY_FREQUENCY_VALUES;
|
|
val |= divider;
|
|
vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
|
|
|
|
if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
|
|
DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
|
|
50))
|
|
DRM_ERROR("timed out waiting for CDclk change\n");
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
/* adjust self-refresh exit latency value */
|
|
val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
|
|
val &= ~0x7f;
|
|
|
|
/*
|
|
* For high bandwidth configs, we set a higher latency in the bunit
|
|
* so that the core display fetch happens in time to avoid underruns.
|
|
*/
|
|
if (cdclk == 400000)
|
|
val |= 4500 / 250; /* 4.5 usec */
|
|
else
|
|
val |= 3000 / 250; /* 3.0 usec */
|
|
vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
vlv_update_cdclk(dev);
|
|
}
|
|
|
|
static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val, cmd;
|
|
|
|
WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
|
|
|
|
switch (cdclk) {
|
|
case 400000:
|
|
cmd = 3;
|
|
break;
|
|
case 333333:
|
|
case 320000:
|
|
cmd = 2;
|
|
break;
|
|
case 266667:
|
|
cmd = 1;
|
|
break;
|
|
case 200000:
|
|
cmd = 0;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
|
|
val &= ~DSPFREQGUAR_MASK_CHV;
|
|
val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
|
|
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
|
|
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
|
|
DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
|
|
50)) {
|
|
DRM_ERROR("timed out waiting for CDclk change\n");
|
|
}
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
|
|
vlv_update_cdclk(dev);
|
|
}
|
|
|
|
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
|
|
int max_pixclk)
|
|
{
|
|
int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
|
|
|
|
/* FIXME: Punit isn't quite ready yet */
|
|
if (IS_CHERRYVIEW(dev_priv->dev))
|
|
return 400000;
|
|
|
|
/*
|
|
* Really only a few cases to deal with, as only 4 CDclks are supported:
|
|
* 200MHz
|
|
* 267MHz
|
|
* 320/333MHz (depends on HPLL freq)
|
|
* 400MHz
|
|
* So we check to see whether we're above 90% of the lower bin and
|
|
* adjust if needed.
|
|
*
|
|
* We seem to get an unstable or solid color picture at 200MHz.
|
|
* Not sure what's wrong. For now use 200MHz only when all pipes
|
|
* are off.
|
|
*/
|
|
if (max_pixclk > freq_320*9/10)
|
|
return 400000;
|
|
else if (max_pixclk > 266667*9/10)
|
|
return freq_320;
|
|
else if (max_pixclk > 0)
|
|
return 266667;
|
|
else
|
|
return 200000;
|
|
}
|
|
|
|
/* compute the max pixel clock for new configuration */
|
|
static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct intel_crtc *intel_crtc;
|
|
int max_pixclk = 0;
|
|
|
|
for_each_intel_crtc(dev, intel_crtc) {
|
|
if (intel_crtc->new_enabled)
|
|
max_pixclk = max(max_pixclk,
|
|
intel_crtc->new_config->adjusted_mode.crtc_clock);
|
|
}
|
|
|
|
return max_pixclk;
|
|
}
|
|
|
|
static void valleyview_modeset_global_pipes(struct drm_device *dev,
|
|
unsigned *prepare_pipes)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc;
|
|
int max_pixclk = intel_mode_max_pixclk(dev_priv);
|
|
|
|
if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
|
|
dev_priv->vlv_cdclk_freq)
|
|
return;
|
|
|
|
/* disable/enable all currently active pipes while we change cdclk */
|
|
for_each_intel_crtc(dev, intel_crtc)
|
|
if (intel_crtc->base.enabled)
|
|
*prepare_pipes |= (1 << intel_crtc->pipe);
|
|
}
|
|
|
|
static void valleyview_modeset_global_resources(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int max_pixclk = intel_mode_max_pixclk(dev_priv);
|
|
int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
|
|
|
|
if (req_cdclk != dev_priv->vlv_cdclk_freq) {
|
|
/*
|
|
* FIXME: We can end up here with all power domains off, yet
|
|
* with a CDCLK frequency other than the minimum. To account
|
|
* for this take the PIPE-A power domain, which covers the HW
|
|
* blocks needed for the following programming. This can be
|
|
* removed once it's guaranteed that we get here either with
|
|
* the minimum CDCLK set, or the required power domains
|
|
* enabled.
|
|
*/
|
|
intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
cherryview_set_cdclk(dev, req_cdclk);
|
|
else
|
|
valleyview_set_cdclk(dev, req_cdclk);
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
|
|
}
|
|
}
|
|
|
|
static void valleyview_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
bool is_dsi;
|
|
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
if (intel_crtc->active)
|
|
return;
|
|
|
|
is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
|
|
|
|
if (!is_dsi) {
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_prepare_pll(intel_crtc, &intel_crtc->config);
|
|
else
|
|
vlv_prepare_pll(intel_crtc, &intel_crtc->config);
|
|
}
|
|
|
|
if (intel_crtc->config.has_dp_encoder)
|
|
intel_dp_set_m_n(intel_crtc);
|
|
|
|
intel_set_pipe_timings(intel_crtc);
|
|
|
|
if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
|
|
I915_WRITE(CHV_CANVAS(pipe), 0);
|
|
}
|
|
|
|
i9xx_set_pipeconf(intel_crtc);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_pll_enable)
|
|
encoder->pre_pll_enable(encoder);
|
|
|
|
if (!is_dsi) {
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_enable_pll(intel_crtc, &intel_crtc->config);
|
|
else
|
|
vlv_enable_pll(intel_crtc, &intel_crtc->config);
|
|
}
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
i9xx_pfit_enable(intel_crtc);
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
intel_update_watermarks(crtc);
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
intel_crtc_enable_planes(crtc);
|
|
|
|
/* Underruns don't raise interrupts, so check manually. */
|
|
i9xx_check_fifo_underruns(dev_priv);
|
|
}
|
|
|
|
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
|
|
I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
|
|
}
|
|
|
|
static void i9xx_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
if (intel_crtc->active)
|
|
return;
|
|
|
|
i9xx_set_pll_dividers(intel_crtc);
|
|
|
|
if (intel_crtc->config.has_dp_encoder)
|
|
intel_dp_set_m_n(intel_crtc);
|
|
|
|
intel_set_pipe_timings(intel_crtc);
|
|
|
|
i9xx_set_pipeconf(intel_crtc);
|
|
|
|
intel_crtc->active = true;
|
|
|
|
if (!IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->pre_enable)
|
|
encoder->pre_enable(encoder);
|
|
|
|
i9xx_enable_pll(intel_crtc);
|
|
|
|
i9xx_pfit_enable(intel_crtc);
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
intel_update_watermarks(crtc);
|
|
intel_enable_pipe(intel_crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->enable(encoder);
|
|
|
|
assert_vblank_disabled(crtc);
|
|
drm_crtc_vblank_on(crtc);
|
|
|
|
intel_crtc_enable_planes(crtc);
|
|
|
|
/*
|
|
* Gen2 reports pipe underruns whenever all planes are disabled.
|
|
* So don't enable underrun reporting before at least some planes
|
|
* are enabled.
|
|
* FIXME: Need to fix the logic to work when we turn off all planes
|
|
* but leave the pipe running.
|
|
*/
|
|
if (IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
|
|
|
|
/* Underruns don't raise interrupts, so check manually. */
|
|
i9xx_check_fifo_underruns(dev_priv);
|
|
}
|
|
|
|
static void i9xx_pfit_disable(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!crtc->config.gmch_pfit.control)
|
|
return;
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
|
|
DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
|
|
I915_READ(PFIT_CONTROL));
|
|
I915_WRITE(PFIT_CONTROL, 0);
|
|
}
|
|
|
|
static void i9xx_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *encoder;
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
/*
|
|
* Gen2 reports pipe underruns whenever all planes are disabled.
|
|
* So diasble underrun reporting before all the planes get disabled.
|
|
* FIXME: Need to fix the logic to work when we turn off all planes
|
|
* but leave the pipe running.
|
|
*/
|
|
if (IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
|
|
/*
|
|
* Vblank time updates from the shadow to live plane control register
|
|
* are blocked if the memory self-refresh mode is active at that
|
|
* moment. So to make sure the plane gets truly disabled, disable
|
|
* first the self-refresh mode. The self-refresh enable bit in turn
|
|
* will be checked/applied by the HW only at the next frame start
|
|
* event which is after the vblank start event, so we need to have a
|
|
* wait-for-vblank between disabling the plane and the pipe.
|
|
*/
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
intel_crtc_disable_planes(crtc);
|
|
|
|
/*
|
|
* On gen2 planes are double buffered but the pipe isn't, so we must
|
|
* wait for planes to fully turn off before disabling the pipe.
|
|
* We also need to wait on all gmch platforms because of the
|
|
* self-refresh mode constraint explained above.
|
|
*/
|
|
intel_wait_for_vblank(dev, pipe);
|
|
|
|
drm_crtc_vblank_off(crtc);
|
|
assert_vblank_disabled(crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
encoder->disable(encoder);
|
|
|
|
intel_disable_pipe(intel_crtc);
|
|
|
|
i9xx_pfit_disable(intel_crtc);
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, encoder)
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
|
|
if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_disable_pll(dev_priv, pipe);
|
|
else if (IS_VALLEYVIEW(dev))
|
|
vlv_disable_pll(dev_priv, pipe);
|
|
else
|
|
i9xx_disable_pll(intel_crtc);
|
|
}
|
|
|
|
if (!IS_GEN2(dev))
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
|
|
|
|
intel_crtc->active = false;
|
|
intel_update_watermarks(crtc);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
static void i9xx_crtc_off(struct drm_crtc *crtc)
|
|
{
|
|
}
|
|
|
|
/* Master function to enable/disable CRTC and corresponding power wells */
|
|
void intel_crtc_control(struct drm_crtc *crtc, bool enable)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum intel_display_power_domain domain;
|
|
unsigned long domains;
|
|
|
|
if (enable) {
|
|
if (!intel_crtc->active) {
|
|
domains = get_crtc_power_domains(crtc);
|
|
for_each_power_domain(domain, domains)
|
|
intel_display_power_get(dev_priv, domain);
|
|
intel_crtc->enabled_power_domains = domains;
|
|
|
|
dev_priv->display.crtc_enable(crtc);
|
|
}
|
|
} else {
|
|
if (intel_crtc->active) {
|
|
dev_priv->display.crtc_disable(crtc);
|
|
|
|
domains = intel_crtc->enabled_power_domains;
|
|
for_each_power_domain(domain, domains)
|
|
intel_display_power_put(dev_priv, domain);
|
|
intel_crtc->enabled_power_domains = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the power management mode of the pipe and plane.
|
|
*/
|
|
void intel_crtc_update_dpms(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *intel_encoder;
|
|
bool enable = false;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
|
|
enable |= intel_encoder->connectors_active;
|
|
|
|
intel_crtc_control(crtc, enable);
|
|
}
|
|
|
|
static void intel_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_connector *connector;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
|
|
enum pipe pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
/* crtc should still be enabled when we disable it. */
|
|
WARN_ON(!crtc->enabled);
|
|
|
|
dev_priv->display.crtc_disable(crtc);
|
|
dev_priv->display.off(crtc);
|
|
|
|
if (crtc->primary->fb) {
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_unpin_fb_obj(old_obj);
|
|
i915_gem_track_fb(old_obj, NULL,
|
|
INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
crtc->primary->fb = NULL;
|
|
}
|
|
|
|
/* Update computed state. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
if (!connector->encoder || !connector->encoder->crtc)
|
|
continue;
|
|
|
|
if (connector->encoder->crtc != crtc)
|
|
continue;
|
|
|
|
connector->dpms = DRM_MODE_DPMS_OFF;
|
|
to_intel_encoder(connector->encoder)->connectors_active = false;
|
|
}
|
|
}
|
|
|
|
void intel_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
|
|
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(intel_encoder);
|
|
}
|
|
|
|
/* Simple dpms helper for encoders with just one connector, no cloning and only
|
|
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
|
|
* state of the entire output pipe. */
|
|
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
|
|
{
|
|
if (mode == DRM_MODE_DPMS_ON) {
|
|
encoder->connectors_active = true;
|
|
|
|
intel_crtc_update_dpms(encoder->base.crtc);
|
|
} else {
|
|
encoder->connectors_active = false;
|
|
|
|
intel_crtc_update_dpms(encoder->base.crtc);
|
|
}
|
|
}
|
|
|
|
/* Cross check the actual hw state with our own modeset state tracking (and it's
|
|
* internal consistency). */
|
|
static void intel_connector_check_state(struct intel_connector *connector)
|
|
{
|
|
if (connector->get_hw_state(connector)) {
|
|
struct intel_encoder *encoder = connector->encoder;
|
|
struct drm_crtc *crtc;
|
|
bool encoder_enabled;
|
|
enum pipe pipe;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.base.id,
|
|
connector->base.name);
|
|
|
|
/* there is no real hw state for MST connectors */
|
|
if (connector->mst_port)
|
|
return;
|
|
|
|
WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
|
|
"wrong connector dpms state\n");
|
|
WARN(connector->base.encoder != &encoder->base,
|
|
"active connector not linked to encoder\n");
|
|
|
|
if (encoder) {
|
|
WARN(!encoder->connectors_active,
|
|
"encoder->connectors_active not set\n");
|
|
|
|
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
|
|
WARN(!encoder_enabled, "encoder not enabled\n");
|
|
if (WARN_ON(!encoder->base.crtc))
|
|
return;
|
|
|
|
crtc = encoder->base.crtc;
|
|
|
|
WARN(!crtc->enabled, "crtc not enabled\n");
|
|
WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
|
|
WARN(pipe != to_intel_crtc(crtc)->pipe,
|
|
"encoder active on the wrong pipe\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Even simpler default implementation, if there's really no special case to
|
|
* consider. */
|
|
void intel_connector_dpms(struct drm_connector *connector, int mode)
|
|
{
|
|
/* All the simple cases only support two dpms states. */
|
|
if (mode != DRM_MODE_DPMS_ON)
|
|
mode = DRM_MODE_DPMS_OFF;
|
|
|
|
if (mode == connector->dpms)
|
|
return;
|
|
|
|
connector->dpms = mode;
|
|
|
|
/* Only need to change hw state when actually enabled */
|
|
if (connector->encoder)
|
|
intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
|
|
|
|
intel_modeset_check_state(connector->dev);
|
|
}
|
|
|
|
/* Simple connector->get_hw_state implementation for encoders that support only
|
|
* one connector and no cloning and hence the encoder state determines the state
|
|
* of the connector. */
|
|
bool intel_connector_get_hw_state(struct intel_connector *connector)
|
|
{
|
|
enum pipe pipe = 0;
|
|
struct intel_encoder *encoder = connector->encoder;
|
|
|
|
return encoder->get_hw_state(encoder, &pipe);
|
|
}
|
|
|
|
static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *pipe_B_crtc =
|
|
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
|
|
|
|
DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
if (pipe_config->fdi_lanes > 4) {
|
|
DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
return false;
|
|
}
|
|
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
|
|
if (pipe_config->fdi_lanes > 2) {
|
|
DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
|
|
pipe_config->fdi_lanes);
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->num_pipes == 2)
|
|
return true;
|
|
|
|
/* Ivybridge 3 pipe is really complicated */
|
|
switch (pipe) {
|
|
case PIPE_A:
|
|
return true;
|
|
case PIPE_B:
|
|
if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
|
|
pipe_config->fdi_lanes > 2) {
|
|
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
return false;
|
|
}
|
|
return true;
|
|
case PIPE_C:
|
|
if (!pipe_has_enabled_pch(pipe_B_crtc) ||
|
|
pipe_B_crtc->config.fdi_lanes <= 2) {
|
|
if (pipe_config->fdi_lanes > 2) {
|
|
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
|
|
pipe_name(pipe), pipe_config->fdi_lanes);
|
|
return false;
|
|
}
|
|
} else {
|
|
DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
#define RETRY 1
|
|
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
|
|
int lane, link_bw, fdi_dotclock;
|
|
bool setup_ok, needs_recompute = false;
|
|
|
|
retry:
|
|
/* FDI is a binary signal running at ~2.7GHz, encoding
|
|
* each output octet as 10 bits. The actual frequency
|
|
* is stored as a divider into a 100MHz clock, and the
|
|
* mode pixel clock is stored in units of 1KHz.
|
|
* Hence the bw of each lane in terms of the mode signal
|
|
* is:
|
|
*/
|
|
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
|
|
|
|
fdi_dotclock = adjusted_mode->crtc_clock;
|
|
|
|
lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
|
|
pipe_config->pipe_bpp);
|
|
|
|
pipe_config->fdi_lanes = lane;
|
|
|
|
intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
|
|
link_bw, &pipe_config->fdi_m_n);
|
|
|
|
setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
|
|
intel_crtc->pipe, pipe_config);
|
|
if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
|
|
pipe_config->pipe_bpp -= 2*3;
|
|
DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
|
|
pipe_config->pipe_bpp);
|
|
needs_recompute = true;
|
|
pipe_config->bw_constrained = true;
|
|
|
|
goto retry;
|
|
}
|
|
|
|
if (needs_recompute)
|
|
return RETRY;
|
|
|
|
return setup_ok ? 0 : -EINVAL;
|
|
}
|
|
|
|
static void hsw_compute_ips_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
pipe_config->ips_enabled = i915.enable_ips &&
|
|
hsw_crtc_supports_ips(crtc) &&
|
|
pipe_config->pipe_bpp <= 24;
|
|
}
|
|
|
|
static int intel_crtc_compute_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
|
|
|
|
/* FIXME should check pixel clock limits on all platforms */
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
int clock_limit =
|
|
dev_priv->display.get_display_clock_speed(dev);
|
|
|
|
/*
|
|
* Enable pixel doubling when the dot clock
|
|
* is > 90% of the (display) core speed.
|
|
*
|
|
* GDG double wide on either pipe,
|
|
* otherwise pipe A only.
|
|
*/
|
|
if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
|
|
adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
|
|
clock_limit *= 2;
|
|
pipe_config->double_wide = true;
|
|
}
|
|
|
|
if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Pipe horizontal size must be even in:
|
|
* - DVO ganged mode
|
|
* - LVDS dual channel mode
|
|
* - Double wide pipe
|
|
*/
|
|
if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
|
|
pipe_config->pipe_src_w &= ~1;
|
|
|
|
/* Cantiga+ cannot handle modes with a hsync front porch of 0.
|
|
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
|
|
*/
|
|
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
|
|
adjusted_mode->hsync_start == adjusted_mode->hdisplay)
|
|
return -EINVAL;
|
|
|
|
if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
|
|
pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
|
|
} else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
|
|
/* only a 8bpc pipe, with 6bpc dither through the panel fitter
|
|
* for lvds. */
|
|
pipe_config->pipe_bpp = 8*3;
|
|
}
|
|
|
|
if (HAS_IPS(dev))
|
|
hsw_compute_ips_config(crtc, pipe_config);
|
|
|
|
if (pipe_config->has_pch_encoder)
|
|
return ironlake_fdi_compute_config(crtc, pipe_config);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int valleyview_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val;
|
|
int divider;
|
|
|
|
/* FIXME: Punit isn't quite ready yet */
|
|
if (IS_CHERRYVIEW(dev))
|
|
return 400000;
|
|
|
|
if (dev_priv->hpll_freq == 0)
|
|
dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
divider = val & DISPLAY_FREQUENCY_VALUES;
|
|
|
|
WARN((val & DISPLAY_FREQUENCY_STATUS) !=
|
|
(divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
|
|
"cdclk change in progress\n");
|
|
|
|
return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
|
|
}
|
|
|
|
static int i945_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 400000;
|
|
}
|
|
|
|
static int i915_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 333000;
|
|
}
|
|
|
|
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 200000;
|
|
}
|
|
|
|
static int pnv_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 gcfgc = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
|
|
case GC_DISPLAY_CLOCK_267_MHZ_PNV:
|
|
return 267000;
|
|
case GC_DISPLAY_CLOCK_333_MHZ_PNV:
|
|
return 333000;
|
|
case GC_DISPLAY_CLOCK_444_MHZ_PNV:
|
|
return 444000;
|
|
case GC_DISPLAY_CLOCK_200_MHZ_PNV:
|
|
return 200000;
|
|
default:
|
|
DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
|
|
case GC_DISPLAY_CLOCK_133_MHZ_PNV:
|
|
return 133000;
|
|
case GC_DISPLAY_CLOCK_167_MHZ_PNV:
|
|
return 167000;
|
|
}
|
|
}
|
|
|
|
static int i915gm_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 gcfgc = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
|
|
return 133000;
|
|
else {
|
|
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
|
|
case GC_DISPLAY_CLOCK_333_MHZ:
|
|
return 333000;
|
|
default:
|
|
case GC_DISPLAY_CLOCK_190_200_MHZ:
|
|
return 190000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int i865_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 266000;
|
|
}
|
|
|
|
static int i855_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 hpllcc = 0;
|
|
/* Assume that the hardware is in the high speed state. This
|
|
* should be the default.
|
|
*/
|
|
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
|
|
case GC_CLOCK_133_200:
|
|
case GC_CLOCK_100_200:
|
|
return 200000;
|
|
case GC_CLOCK_166_250:
|
|
return 250000;
|
|
case GC_CLOCK_100_133:
|
|
return 133000;
|
|
}
|
|
|
|
/* Shouldn't happen */
|
|
return 0;
|
|
}
|
|
|
|
static int i830_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 133000;
|
|
}
|
|
|
|
static void
|
|
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
|
|
{
|
|
while (*num > DATA_LINK_M_N_MASK ||
|
|
*den > DATA_LINK_M_N_MASK) {
|
|
*num >>= 1;
|
|
*den >>= 1;
|
|
}
|
|
}
|
|
|
|
static void compute_m_n(unsigned int m, unsigned int n,
|
|
uint32_t *ret_m, uint32_t *ret_n)
|
|
{
|
|
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
|
|
*ret_m = div_u64((uint64_t) m * *ret_n, n);
|
|
intel_reduce_m_n_ratio(ret_m, ret_n);
|
|
}
|
|
|
|
void
|
|
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
|
|
int pixel_clock, int link_clock,
|
|
struct intel_link_m_n *m_n)
|
|
{
|
|
m_n->tu = 64;
|
|
|
|
compute_m_n(bits_per_pixel * pixel_clock,
|
|
link_clock * nlanes * 8,
|
|
&m_n->gmch_m, &m_n->gmch_n);
|
|
|
|
compute_m_n(pixel_clock, link_clock,
|
|
&m_n->link_m, &m_n->link_n);
|
|
}
|
|
|
|
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (i915.panel_use_ssc >= 0)
|
|
return i915.panel_use_ssc != 0;
|
|
return dev_priv->vbt.lvds_use_ssc
|
|
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
|
|
}
|
|
|
|
static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int refclk;
|
|
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
refclk = 100000;
|
|
} else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
|
|
refclk = dev_priv->vbt.lvds_ssc_freq;
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
|
|
} else if (!IS_GEN2(dev)) {
|
|
refclk = 96000;
|
|
} else {
|
|
refclk = 48000;
|
|
}
|
|
|
|
return refclk;
|
|
}
|
|
|
|
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
|
|
{
|
|
return (1 << dpll->n) << 16 | dpll->m2;
|
|
}
|
|
|
|
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
|
|
{
|
|
return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
|
|
}
|
|
|
|
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
|
|
intel_clock_t *reduced_clock)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
u32 fp, fp2 = 0;
|
|
|
|
if (IS_PINEVIEW(dev)) {
|
|
fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
|
|
if (reduced_clock)
|
|
fp2 = pnv_dpll_compute_fp(reduced_clock);
|
|
} else {
|
|
fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
|
|
if (reduced_clock)
|
|
fp2 = i9xx_dpll_compute_fp(reduced_clock);
|
|
}
|
|
|
|
crtc->new_config->dpll_hw_state.fp0 = fp;
|
|
|
|
crtc->lowfreq_avail = false;
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
reduced_clock && i915.powersave) {
|
|
crtc->new_config->dpll_hw_state.fp1 = fp2;
|
|
crtc->lowfreq_avail = true;
|
|
} else {
|
|
crtc->new_config->dpll_hw_state.fp1 = fp;
|
|
}
|
|
}
|
|
|
|
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
|
|
pipe)
|
|
{
|
|
u32 reg_val;
|
|
|
|
/*
|
|
* PLLB opamp always calibrates to max value of 0x3f, force enable it
|
|
* and set it to a reasonable value instead.
|
|
*/
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
|
|
reg_val &= 0xffffff00;
|
|
reg_val |= 0x00000030;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
|
|
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
|
|
reg_val &= 0x8cffffff;
|
|
reg_val = 0x8c000000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
|
|
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
|
|
reg_val &= 0xffffff00;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
|
|
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
|
|
reg_val &= 0x00ffffff;
|
|
reg_val |= 0xb0000000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
|
|
}
|
|
|
|
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
|
|
I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
|
|
I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
|
|
I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
|
|
I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
|
|
}
|
|
|
|
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n,
|
|
struct intel_link_m_n *m2_n2)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
enum transcoder transcoder = crtc->config.cpu_transcoder;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5) {
|
|
I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
|
|
I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
|
|
I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
|
|
I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
|
|
/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
|
|
* for gen < 8) and if DRRS is supported (to make sure the
|
|
* registers are not unnecessarily accessed).
|
|
*/
|
|
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
|
|
crtc->config.has_drrs) {
|
|
I915_WRITE(PIPE_DATA_M2(transcoder),
|
|
TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
|
|
I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
|
|
I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
|
|
I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
|
|
}
|
|
} else {
|
|
I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
|
|
I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
|
|
I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
|
|
I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
|
|
}
|
|
}
|
|
|
|
void intel_dp_set_m_n(struct intel_crtc *crtc)
|
|
{
|
|
if (crtc->config.has_pch_encoder)
|
|
intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
|
|
else
|
|
intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
|
|
&crtc->config.dp_m2_n2);
|
|
}
|
|
|
|
static void vlv_update_pll(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
u32 dpll, dpll_md;
|
|
|
|
/*
|
|
* Enable DPIO clock input. We should never disable the reference
|
|
* clock for pipe B, since VGA hotplug / manual detection depends
|
|
* on it.
|
|
*/
|
|
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
|
|
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
|
|
/* We should never disable this, set it here for state tracking */
|
|
if (crtc->pipe == PIPE_B)
|
|
dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
pipe_config->dpll_hw_state.dpll = dpll;
|
|
|
|
dpll_md = (pipe_config->pixel_multiplier - 1)
|
|
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
pipe_config->dpll_hw_state.dpll_md = dpll_md;
|
|
}
|
|
|
|
static void vlv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
u32 mdiv;
|
|
u32 bestn, bestm1, bestm2, bestp1, bestp2;
|
|
u32 coreclk, reg_val;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
bestn = pipe_config->dpll.n;
|
|
bestm1 = pipe_config->dpll.m1;
|
|
bestm2 = pipe_config->dpll.m2;
|
|
bestp1 = pipe_config->dpll.p1;
|
|
bestp2 = pipe_config->dpll.p2;
|
|
|
|
/* See eDP HDMI DPIO driver vbios notes doc */
|
|
|
|
/* PLL B needs special handling */
|
|
if (pipe == PIPE_B)
|
|
vlv_pllb_recal_opamp(dev_priv, pipe);
|
|
|
|
/* Set up Tx target for periodic Rcomp update */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
|
|
|
|
/* Disable target IRef on PLL */
|
|
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
|
|
reg_val &= 0x00ffffff;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
|
|
|
|
/* Disable fast lock */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
|
|
|
|
/* Set idtafcrecal before PLL is enabled */
|
|
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
|
|
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
|
|
mdiv |= ((bestn << DPIO_N_SHIFT));
|
|
mdiv |= (1 << DPIO_K_SHIFT);
|
|
|
|
/*
|
|
* Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
|
|
* but we don't support that).
|
|
* Note: don't use the DAC post divider as it seems unstable.
|
|
*/
|
|
mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
|
|
|
|
mdiv |= DPIO_ENABLE_CALIBRATION;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
|
|
|
|
/* Set HBR and RBR LPF coefficients */
|
|
if (pipe_config->port_clock == 162000 ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
|
|
0x009f0003);
|
|
else
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
|
|
0x00d0000f);
|
|
|
|
if (crtc->config.has_dp_encoder) {
|
|
/* Use SSC source */
|
|
if (pipe == PIPE_A)
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df40000);
|
|
else
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df70000);
|
|
} else { /* HDMI or VGA */
|
|
/* Use bend source */
|
|
if (pipe == PIPE_A)
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df70000);
|
|
else
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
|
|
0x0df40000);
|
|
}
|
|
|
|
coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
|
|
coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
|
|
coreclk |= 0x01000000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
|
|
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
static void chv_update_pll(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
|
|
DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
|
|
DPLL_VCO_ENABLE;
|
|
if (crtc->pipe != PIPE_A)
|
|
pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
|
|
|
|
pipe_config->dpll_hw_state.dpll_md =
|
|
(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
}
|
|
|
|
static void chv_prepare_pll(struct intel_crtc *crtc,
|
|
const struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = crtc->pipe;
|
|
int dpll_reg = DPLL(crtc->pipe);
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
u32 loopfilter, intcoeff;
|
|
u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
|
|
int refclk;
|
|
|
|
bestn = pipe_config->dpll.n;
|
|
bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
|
|
bestm1 = pipe_config->dpll.m1;
|
|
bestm2 = pipe_config->dpll.m2 >> 22;
|
|
bestp1 = pipe_config->dpll.p1;
|
|
bestp2 = pipe_config->dpll.p2;
|
|
|
|
/*
|
|
* Enable Refclk and SSC
|
|
*/
|
|
I915_WRITE(dpll_reg,
|
|
pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
/* p1 and p2 divider */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
|
|
5 << DPIO_CHV_S1_DIV_SHIFT |
|
|
bestp1 << DPIO_CHV_P1_DIV_SHIFT |
|
|
bestp2 << DPIO_CHV_P2_DIV_SHIFT |
|
|
1 << DPIO_CHV_K_DIV_SHIFT);
|
|
|
|
/* Feedback post-divider - m2 */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
|
|
|
|
/* Feedback refclk divider - n and m1 */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
|
|
DPIO_CHV_M1_DIV_BY_2 |
|
|
1 << DPIO_CHV_N_DIV_SHIFT);
|
|
|
|
/* M2 fraction division */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
|
|
|
|
/* M2 fraction division enable */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
|
|
DPIO_CHV_FRAC_DIV_EN |
|
|
(2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
|
|
|
|
/* Loop filter */
|
|
refclk = i9xx_get_refclk(crtc, 0);
|
|
loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
|
|
2 << DPIO_CHV_GAIN_CTRL_SHIFT;
|
|
if (refclk == 100000)
|
|
intcoeff = 11;
|
|
else if (refclk == 38400)
|
|
intcoeff = 10;
|
|
else
|
|
intcoeff = 9;
|
|
loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
|
|
|
|
/* AFC Recal */
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
|
|
vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
|
|
DPIO_AFC_RECAL);
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
/**
|
|
* vlv_force_pll_on - forcibly enable just the PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to enable
|
|
* @dpll: PLL configuration
|
|
*
|
|
* Enable the PLL for @pipe using the supplied @dpll config. To be used
|
|
* in cases where we need the PLL enabled even when @pipe is not going to
|
|
* be enabled.
|
|
*/
|
|
void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
|
|
const struct dpll *dpll)
|
|
{
|
|
struct intel_crtc *crtc =
|
|
to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
|
|
struct intel_crtc_config pipe_config = {
|
|
.pixel_multiplier = 1,
|
|
.dpll = *dpll,
|
|
};
|
|
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
chv_update_pll(crtc, &pipe_config);
|
|
chv_prepare_pll(crtc, &pipe_config);
|
|
chv_enable_pll(crtc, &pipe_config);
|
|
} else {
|
|
vlv_update_pll(crtc, &pipe_config);
|
|
vlv_prepare_pll(crtc, &pipe_config);
|
|
vlv_enable_pll(crtc, &pipe_config);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* vlv_force_pll_off - forcibly disable just the PLL
|
|
* @dev_priv: i915 private structure
|
|
* @pipe: pipe PLL to disable
|
|
*
|
|
* Disable the PLL for @pipe. To be used in cases where we need
|
|
* the PLL enabled even when @pipe is not going to be enabled.
|
|
*/
|
|
void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
|
|
{
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_disable_pll(to_i915(dev), pipe);
|
|
else
|
|
vlv_disable_pll(to_i915(dev), pipe);
|
|
}
|
|
|
|
static void i9xx_update_pll(struct intel_crtc *crtc,
|
|
intel_clock_t *reduced_clock,
|
|
int num_connectors)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpll;
|
|
bool is_sdvo;
|
|
struct dpll *clock = &crtc->new_config->dpll;
|
|
|
|
i9xx_update_pll_dividers(crtc, reduced_clock);
|
|
|
|
is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
|
|
intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL;
|
|
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
|
|
dpll |= (crtc->new_config->pixel_multiplier - 1)
|
|
<< SDVO_MULTIPLIER_SHIFT_HIRES;
|
|
}
|
|
|
|
if (is_sdvo)
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
|
|
if (crtc->new_config->has_dp_encoder)
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
|
|
/* compute bitmask from p1 value */
|
|
if (IS_PINEVIEW(dev))
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
|
|
else {
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
if (IS_G4X(dev) && reduced_clock)
|
|
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
}
|
|
switch (clock->p2) {
|
|
case 5:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
|
|
break;
|
|
case 7:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
|
|
break;
|
|
case 10:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
|
|
break;
|
|
case 14:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
|
|
break;
|
|
}
|
|
if (INTEL_INFO(dev)->gen >= 4)
|
|
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
|
|
|
|
if (crtc->new_config->sdvo_tv_clock)
|
|
dpll |= PLL_REF_INPUT_TVCLKINBC;
|
|
else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
crtc->new_config->dpll_hw_state.dpll = dpll;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
|
|
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
|
|
crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
|
|
}
|
|
}
|
|
|
|
static void i8xx_update_pll(struct intel_crtc *crtc,
|
|
intel_clock_t *reduced_clock,
|
|
int num_connectors)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpll;
|
|
struct dpll *clock = &crtc->new_config->dpll;
|
|
|
|
i9xx_update_pll_dividers(crtc, reduced_clock);
|
|
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
} else {
|
|
if (clock->p1 == 2)
|
|
dpll |= PLL_P1_DIVIDE_BY_TWO;
|
|
else
|
|
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
if (clock->p2 == 4)
|
|
dpll |= PLL_P2_DIVIDE_BY_4;
|
|
}
|
|
|
|
if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
|
|
dpll |= DPLL_DVO_2X_MODE;
|
|
|
|
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
crtc->new_config->dpll_hw_state.dpll = dpll;
|
|
}
|
|
|
|
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
|
|
struct drm_display_mode *adjusted_mode =
|
|
&intel_crtc->config.adjusted_mode;
|
|
uint32_t crtc_vtotal, crtc_vblank_end;
|
|
int vsyncshift = 0;
|
|
|
|
/* We need to be careful not to changed the adjusted mode, for otherwise
|
|
* the hw state checker will get angry at the mismatch. */
|
|
crtc_vtotal = adjusted_mode->crtc_vtotal;
|
|
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
/* the chip adds 2 halflines automatically */
|
|
crtc_vtotal -= 1;
|
|
crtc_vblank_end -= 1;
|
|
|
|
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
|
|
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
|
|
else
|
|
vsyncshift = adjusted_mode->crtc_hsync_start -
|
|
adjusted_mode->crtc_htotal / 2;
|
|
if (vsyncshift < 0)
|
|
vsyncshift += adjusted_mode->crtc_htotal;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen > 3)
|
|
I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
|
|
|
|
I915_WRITE(HTOTAL(cpu_transcoder),
|
|
(adjusted_mode->crtc_hdisplay - 1) |
|
|
((adjusted_mode->crtc_htotal - 1) << 16));
|
|
I915_WRITE(HBLANK(cpu_transcoder),
|
|
(adjusted_mode->crtc_hblank_start - 1) |
|
|
((adjusted_mode->crtc_hblank_end - 1) << 16));
|
|
I915_WRITE(HSYNC(cpu_transcoder),
|
|
(adjusted_mode->crtc_hsync_start - 1) |
|
|
((adjusted_mode->crtc_hsync_end - 1) << 16));
|
|
|
|
I915_WRITE(VTOTAL(cpu_transcoder),
|
|
(adjusted_mode->crtc_vdisplay - 1) |
|
|
((crtc_vtotal - 1) << 16));
|
|
I915_WRITE(VBLANK(cpu_transcoder),
|
|
(adjusted_mode->crtc_vblank_start - 1) |
|
|
((crtc_vblank_end - 1) << 16));
|
|
I915_WRITE(VSYNC(cpu_transcoder),
|
|
(adjusted_mode->crtc_vsync_start - 1) |
|
|
((adjusted_mode->crtc_vsync_end - 1) << 16));
|
|
|
|
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
|
|
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
|
|
* documented on the DDI_FUNC_CTL register description, EDP Input Select
|
|
* bits. */
|
|
if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
|
|
(pipe == PIPE_B || pipe == PIPE_C))
|
|
I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
|
|
|
|
/* pipesrc controls the size that is scaled from, which should
|
|
* always be the user's requested size.
|
|
*/
|
|
I915_WRITE(PIPESRC(pipe),
|
|
((intel_crtc->config.pipe_src_w - 1) << 16) |
|
|
(intel_crtc->config.pipe_src_h - 1));
|
|
}
|
|
|
|
static void intel_get_pipe_timings(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(HTOTAL(cpu_transcoder));
|
|
pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
|
|
pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(HBLANK(cpu_transcoder));
|
|
pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
|
|
pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(HSYNC(cpu_transcoder));
|
|
pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
|
|
pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
|
|
|
|
tmp = I915_READ(VTOTAL(cpu_transcoder));
|
|
pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
|
|
pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(VBLANK(cpu_transcoder));
|
|
pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
|
|
pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
|
|
tmp = I915_READ(VSYNC(cpu_transcoder));
|
|
pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
|
|
pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
|
|
|
|
if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
|
|
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
|
|
pipe_config->adjusted_mode.crtc_vtotal += 1;
|
|
pipe_config->adjusted_mode.crtc_vblank_end += 1;
|
|
}
|
|
|
|
tmp = I915_READ(PIPESRC(crtc->pipe));
|
|
pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
|
|
pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
|
|
|
|
pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
|
|
pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
|
|
}
|
|
|
|
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
|
|
mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
|
|
mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
|
|
mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
|
|
|
|
mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
|
|
mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
|
|
mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
|
|
mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
|
|
|
|
mode->flags = pipe_config->adjusted_mode.flags;
|
|
|
|
mode->clock = pipe_config->adjusted_mode.crtc_clock;
|
|
mode->flags |= pipe_config->adjusted_mode.flags;
|
|
}
|
|
|
|
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t pipeconf;
|
|
|
|
pipeconf = 0;
|
|
|
|
if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
|
|
|
|
if (intel_crtc->config.double_wide)
|
|
pipeconf |= PIPECONF_DOUBLE_WIDE;
|
|
|
|
/* only g4x and later have fancy bpc/dither controls */
|
|
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
|
|
/* Bspec claims that we can't use dithering for 30bpp pipes. */
|
|
if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
|
|
pipeconf |= PIPECONF_DITHER_EN |
|
|
PIPECONF_DITHER_TYPE_SP;
|
|
|
|
switch (intel_crtc->config.pipe_bpp) {
|
|
case 18:
|
|
pipeconf |= PIPECONF_6BPC;
|
|
break;
|
|
case 24:
|
|
pipeconf |= PIPECONF_8BPC;
|
|
break;
|
|
case 30:
|
|
pipeconf |= PIPECONF_10BPC;
|
|
break;
|
|
default:
|
|
/* Case prevented by intel_choose_pipe_bpp_dither. */
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
if (HAS_PIPE_CXSR(dev)) {
|
|
if (intel_crtc->lowfreq_avail) {
|
|
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
|
|
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
|
|
} else {
|
|
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
|
|
}
|
|
}
|
|
|
|
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
|
|
if (INTEL_INFO(dev)->gen < 4 ||
|
|
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
|
|
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
|
|
else
|
|
pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
|
|
} else
|
|
pipeconf |= PIPECONF_PROGRESSIVE;
|
|
|
|
if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
|
|
pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
|
|
|
|
I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
|
|
POSTING_READ(PIPECONF(intel_crtc->pipe));
|
|
}
|
|
|
|
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int refclk, num_connectors = 0;
|
|
intel_clock_t clock, reduced_clock;
|
|
bool ok, has_reduced_clock = false;
|
|
bool is_lvds = false, is_dsi = false;
|
|
struct intel_encoder *encoder;
|
|
const intel_limit_t *limit;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
if (encoder->new_crtc != crtc)
|
|
continue;
|
|
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_DSI:
|
|
is_dsi = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
num_connectors++;
|
|
}
|
|
|
|
if (is_dsi)
|
|
return 0;
|
|
|
|
if (!crtc->new_config->clock_set) {
|
|
refclk = i9xx_get_refclk(crtc, num_connectors);
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with
|
|
* the given refclk, or FALSE. The returned values represent
|
|
* the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
|
|
* 2) / p1 / p2.
|
|
*/
|
|
limit = intel_limit(crtc, refclk);
|
|
ok = dev_priv->display.find_dpll(limit, crtc,
|
|
crtc->new_config->port_clock,
|
|
refclk, NULL, &clock);
|
|
if (!ok) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (is_lvds && dev_priv->lvds_downclock_avail) {
|
|
/*
|
|
* Ensure we match the reduced clock's P to the target
|
|
* clock. If the clocks don't match, we can't switch
|
|
* the display clock by using the FP0/FP1. In such case
|
|
* we will disable the LVDS downclock feature.
|
|
*/
|
|
has_reduced_clock =
|
|
dev_priv->display.find_dpll(limit, crtc,
|
|
dev_priv->lvds_downclock,
|
|
refclk, &clock,
|
|
&reduced_clock);
|
|
}
|
|
/* Compat-code for transition, will disappear. */
|
|
crtc->new_config->dpll.n = clock.n;
|
|
crtc->new_config->dpll.m1 = clock.m1;
|
|
crtc->new_config->dpll.m2 = clock.m2;
|
|
crtc->new_config->dpll.p1 = clock.p1;
|
|
crtc->new_config->dpll.p2 = clock.p2;
|
|
}
|
|
|
|
if (IS_GEN2(dev)) {
|
|
i8xx_update_pll(crtc,
|
|
has_reduced_clock ? &reduced_clock : NULL,
|
|
num_connectors);
|
|
} else if (IS_CHERRYVIEW(dev)) {
|
|
chv_update_pll(crtc, crtc->new_config);
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
vlv_update_pll(crtc, crtc->new_config);
|
|
} else {
|
|
i9xx_update_pll(crtc,
|
|
has_reduced_clock ? &reduced_clock : NULL,
|
|
num_connectors);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t tmp;
|
|
|
|
if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
|
|
return;
|
|
|
|
tmp = I915_READ(PFIT_CONTROL);
|
|
if (!(tmp & PFIT_ENABLE))
|
|
return;
|
|
|
|
/* Check whether the pfit is attached to our pipe. */
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
if (crtc->pipe != PIPE_B)
|
|
return;
|
|
} else {
|
|
if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
|
|
return;
|
|
}
|
|
|
|
pipe_config->gmch_pfit.control = tmp;
|
|
pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
|
|
if (INTEL_INFO(dev)->gen < 5)
|
|
pipe_config->gmch_pfit.lvds_border_bits =
|
|
I915_READ(LVDS) & LVDS_BORDER_ENABLE;
|
|
}
|
|
|
|
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = pipe_config->cpu_transcoder;
|
|
intel_clock_t clock;
|
|
u32 mdiv;
|
|
int refclk = 100000;
|
|
|
|
/* In case of MIPI DPLL will not even be used */
|
|
if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
|
|
clock.m2 = mdiv & DPIO_M2DIV_MASK;
|
|
clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
|
|
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
|
|
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
|
|
|
|
vlv_clock(refclk, &clock);
|
|
|
|
/* clock.dot is the fast clock */
|
|
pipe_config->port_clock = clock.dot / 5;
|
|
}
|
|
|
|
static void i9xx_get_plane_config(struct intel_crtc *crtc,
|
|
struct intel_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val, base, offset;
|
|
int pipe = crtc->pipe, plane = crtc->plane;
|
|
int fourcc, pixel_format;
|
|
int aligned_height;
|
|
|
|
crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
|
|
if (!crtc->base.primary->fb) {
|
|
DRM_DEBUG_KMS("failed to alloc fb\n");
|
|
return;
|
|
}
|
|
|
|
val = I915_READ(DSPCNTR(plane));
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4)
|
|
if (val & DISPPLANE_TILED)
|
|
plane_config->tiled = true;
|
|
|
|
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
|
|
fourcc = intel_format_to_fourcc(pixel_format);
|
|
crtc->base.primary->fb->pixel_format = fourcc;
|
|
crtc->base.primary->fb->bits_per_pixel =
|
|
drm_format_plane_cpp(fourcc, 0) * 8;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (plane_config->tiled)
|
|
offset = I915_READ(DSPTILEOFF(plane));
|
|
else
|
|
offset = I915_READ(DSPLINOFF(plane));
|
|
base = I915_READ(DSPSURF(plane)) & 0xfffff000;
|
|
} else {
|
|
base = I915_READ(DSPADDR(plane));
|
|
}
|
|
plane_config->base = base;
|
|
|
|
val = I915_READ(PIPESRC(pipe));
|
|
crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
|
|
crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
|
|
|
|
val = I915_READ(DSPSTRIDE(pipe));
|
|
crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
|
|
|
|
aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
|
|
plane_config->tiled);
|
|
|
|
plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
|
|
aligned_height);
|
|
|
|
DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
|
|
pipe, plane, crtc->base.primary->fb->width,
|
|
crtc->base.primary->fb->height,
|
|
crtc->base.primary->fb->bits_per_pixel, base,
|
|
crtc->base.primary->fb->pitches[0],
|
|
plane_config->size);
|
|
|
|
}
|
|
|
|
static void chv_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = pipe_config->cpu_transcoder;
|
|
enum dpio_channel port = vlv_pipe_to_channel(pipe);
|
|
intel_clock_t clock;
|
|
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
|
|
int refclk = 100000;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
|
|
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
|
|
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
|
|
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
|
|
clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
|
|
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
|
|
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
|
|
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
|
|
|
|
chv_clock(refclk, &clock);
|
|
|
|
/* clock.dot is the fast clock */
|
|
pipe_config->port_clock = clock.dot / 5;
|
|
}
|
|
|
|
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t tmp;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_PIPE(crtc->pipe)))
|
|
return false;
|
|
|
|
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
|
|
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
|
|
|
|
tmp = I915_READ(PIPECONF(crtc->pipe));
|
|
if (!(tmp & PIPECONF_ENABLE))
|
|
return false;
|
|
|
|
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
|
|
switch (tmp & PIPECONF_BPC_MASK) {
|
|
case PIPECONF_6BPC:
|
|
pipe_config->pipe_bpp = 18;
|
|
break;
|
|
case PIPECONF_8BPC:
|
|
pipe_config->pipe_bpp = 24;
|
|
break;
|
|
case PIPECONF_10BPC:
|
|
pipe_config->pipe_bpp = 30;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
|
|
pipe_config->limited_color_range = true;
|
|
|
|
if (INTEL_INFO(dev)->gen < 4)
|
|
pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
|
|
|
|
intel_get_pipe_timings(crtc, pipe_config);
|
|
|
|
i9xx_get_pfit_config(crtc, pipe_config);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
tmp = I915_READ(DPLL_MD(crtc->pipe));
|
|
pipe_config->pixel_multiplier =
|
|
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
|
|
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
|
|
pipe_config->dpll_hw_state.dpll_md = tmp;
|
|
} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
|
|
tmp = I915_READ(DPLL(crtc->pipe));
|
|
pipe_config->pixel_multiplier =
|
|
((tmp & SDVO_MULTIPLIER_MASK)
|
|
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
|
|
} else {
|
|
/* Note that on i915G/GM the pixel multiplier is in the sdvo
|
|
* port and will be fixed up in the encoder->get_config
|
|
* function. */
|
|
pipe_config->pixel_multiplier = 1;
|
|
}
|
|
pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
|
|
if (!IS_VALLEYVIEW(dev)) {
|
|
/*
|
|
* DPLL_DVO_2X_MODE must be enabled for both DPLLs
|
|
* on 830. Filter it out here so that we don't
|
|
* report errors due to that.
|
|
*/
|
|
if (IS_I830(dev))
|
|
pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
|
|
|
|
pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
|
|
pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
|
|
} else {
|
|
/* Mask out read-only status bits. */
|
|
pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
|
|
DPLL_PORTC_READY_MASK |
|
|
DPLL_PORTB_READY_MASK);
|
|
}
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_crtc_clock_get(crtc, pipe_config);
|
|
else if (IS_VALLEYVIEW(dev))
|
|
vlv_crtc_clock_get(crtc, pipe_config);
|
|
else
|
|
i9xx_crtc_clock_get(crtc, pipe_config);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ironlake_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *encoder;
|
|
u32 val, final;
|
|
bool has_lvds = false;
|
|
bool has_cpu_edp = false;
|
|
bool has_panel = false;
|
|
bool has_ck505 = false;
|
|
bool can_ssc = false;
|
|
|
|
/* We need to take the global config into account */
|
|
for_each_intel_encoder(dev, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
has_panel = true;
|
|
has_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
has_panel = true;
|
|
if (enc_to_dig_port(&encoder->base)->port == PORT_A)
|
|
has_cpu_edp = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (HAS_PCH_IBX(dev)) {
|
|
has_ck505 = dev_priv->vbt.display_clock_mode;
|
|
can_ssc = has_ck505;
|
|
} else {
|
|
has_ck505 = false;
|
|
can_ssc = true;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
|
|
has_panel, has_lvds, has_ck505);
|
|
|
|
/* Ironlake: try to setup display ref clock before DPLL
|
|
* enabling. This is only under driver's control after
|
|
* PCH B stepping, previous chipset stepping should be
|
|
* ignoring this setting.
|
|
*/
|
|
val = I915_READ(PCH_DREF_CONTROL);
|
|
|
|
/* As we must carefully and slowly disable/enable each source in turn,
|
|
* compute the final state we want first and check if we need to
|
|
* make any changes at all.
|
|
*/
|
|
final = val;
|
|
final &= ~DREF_NONSPREAD_SOURCE_MASK;
|
|
if (has_ck505)
|
|
final |= DREF_NONSPREAD_CK505_ENABLE;
|
|
else
|
|
final |= DREF_NONSPREAD_SOURCE_ENABLE;
|
|
|
|
final &= ~DREF_SSC_SOURCE_MASK;
|
|
final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
final &= ~DREF_SSC1_ENABLE;
|
|
|
|
if (has_panel) {
|
|
final |= DREF_SSC_SOURCE_ENABLE;
|
|
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc)
|
|
final |= DREF_SSC1_ENABLE;
|
|
|
|
if (has_cpu_edp) {
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc)
|
|
final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
|
|
else
|
|
final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
|
|
} else
|
|
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
} else {
|
|
final |= DREF_SSC_SOURCE_DISABLE;
|
|
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
}
|
|
|
|
if (final == val)
|
|
return;
|
|
|
|
/* Always enable nonspread source */
|
|
val &= ~DREF_NONSPREAD_SOURCE_MASK;
|
|
|
|
if (has_ck505)
|
|
val |= DREF_NONSPREAD_CK505_ENABLE;
|
|
else
|
|
val |= DREF_NONSPREAD_SOURCE_ENABLE;
|
|
|
|
if (has_panel) {
|
|
val &= ~DREF_SSC_SOURCE_MASK;
|
|
val |= DREF_SSC_SOURCE_ENABLE;
|
|
|
|
/* SSC must be turned on before enabling the CPU output */
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
|
|
DRM_DEBUG_KMS("Using SSC on panel\n");
|
|
val |= DREF_SSC1_ENABLE;
|
|
} else
|
|
val &= ~DREF_SSC1_ENABLE;
|
|
|
|
/* Get SSC going before enabling the outputs */
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
|
|
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
|
|
/* Enable CPU source on CPU attached eDP */
|
|
if (has_cpu_edp) {
|
|
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
|
|
DRM_DEBUG_KMS("Using SSC on eDP\n");
|
|
val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
|
|
} else
|
|
val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
|
|
} else
|
|
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
} else {
|
|
DRM_DEBUG_KMS("Disabling SSC entirely\n");
|
|
|
|
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
|
|
/* Turn off CPU output */
|
|
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
|
|
/* Turn off the SSC source */
|
|
val &= ~DREF_SSC_SOURCE_MASK;
|
|
val |= DREF_SSC_SOURCE_DISABLE;
|
|
|
|
/* Turn off SSC1 */
|
|
val &= ~DREF_SSC1_ENABLE;
|
|
|
|
I915_WRITE(PCH_DREF_CONTROL, val);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
udelay(200);
|
|
}
|
|
|
|
BUG_ON(val != final);
|
|
}
|
|
|
|
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(SOUTH_CHICKEN2);
|
|
tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
|
|
I915_WRITE(SOUTH_CHICKEN2, tmp);
|
|
|
|
if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
|
|
FDI_MPHY_IOSFSB_RESET_STATUS, 100))
|
|
DRM_ERROR("FDI mPHY reset assert timeout\n");
|
|
|
|
tmp = I915_READ(SOUTH_CHICKEN2);
|
|
tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
|
|
I915_WRITE(SOUTH_CHICKEN2, tmp);
|
|
|
|
if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
|
|
FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
|
|
DRM_ERROR("FDI mPHY reset de-assert timeout\n");
|
|
}
|
|
|
|
/* WaMPhyProgramming:hsw */
|
|
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
|
|
tmp &= ~(0xFF << 24);
|
|
tmp |= (0x12 << 24);
|
|
intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
|
|
tmp |= (1 << 11);
|
|
intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
|
|
tmp |= (1 << 11);
|
|
intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
|
|
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
|
|
intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
|
|
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
|
|
intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
|
|
tmp &= ~(7 << 13);
|
|
tmp |= (5 << 13);
|
|
intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
|
|
tmp &= ~(7 << 13);
|
|
tmp |= (5 << 13);
|
|
intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
|
|
tmp &= ~0xFF;
|
|
tmp |= 0x1C;
|
|
intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
|
|
tmp &= ~0xFF;
|
|
tmp |= 0x1C;
|
|
intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
|
|
tmp &= ~(0xFF << 16);
|
|
tmp |= (0x1C << 16);
|
|
intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
|
|
tmp &= ~(0xFF << 16);
|
|
tmp |= (0x1C << 16);
|
|
intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
|
|
tmp |= (1 << 27);
|
|
intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
|
|
tmp |= (1 << 27);
|
|
intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
|
|
tmp &= ~(0xF << 28);
|
|
tmp |= (4 << 28);
|
|
intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
|
|
|
|
tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
|
|
tmp &= ~(0xF << 28);
|
|
tmp |= (4 << 28);
|
|
intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
|
|
}
|
|
|
|
/* Implements 3 different sequences from BSpec chapter "Display iCLK
|
|
* Programming" based on the parameters passed:
|
|
* - Sequence to enable CLKOUT_DP
|
|
* - Sequence to enable CLKOUT_DP without spread
|
|
* - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
|
|
*/
|
|
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
|
|
bool with_fdi)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t reg, tmp;
|
|
|
|
if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
|
|
with_spread = true;
|
|
if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
|
|
with_fdi, "LP PCH doesn't have FDI\n"))
|
|
with_fdi = false;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
tmp &= ~SBI_SSCCTL_DISABLE;
|
|
tmp |= SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
|
|
udelay(24);
|
|
|
|
if (with_spread) {
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
tmp &= ~SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
|
|
if (with_fdi) {
|
|
lpt_reset_fdi_mphy(dev_priv);
|
|
lpt_program_fdi_mphy(dev_priv);
|
|
}
|
|
}
|
|
|
|
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
|
|
SBI_GEN0 : SBI_DBUFF0;
|
|
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
|
|
tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
|
|
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
/* Sequence to disable CLKOUT_DP */
|
|
static void lpt_disable_clkout_dp(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t reg, tmp;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
|
|
SBI_GEN0 : SBI_DBUFF0;
|
|
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
|
|
tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
|
|
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
|
|
|
|
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
|
|
if (!(tmp & SBI_SSCCTL_DISABLE)) {
|
|
if (!(tmp & SBI_SSCCTL_PATHALT)) {
|
|
tmp |= SBI_SSCCTL_PATHALT;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
udelay(32);
|
|
}
|
|
tmp |= SBI_SSCCTL_DISABLE;
|
|
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
static void lpt_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
bool has_vga = false;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_ANALOG:
|
|
has_vga = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (has_vga)
|
|
lpt_enable_clkout_dp(dev, true, true);
|
|
else
|
|
lpt_disable_clkout_dp(dev);
|
|
}
|
|
|
|
/*
|
|
* Initialize reference clocks when the driver loads
|
|
*/
|
|
void intel_init_pch_refclk(struct drm_device *dev)
|
|
{
|
|
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
|
|
ironlake_init_pch_refclk(dev);
|
|
else if (HAS_PCH_LPT(dev))
|
|
lpt_init_pch_refclk(dev);
|
|
}
|
|
|
|
static int ironlake_get_refclk(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *encoder;
|
|
int num_connectors = 0;
|
|
bool is_lvds = false;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
if (encoder->new_crtc != to_intel_crtc(crtc))
|
|
continue;
|
|
|
|
switch (encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
num_connectors++;
|
|
}
|
|
|
|
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
|
|
dev_priv->vbt.lvds_ssc_freq);
|
|
return dev_priv->vbt.lvds_ssc_freq;
|
|
}
|
|
|
|
return 120000;
|
|
}
|
|
|
|
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
uint32_t val;
|
|
|
|
val = 0;
|
|
|
|
switch (intel_crtc->config.pipe_bpp) {
|
|
case 18:
|
|
val |= PIPECONF_6BPC;
|
|
break;
|
|
case 24:
|
|
val |= PIPECONF_8BPC;
|
|
break;
|
|
case 30:
|
|
val |= PIPECONF_10BPC;
|
|
break;
|
|
case 36:
|
|
val |= PIPECONF_12BPC;
|
|
break;
|
|
default:
|
|
/* Case prevented by intel_choose_pipe_bpp_dither. */
|
|
BUG();
|
|
}
|
|
|
|
if (intel_crtc->config.dither)
|
|
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
|
|
|
|
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
|
|
val |= PIPECONF_INTERLACED_ILK;
|
|
else
|
|
val |= PIPECONF_PROGRESSIVE;
|
|
|
|
if (intel_crtc->config.limited_color_range)
|
|
val |= PIPECONF_COLOR_RANGE_SELECT;
|
|
|
|
I915_WRITE(PIPECONF(pipe), val);
|
|
POSTING_READ(PIPECONF(pipe));
|
|
}
|
|
|
|
/*
|
|
* Set up the pipe CSC unit.
|
|
*
|
|
* Currently only full range RGB to limited range RGB conversion
|
|
* is supported, but eventually this should handle various
|
|
* RGB<->YCbCr scenarios as well.
|
|
*/
|
|
static void intel_set_pipe_csc(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
uint16_t coeff = 0x7800; /* 1.0 */
|
|
|
|
/*
|
|
* TODO: Check what kind of values actually come out of the pipe
|
|
* with these coeff/postoff values and adjust to get the best
|
|
* accuracy. Perhaps we even need to take the bpc value into
|
|
* consideration.
|
|
*/
|
|
|
|
if (intel_crtc->config.limited_color_range)
|
|
coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
|
|
|
|
/*
|
|
* GY/GU and RY/RU should be the other way around according
|
|
* to BSpec, but reality doesn't agree. Just set them up in
|
|
* a way that results in the correct picture.
|
|
*/
|
|
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
|
|
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
|
|
|
|
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
|
|
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
|
|
|
|
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
|
|
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
|
|
|
|
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
|
|
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
|
|
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
|
|
|
|
if (INTEL_INFO(dev)->gen > 6) {
|
|
uint16_t postoff = 0;
|
|
|
|
if (intel_crtc->config.limited_color_range)
|
|
postoff = (16 * (1 << 12) / 255) & 0x1fff;
|
|
|
|
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
|
|
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
|
|
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
|
|
|
|
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
|
|
} else {
|
|
uint32_t mode = CSC_MODE_YUV_TO_RGB;
|
|
|
|
if (intel_crtc->config.limited_color_range)
|
|
mode |= CSC_BLACK_SCREEN_OFFSET;
|
|
|
|
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
|
|
}
|
|
}
|
|
|
|
static void haswell_set_pipeconf(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
|
|
uint32_t val;
|
|
|
|
val = 0;
|
|
|
|
if (IS_HASWELL(dev) && intel_crtc->config.dither)
|
|
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
|
|
|
|
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
|
|
val |= PIPECONF_INTERLACED_ILK;
|
|
else
|
|
val |= PIPECONF_PROGRESSIVE;
|
|
|
|
I915_WRITE(PIPECONF(cpu_transcoder), val);
|
|
POSTING_READ(PIPECONF(cpu_transcoder));
|
|
|
|
I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
|
|
POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
|
|
|
|
if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
|
|
val = 0;
|
|
|
|
switch (intel_crtc->config.pipe_bpp) {
|
|
case 18:
|
|
val |= PIPEMISC_DITHER_6_BPC;
|
|
break;
|
|
case 24:
|
|
val |= PIPEMISC_DITHER_8_BPC;
|
|
break;
|
|
case 30:
|
|
val |= PIPEMISC_DITHER_10_BPC;
|
|
break;
|
|
case 36:
|
|
val |= PIPEMISC_DITHER_12_BPC;
|
|
break;
|
|
default:
|
|
/* Case prevented by pipe_config_set_bpp. */
|
|
BUG();
|
|
}
|
|
|
|
if (intel_crtc->config.dither)
|
|
val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
|
|
|
|
I915_WRITE(PIPEMISC(pipe), val);
|
|
}
|
|
}
|
|
|
|
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
|
|
intel_clock_t *clock,
|
|
bool *has_reduced_clock,
|
|
intel_clock_t *reduced_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int refclk;
|
|
const intel_limit_t *limit;
|
|
bool ret, is_lvds = false;
|
|
|
|
is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
|
|
|
|
refclk = ironlake_get_refclk(crtc);
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*/
|
|
limit = intel_limit(intel_crtc, refclk);
|
|
ret = dev_priv->display.find_dpll(limit, intel_crtc,
|
|
intel_crtc->new_config->port_clock,
|
|
refclk, NULL, clock);
|
|
if (!ret)
|
|
return false;
|
|
|
|
if (is_lvds && dev_priv->lvds_downclock_avail) {
|
|
/*
|
|
* Ensure we match the reduced clock's P to the target clock.
|
|
* If the clocks don't match, we can't switch the display clock
|
|
* by using the FP0/FP1. In such case we will disable the LVDS
|
|
* downclock feature.
|
|
*/
|
|
*has_reduced_clock =
|
|
dev_priv->display.find_dpll(limit, intel_crtc,
|
|
dev_priv->lvds_downclock,
|
|
refclk, clock,
|
|
reduced_clock);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
|
|
{
|
|
/*
|
|
* Account for spread spectrum to avoid
|
|
* oversubscribing the link. Max center spread
|
|
* is 2.5%; use 5% for safety's sake.
|
|
*/
|
|
u32 bps = target_clock * bpp * 21 / 20;
|
|
return DIV_ROUND_UP(bps, link_bw * 8);
|
|
}
|
|
|
|
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
|
|
{
|
|
return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
|
|
}
|
|
|
|
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
|
|
u32 *fp,
|
|
intel_clock_t *reduced_clock, u32 *fp2)
|
|
{
|
|
struct drm_crtc *crtc = &intel_crtc->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *intel_encoder;
|
|
uint32_t dpll;
|
|
int factor, num_connectors = 0;
|
|
bool is_lvds = false, is_sdvo = false;
|
|
|
|
for_each_intel_encoder(dev, intel_encoder) {
|
|
if (intel_encoder->new_crtc != to_intel_crtc(crtc))
|
|
continue;
|
|
|
|
switch (intel_encoder->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_SDVO:
|
|
case INTEL_OUTPUT_HDMI:
|
|
is_sdvo = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
num_connectors++;
|
|
}
|
|
|
|
/* Enable autotuning of the PLL clock (if permissible) */
|
|
factor = 21;
|
|
if (is_lvds) {
|
|
if ((intel_panel_use_ssc(dev_priv) &&
|
|
dev_priv->vbt.lvds_ssc_freq == 100000) ||
|
|
(HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
|
|
factor = 25;
|
|
} else if (intel_crtc->new_config->sdvo_tv_clock)
|
|
factor = 20;
|
|
|
|
if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
|
|
*fp |= FP_CB_TUNE;
|
|
|
|
if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
|
|
*fp2 |= FP_CB_TUNE;
|
|
|
|
dpll = 0;
|
|
|
|
if (is_lvds)
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL;
|
|
|
|
dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
|
|
<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
|
|
|
|
if (is_sdvo)
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
if (intel_crtc->new_config->has_dp_encoder)
|
|
dpll |= DPLL_SDVO_HIGH_SPEED;
|
|
|
|
/* compute bitmask from p1 value */
|
|
dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
/* also FPA1 */
|
|
dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
|
|
switch (intel_crtc->new_config->dpll.p2) {
|
|
case 5:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
|
|
break;
|
|
case 7:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
|
|
break;
|
|
case 10:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
|
|
break;
|
|
case 14:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
|
|
break;
|
|
}
|
|
|
|
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
return dpll | DPLL_VCO_ENABLE;
|
|
}
|
|
|
|
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
intel_clock_t clock, reduced_clock;
|
|
u32 dpll = 0, fp = 0, fp2 = 0;
|
|
bool ok, has_reduced_clock = false;
|
|
bool is_lvds = false;
|
|
struct intel_shared_dpll *pll;
|
|
|
|
is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
|
|
|
|
WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
|
|
"Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
|
|
|
|
ok = ironlake_compute_clocks(&crtc->base, &clock,
|
|
&has_reduced_clock, &reduced_clock);
|
|
if (!ok && !crtc->new_config->clock_set) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
return -EINVAL;
|
|
}
|
|
/* Compat-code for transition, will disappear. */
|
|
if (!crtc->new_config->clock_set) {
|
|
crtc->new_config->dpll.n = clock.n;
|
|
crtc->new_config->dpll.m1 = clock.m1;
|
|
crtc->new_config->dpll.m2 = clock.m2;
|
|
crtc->new_config->dpll.p1 = clock.p1;
|
|
crtc->new_config->dpll.p2 = clock.p2;
|
|
}
|
|
|
|
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
|
|
if (crtc->new_config->has_pch_encoder) {
|
|
fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
|
|
if (has_reduced_clock)
|
|
fp2 = i9xx_dpll_compute_fp(&reduced_clock);
|
|
|
|
dpll = ironlake_compute_dpll(crtc,
|
|
&fp, &reduced_clock,
|
|
has_reduced_clock ? &fp2 : NULL);
|
|
|
|
crtc->new_config->dpll_hw_state.dpll = dpll;
|
|
crtc->new_config->dpll_hw_state.fp0 = fp;
|
|
if (has_reduced_clock)
|
|
crtc->new_config->dpll_hw_state.fp1 = fp2;
|
|
else
|
|
crtc->new_config->dpll_hw_state.fp1 = fp;
|
|
|
|
pll = intel_get_shared_dpll(crtc);
|
|
if (pll == NULL) {
|
|
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
|
|
pipe_name(crtc->pipe));
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (is_lvds && has_reduced_clock && i915.powersave)
|
|
crtc->lowfreq_avail = true;
|
|
else
|
|
crtc->lowfreq_avail = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
|
|
struct intel_link_m_n *m_n)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
|
|
m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
|
|
m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
|
|
& ~TU_SIZE_MASK;
|
|
m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
|
|
m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
}
|
|
|
|
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
|
|
enum transcoder transcoder,
|
|
struct intel_link_m_n *m_n,
|
|
struct intel_link_m_n *m2_n2)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5) {
|
|
m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
|
|
m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
|
|
m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
|
|
& ~TU_SIZE_MASK;
|
|
m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
|
|
m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
|
|
* gen < 8) and if DRRS is supported (to make sure the
|
|
* registers are not unnecessarily read).
|
|
*/
|
|
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
|
|
crtc->config.has_drrs) {
|
|
m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
|
|
m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
|
|
m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
|
|
& ~TU_SIZE_MASK;
|
|
m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
|
|
m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
}
|
|
} else {
|
|
m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
|
|
m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
|
|
m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
|
|
& ~TU_SIZE_MASK;
|
|
m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
|
|
m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
|
|
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
|
|
}
|
|
}
|
|
|
|
void intel_dp_get_m_n(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
if (crtc->config.has_pch_encoder)
|
|
intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
|
|
else
|
|
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
|
|
&pipe_config->dp_m_n,
|
|
&pipe_config->dp_m2_n2);
|
|
}
|
|
|
|
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
|
|
&pipe_config->fdi_m_n, NULL);
|
|
}
|
|
|
|
static void skylake_get_pfit_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(PS_CTL(crtc->pipe));
|
|
|
|
if (tmp & PS_ENABLE) {
|
|
pipe_config->pch_pfit.enabled = true;
|
|
pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
|
|
pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
|
|
}
|
|
}
|
|
|
|
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(PF_CTL(crtc->pipe));
|
|
|
|
if (tmp & PF_ENABLE) {
|
|
pipe_config->pch_pfit.enabled = true;
|
|
pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
|
|
pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
|
|
|
|
/* We currently do not free assignements of panel fitters on
|
|
* ivb/hsw (since we don't use the higher upscaling modes which
|
|
* differentiates them) so just WARN about this case for now. */
|
|
if (IS_GEN7(dev)) {
|
|
WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
|
|
PF_PIPE_SEL_IVB(crtc->pipe));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ironlake_get_plane_config(struct intel_crtc *crtc,
|
|
struct intel_plane_config *plane_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val, base, offset;
|
|
int pipe = crtc->pipe, plane = crtc->plane;
|
|
int fourcc, pixel_format;
|
|
int aligned_height;
|
|
|
|
crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
|
|
if (!crtc->base.primary->fb) {
|
|
DRM_DEBUG_KMS("failed to alloc fb\n");
|
|
return;
|
|
}
|
|
|
|
val = I915_READ(DSPCNTR(plane));
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4)
|
|
if (val & DISPPLANE_TILED)
|
|
plane_config->tiled = true;
|
|
|
|
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
|
|
fourcc = intel_format_to_fourcc(pixel_format);
|
|
crtc->base.primary->fb->pixel_format = fourcc;
|
|
crtc->base.primary->fb->bits_per_pixel =
|
|
drm_format_plane_cpp(fourcc, 0) * 8;
|
|
|
|
base = I915_READ(DSPSURF(plane)) & 0xfffff000;
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
|
|
offset = I915_READ(DSPOFFSET(plane));
|
|
} else {
|
|
if (plane_config->tiled)
|
|
offset = I915_READ(DSPTILEOFF(plane));
|
|
else
|
|
offset = I915_READ(DSPLINOFF(plane));
|
|
}
|
|
plane_config->base = base;
|
|
|
|
val = I915_READ(PIPESRC(pipe));
|
|
crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
|
|
crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
|
|
|
|
val = I915_READ(DSPSTRIDE(pipe));
|
|
crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
|
|
|
|
aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
|
|
plane_config->tiled);
|
|
|
|
plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
|
|
aligned_height);
|
|
|
|
DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
|
|
pipe, plane, crtc->base.primary->fb->width,
|
|
crtc->base.primary->fb->height,
|
|
crtc->base.primary->fb->bits_per_pixel, base,
|
|
crtc->base.primary->fb->pitches[0],
|
|
plane_config->size);
|
|
}
|
|
|
|
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t tmp;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_PIPE(crtc->pipe)))
|
|
return false;
|
|
|
|
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
|
|
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
|
|
|
|
tmp = I915_READ(PIPECONF(crtc->pipe));
|
|
if (!(tmp & PIPECONF_ENABLE))
|
|
return false;
|
|
|
|
switch (tmp & PIPECONF_BPC_MASK) {
|
|
case PIPECONF_6BPC:
|
|
pipe_config->pipe_bpp = 18;
|
|
break;
|
|
case PIPECONF_8BPC:
|
|
pipe_config->pipe_bpp = 24;
|
|
break;
|
|
case PIPECONF_10BPC:
|
|
pipe_config->pipe_bpp = 30;
|
|
break;
|
|
case PIPECONF_12BPC:
|
|
pipe_config->pipe_bpp = 36;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (tmp & PIPECONF_COLOR_RANGE_SELECT)
|
|
pipe_config->limited_color_range = true;
|
|
|
|
if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
|
|
struct intel_shared_dpll *pll;
|
|
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
|
|
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
|
|
FDI_DP_PORT_WIDTH_SHIFT) + 1;
|
|
|
|
ironlake_get_fdi_m_n_config(crtc, pipe_config);
|
|
|
|
if (HAS_PCH_IBX(dev_priv->dev)) {
|
|
pipe_config->shared_dpll =
|
|
(enum intel_dpll_id) crtc->pipe;
|
|
} else {
|
|
tmp = I915_READ(PCH_DPLL_SEL);
|
|
if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
|
|
pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
|
|
else
|
|
pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
|
|
}
|
|
|
|
pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
|
|
|
|
WARN_ON(!pll->get_hw_state(dev_priv, pll,
|
|
&pipe_config->dpll_hw_state));
|
|
|
|
tmp = pipe_config->dpll_hw_state.dpll;
|
|
pipe_config->pixel_multiplier =
|
|
((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
|
|
>> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
|
|
|
|
ironlake_pch_clock_get(crtc, pipe_config);
|
|
} else {
|
|
pipe_config->pixel_multiplier = 1;
|
|
}
|
|
|
|
intel_get_pipe_timings(crtc, pipe_config);
|
|
|
|
ironlake_get_pfit_config(crtc, pipe_config);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct intel_crtc *crtc;
|
|
|
|
for_each_intel_crtc(dev, crtc)
|
|
WARN(crtc->active, "CRTC for pipe %c enabled\n",
|
|
pipe_name(crtc->pipe));
|
|
|
|
WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
|
|
WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
|
|
WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
|
|
WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
|
|
WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
|
|
WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
|
|
"CPU PWM1 enabled\n");
|
|
if (IS_HASWELL(dev))
|
|
WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
|
|
"CPU PWM2 enabled\n");
|
|
WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
|
|
"PCH PWM1 enabled\n");
|
|
WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
|
|
"Utility pin enabled\n");
|
|
WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
|
|
|
|
/*
|
|
* In theory we can still leave IRQs enabled, as long as only the HPD
|
|
* interrupts remain enabled. We used to check for that, but since it's
|
|
* gen-specific and since we only disable LCPLL after we fully disable
|
|
* the interrupts, the check below should be enough.
|
|
*/
|
|
WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
|
|
}
|
|
|
|
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
|
|
if (IS_HASWELL(dev))
|
|
return I915_READ(D_COMP_HSW);
|
|
else
|
|
return I915_READ(D_COMP_BDW);
|
|
}
|
|
|
|
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
|
|
if (IS_HASWELL(dev)) {
|
|
mutex_lock(&dev_priv->rps.hw_lock);
|
|
if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
|
|
val))
|
|
DRM_ERROR("Failed to write to D_COMP\n");
|
|
mutex_unlock(&dev_priv->rps.hw_lock);
|
|
} else {
|
|
I915_WRITE(D_COMP_BDW, val);
|
|
POSTING_READ(D_COMP_BDW);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function implements pieces of two sequences from BSpec:
|
|
* - Sequence for display software to disable LCPLL
|
|
* - Sequence for display software to allow package C8+
|
|
* The steps implemented here are just the steps that actually touch the LCPLL
|
|
* register. Callers should take care of disabling all the display engine
|
|
* functions, doing the mode unset, fixing interrupts, etc.
|
|
*/
|
|
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
|
|
bool switch_to_fclk, bool allow_power_down)
|
|
{
|
|
uint32_t val;
|
|
|
|
assert_can_disable_lcpll(dev_priv);
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
|
|
if (switch_to_fclk) {
|
|
val |= LCPLL_CD_SOURCE_FCLK;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
|
|
LCPLL_CD_SOURCE_FCLK_DONE, 1))
|
|
DRM_ERROR("Switching to FCLK failed\n");
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
}
|
|
|
|
val |= LCPLL_PLL_DISABLE;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
POSTING_READ(LCPLL_CTL);
|
|
|
|
if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
|
|
DRM_ERROR("LCPLL still locked\n");
|
|
|
|
val = hsw_read_dcomp(dev_priv);
|
|
val |= D_COMP_COMP_DISABLE;
|
|
hsw_write_dcomp(dev_priv, val);
|
|
ndelay(100);
|
|
|
|
if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
|
|
1))
|
|
DRM_ERROR("D_COMP RCOMP still in progress\n");
|
|
|
|
if (allow_power_down) {
|
|
val = I915_READ(LCPLL_CTL);
|
|
val |= LCPLL_POWER_DOWN_ALLOW;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
POSTING_READ(LCPLL_CTL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fully restores LCPLL, disallowing power down and switching back to LCPLL
|
|
* source.
|
|
*/
|
|
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
|
|
if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
|
|
LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
|
|
return;
|
|
|
|
/*
|
|
* Make sure we're not on PC8 state before disabling PC8, otherwise
|
|
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
|
|
*
|
|
* The other problem is that hsw_restore_lcpll() is called as part of
|
|
* the runtime PM resume sequence, so we can't just call
|
|
* gen6_gt_force_wake_get() because that function calls
|
|
* intel_runtime_pm_get(), and we can't change the runtime PM refcount
|
|
* while we are on the resume sequence. So to solve this problem we have
|
|
* to call special forcewake code that doesn't touch runtime PM and
|
|
* doesn't enable the forcewake delayed work.
|
|
*/
|
|
spin_lock_irq(&dev_priv->uncore.lock);
|
|
if (dev_priv->uncore.forcewake_count++ == 0)
|
|
dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
|
|
spin_unlock_irq(&dev_priv->uncore.lock);
|
|
|
|
if (val & LCPLL_POWER_DOWN_ALLOW) {
|
|
val &= ~LCPLL_POWER_DOWN_ALLOW;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
POSTING_READ(LCPLL_CTL);
|
|
}
|
|
|
|
val = hsw_read_dcomp(dev_priv);
|
|
val |= D_COMP_COMP_FORCE;
|
|
val &= ~D_COMP_COMP_DISABLE;
|
|
hsw_write_dcomp(dev_priv, val);
|
|
|
|
val = I915_READ(LCPLL_CTL);
|
|
val &= ~LCPLL_PLL_DISABLE;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
|
|
DRM_ERROR("LCPLL not locked yet\n");
|
|
|
|
if (val & LCPLL_CD_SOURCE_FCLK) {
|
|
val = I915_READ(LCPLL_CTL);
|
|
val &= ~LCPLL_CD_SOURCE_FCLK;
|
|
I915_WRITE(LCPLL_CTL, val);
|
|
|
|
if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
|
|
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
|
|
DRM_ERROR("Switching back to LCPLL failed\n");
|
|
}
|
|
|
|
/* See the big comment above. */
|
|
spin_lock_irq(&dev_priv->uncore.lock);
|
|
if (--dev_priv->uncore.forcewake_count == 0)
|
|
dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
|
|
spin_unlock_irq(&dev_priv->uncore.lock);
|
|
}
|
|
|
|
/*
|
|
* Package states C8 and deeper are really deep PC states that can only be
|
|
* reached when all the devices on the system allow it, so even if the graphics
|
|
* device allows PC8+, it doesn't mean the system will actually get to these
|
|
* states. Our driver only allows PC8+ when going into runtime PM.
|
|
*
|
|
* The requirements for PC8+ are that all the outputs are disabled, the power
|
|
* well is disabled and most interrupts are disabled, and these are also
|
|
* requirements for runtime PM. When these conditions are met, we manually do
|
|
* the other conditions: disable the interrupts, clocks and switch LCPLL refclk
|
|
* to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
|
|
* hang the machine.
|
|
*
|
|
* When we really reach PC8 or deeper states (not just when we allow it) we lose
|
|
* the state of some registers, so when we come back from PC8+ we need to
|
|
* restore this state. We don't get into PC8+ if we're not in RC6, so we don't
|
|
* need to take care of the registers kept by RC6. Notice that this happens even
|
|
* if we don't put the device in PCI D3 state (which is what currently happens
|
|
* because of the runtime PM support).
|
|
*
|
|
* For more, read "Display Sequences for Package C8" on the hardware
|
|
* documentation.
|
|
*/
|
|
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
uint32_t val;
|
|
|
|
DRM_DEBUG_KMS("Enabling package C8+\n");
|
|
|
|
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
|
|
val = I915_READ(SOUTH_DSPCLK_GATE_D);
|
|
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
|
|
}
|
|
|
|
lpt_disable_clkout_dp(dev);
|
|
hsw_disable_lcpll(dev_priv, true, true);
|
|
}
|
|
|
|
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
uint32_t val;
|
|
|
|
DRM_DEBUG_KMS("Disabling package C8+\n");
|
|
|
|
hsw_restore_lcpll(dev_priv);
|
|
lpt_init_pch_refclk(dev);
|
|
|
|
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
|
|
val = I915_READ(SOUTH_DSPCLK_GATE_D);
|
|
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
|
|
}
|
|
|
|
intel_prepare_ddi(dev);
|
|
}
|
|
|
|
static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
|
|
{
|
|
if (!intel_ddi_pll_select(crtc))
|
|
return -EINVAL;
|
|
|
|
crtc->lowfreq_avail = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
|
|
enum port port,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
u32 temp;
|
|
|
|
temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
|
|
pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
|
|
|
|
switch (pipe_config->ddi_pll_sel) {
|
|
case SKL_DPLL1:
|
|
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
|
|
break;
|
|
case SKL_DPLL2:
|
|
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
|
|
break;
|
|
case SKL_DPLL3:
|
|
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
|
|
enum port port,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
|
|
|
|
switch (pipe_config->ddi_pll_sel) {
|
|
case PORT_CLK_SEL_WRPLL1:
|
|
pipe_config->shared_dpll = DPLL_ID_WRPLL1;
|
|
break;
|
|
case PORT_CLK_SEL_WRPLL2:
|
|
pipe_config->shared_dpll = DPLL_ID_WRPLL2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_shared_dpll *pll;
|
|
enum port port;
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
|
|
|
|
port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
skylake_get_ddi_pll(dev_priv, port, pipe_config);
|
|
else
|
|
haswell_get_ddi_pll(dev_priv, port, pipe_config);
|
|
|
|
if (pipe_config->shared_dpll >= 0) {
|
|
pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
|
|
|
|
WARN_ON(!pll->get_hw_state(dev_priv, pll,
|
|
&pipe_config->dpll_hw_state));
|
|
}
|
|
|
|
/*
|
|
* Haswell has only FDI/PCH transcoder A. It is which is connected to
|
|
* DDI E. So just check whether this pipe is wired to DDI E and whether
|
|
* the PCH transcoder is on.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 9 &&
|
|
(port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
tmp = I915_READ(FDI_RX_CTL(PIPE_A));
|
|
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
|
|
FDI_DP_PORT_WIDTH_SHIFT) + 1;
|
|
|
|
ironlake_get_fdi_m_n_config(crtc, pipe_config);
|
|
}
|
|
}
|
|
|
|
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum intel_display_power_domain pfit_domain;
|
|
uint32_t tmp;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_PIPE(crtc->pipe)))
|
|
return false;
|
|
|
|
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
|
|
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
|
|
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
|
|
if (tmp & TRANS_DDI_FUNC_ENABLE) {
|
|
enum pipe trans_edp_pipe;
|
|
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
|
|
default:
|
|
WARN(1, "unknown pipe linked to edp transcoder\n");
|
|
case TRANS_DDI_EDP_INPUT_A_ONOFF:
|
|
case TRANS_DDI_EDP_INPUT_A_ON:
|
|
trans_edp_pipe = PIPE_A;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_B_ONOFF:
|
|
trans_edp_pipe = PIPE_B;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_C_ONOFF:
|
|
trans_edp_pipe = PIPE_C;
|
|
break;
|
|
}
|
|
|
|
if (trans_edp_pipe == crtc->pipe)
|
|
pipe_config->cpu_transcoder = TRANSCODER_EDP;
|
|
}
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
|
|
return false;
|
|
|
|
tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
|
|
if (!(tmp & PIPECONF_ENABLE))
|
|
return false;
|
|
|
|
haswell_get_ddi_port_state(crtc, pipe_config);
|
|
|
|
intel_get_pipe_timings(crtc, pipe_config);
|
|
|
|
pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
|
|
if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
|
|
if (IS_SKYLAKE(dev))
|
|
skylake_get_pfit_config(crtc, pipe_config);
|
|
else
|
|
ironlake_get_pfit_config(crtc, pipe_config);
|
|
}
|
|
|
|
if (IS_HASWELL(dev))
|
|
pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
|
|
(I915_READ(IPS_CTL) & IPS_ENABLE);
|
|
|
|
if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
|
|
pipe_config->pixel_multiplier =
|
|
I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
|
|
} else {
|
|
pipe_config->pixel_multiplier = 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t cntl = 0, size = 0;
|
|
|
|
if (base) {
|
|
unsigned int width = intel_crtc->cursor_width;
|
|
unsigned int height = intel_crtc->cursor_height;
|
|
unsigned int stride = roundup_pow_of_two(width) * 4;
|
|
|
|
switch (stride) {
|
|
default:
|
|
WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
|
|
width, stride);
|
|
stride = 256;
|
|
/* fallthrough */
|
|
case 256:
|
|
case 512:
|
|
case 1024:
|
|
case 2048:
|
|
break;
|
|
}
|
|
|
|
cntl |= CURSOR_ENABLE |
|
|
CURSOR_GAMMA_ENABLE |
|
|
CURSOR_FORMAT_ARGB |
|
|
CURSOR_STRIDE(stride);
|
|
|
|
size = (height << 12) | width;
|
|
}
|
|
|
|
if (intel_crtc->cursor_cntl != 0 &&
|
|
(intel_crtc->cursor_base != base ||
|
|
intel_crtc->cursor_size != size ||
|
|
intel_crtc->cursor_cntl != cntl)) {
|
|
/* On these chipsets we can only modify the base/size/stride
|
|
* whilst the cursor is disabled.
|
|
*/
|
|
I915_WRITE(_CURACNTR, 0);
|
|
POSTING_READ(_CURACNTR);
|
|
intel_crtc->cursor_cntl = 0;
|
|
}
|
|
|
|
if (intel_crtc->cursor_base != base) {
|
|
I915_WRITE(_CURABASE, base);
|
|
intel_crtc->cursor_base = base;
|
|
}
|
|
|
|
if (intel_crtc->cursor_size != size) {
|
|
I915_WRITE(CURSIZE, size);
|
|
intel_crtc->cursor_size = size;
|
|
}
|
|
|
|
if (intel_crtc->cursor_cntl != cntl) {
|
|
I915_WRITE(_CURACNTR, cntl);
|
|
POSTING_READ(_CURACNTR);
|
|
intel_crtc->cursor_cntl = cntl;
|
|
}
|
|
}
|
|
|
|
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
uint32_t cntl;
|
|
|
|
cntl = 0;
|
|
if (base) {
|
|
cntl = MCURSOR_GAMMA_ENABLE;
|
|
switch (intel_crtc->cursor_width) {
|
|
case 64:
|
|
cntl |= CURSOR_MODE_64_ARGB_AX;
|
|
break;
|
|
case 128:
|
|
cntl |= CURSOR_MODE_128_ARGB_AX;
|
|
break;
|
|
case 256:
|
|
cntl |= CURSOR_MODE_256_ARGB_AX;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
cntl |= pipe << 28; /* Connect to correct pipe */
|
|
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
|
|
cntl |= CURSOR_PIPE_CSC_ENABLE;
|
|
}
|
|
|
|
if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
|
|
cntl |= CURSOR_ROTATE_180;
|
|
|
|
if (intel_crtc->cursor_cntl != cntl) {
|
|
I915_WRITE(CURCNTR(pipe), cntl);
|
|
POSTING_READ(CURCNTR(pipe));
|
|
intel_crtc->cursor_cntl = cntl;
|
|
}
|
|
|
|
/* and commit changes on next vblank */
|
|
I915_WRITE(CURBASE(pipe), base);
|
|
POSTING_READ(CURBASE(pipe));
|
|
|
|
intel_crtc->cursor_base = base;
|
|
}
|
|
|
|
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
|
|
void intel_crtc_update_cursor(struct drm_crtc *crtc,
|
|
bool on)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int x = crtc->cursor_x;
|
|
int y = crtc->cursor_y;
|
|
u32 base = 0, pos = 0;
|
|
|
|
if (on)
|
|
base = intel_crtc->cursor_addr;
|
|
|
|
if (x >= intel_crtc->config.pipe_src_w)
|
|
base = 0;
|
|
|
|
if (y >= intel_crtc->config.pipe_src_h)
|
|
base = 0;
|
|
|
|
if (x < 0) {
|
|
if (x + intel_crtc->cursor_width <= 0)
|
|
base = 0;
|
|
|
|
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
|
|
x = -x;
|
|
}
|
|
pos |= x << CURSOR_X_SHIFT;
|
|
|
|
if (y < 0) {
|
|
if (y + intel_crtc->cursor_height <= 0)
|
|
base = 0;
|
|
|
|
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
|
|
y = -y;
|
|
}
|
|
pos |= y << CURSOR_Y_SHIFT;
|
|
|
|
if (base == 0 && intel_crtc->cursor_base == 0)
|
|
return;
|
|
|
|
I915_WRITE(CURPOS(pipe), pos);
|
|
|
|
/* ILK+ do this automagically */
|
|
if (HAS_GMCH_DISPLAY(dev) &&
|
|
to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
|
|
base += (intel_crtc->cursor_height *
|
|
intel_crtc->cursor_width - 1) * 4;
|
|
}
|
|
|
|
if (IS_845G(dev) || IS_I865G(dev))
|
|
i845_update_cursor(crtc, base);
|
|
else
|
|
i9xx_update_cursor(crtc, base);
|
|
}
|
|
|
|
static bool cursor_size_ok(struct drm_device *dev,
|
|
uint32_t width, uint32_t height)
|
|
{
|
|
if (width == 0 || height == 0)
|
|
return false;
|
|
|
|
/*
|
|
* 845g/865g are special in that they are only limited by
|
|
* the width of their cursors, the height is arbitrary up to
|
|
* the precision of the register. Everything else requires
|
|
* square cursors, limited to a few power-of-two sizes.
|
|
*/
|
|
if (IS_845G(dev) || IS_I865G(dev)) {
|
|
if ((width & 63) != 0)
|
|
return false;
|
|
|
|
if (width > (IS_845G(dev) ? 64 : 512))
|
|
return false;
|
|
|
|
if (height > 1023)
|
|
return false;
|
|
} else {
|
|
switch (width | height) {
|
|
case 256:
|
|
case 128:
|
|
if (IS_GEN2(dev))
|
|
return false;
|
|
case 64:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
|
|
struct drm_i915_gem_object *obj,
|
|
uint32_t width, uint32_t height)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
unsigned old_width;
|
|
uint32_t addr;
|
|
int ret;
|
|
|
|
/* if we want to turn off the cursor ignore width and height */
|
|
if (!obj) {
|
|
DRM_DEBUG_KMS("cursor off\n");
|
|
addr = 0;
|
|
mutex_lock(&dev->struct_mutex);
|
|
goto finish;
|
|
}
|
|
|
|
/* we only need to pin inside GTT if cursor is non-phy */
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (!INTEL_INFO(dev)->cursor_needs_physical) {
|
|
unsigned alignment;
|
|
|
|
/*
|
|
* Global gtt pte registers are special registers which actually
|
|
* forward writes to a chunk of system memory. Which means that
|
|
* there is no risk that the register values disappear as soon
|
|
* as we call intel_runtime_pm_put(), so it is correct to wrap
|
|
* only the pin/unpin/fence and not more.
|
|
*/
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
/* Note that the w/a also requires 2 PTE of padding following
|
|
* the bo. We currently fill all unused PTE with the shadow
|
|
* page and so we should always have valid PTE following the
|
|
* cursor preventing the VT-d warning.
|
|
*/
|
|
alignment = 0;
|
|
if (need_vtd_wa(dev))
|
|
alignment = 64*1024;
|
|
|
|
ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
|
|
intel_runtime_pm_put(dev_priv);
|
|
goto fail_locked;
|
|
}
|
|
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("failed to release fence for cursor");
|
|
intel_runtime_pm_put(dev_priv);
|
|
goto fail_unpin;
|
|
}
|
|
|
|
addr = i915_gem_obj_ggtt_offset(obj);
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
} else {
|
|
int align = IS_I830(dev) ? 16 * 1024 : 256;
|
|
ret = 1;//i915_gem_object_attach_phys(obj, align);
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("failed to attach phys object\n");
|
|
goto fail_locked;
|
|
}
|
|
addr = obj->phys_handle->busaddr;
|
|
}
|
|
|
|
finish:
|
|
if (intel_crtc->cursor_bo) {
|
|
if (!INTEL_INFO(dev)->cursor_needs_physical)
|
|
i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
|
|
}
|
|
|
|
i915_gem_track_fb(intel_crtc->cursor_bo, obj,
|
|
INTEL_FRONTBUFFER_CURSOR(pipe));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
old_width = intel_crtc->cursor_width;
|
|
|
|
intel_crtc->cursor_addr = addr;
|
|
intel_crtc->cursor_bo = obj;
|
|
intel_crtc->cursor_width = width;
|
|
intel_crtc->cursor_height = height;
|
|
|
|
if (intel_crtc->active) {
|
|
if (old_width != width)
|
|
intel_update_watermarks(crtc);
|
|
intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
|
|
|
|
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
|
|
}
|
|
|
|
return 0;
|
|
fail_unpin:
|
|
i915_gem_object_unpin_from_display_plane(obj);
|
|
fail_locked:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
|
|
u16 *blue, uint32_t start, uint32_t size)
|
|
{
|
|
int end = (start + size > 256) ? 256 : start + size, i;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
for (i = start; i < end; i++) {
|
|
intel_crtc->lut_r[i] = red[i] >> 8;
|
|
intel_crtc->lut_g[i] = green[i] >> 8;
|
|
intel_crtc->lut_b[i] = blue[i] >> 8;
|
|
}
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
}
|
|
|
|
/* VESA 640x480x72Hz mode to set on the pipe */
|
|
static struct drm_display_mode load_detect_mode = {
|
|
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
|
|
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
|
|
};
|
|
|
|
struct drm_framebuffer *
|
|
__intel_framebuffer_create(struct drm_device *dev,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct intel_framebuffer *intel_fb;
|
|
int ret;
|
|
|
|
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
|
|
if (!intel_fb) {
|
|
drm_gem_object_unreference(&obj->base);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
|
|
if (ret)
|
|
goto err;
|
|
|
|
return &intel_fb->base;
|
|
err:
|
|
drm_gem_object_unreference(&obj->base);
|
|
kfree(intel_fb);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
intel_framebuffer_create(struct drm_device *dev,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_framebuffer *fb;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
fb = __intel_framebuffer_create(dev, mode_cmd, obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return fb;
|
|
}
|
|
|
|
static u32
|
|
intel_framebuffer_pitch_for_width(int width, int bpp)
|
|
{
|
|
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
|
|
return ALIGN(pitch, 64);
|
|
}
|
|
|
|
static u32
|
|
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
|
|
{
|
|
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
|
|
return PAGE_ALIGN(pitch * mode->vdisplay);
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
intel_framebuffer_create_for_mode(struct drm_device *dev,
|
|
struct drm_display_mode *mode,
|
|
int depth, int bpp)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
|
|
|
|
obj = i915_gem_alloc_object(dev,
|
|
intel_framebuffer_size_for_mode(mode, bpp));
|
|
if (obj == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mode_cmd.width = mode->hdisplay;
|
|
mode_cmd.height = mode->vdisplay;
|
|
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
|
|
bpp);
|
|
mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
|
|
|
|
return intel_framebuffer_create(dev, &mode_cmd, obj);
|
|
}
|
|
|
|
static struct drm_framebuffer *
|
|
mode_fits_in_fbdev(struct drm_device *dev,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
#ifdef CONFIG_DRM_I915_FBDEV
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
struct drm_framebuffer *fb;
|
|
|
|
if (!dev_priv->fbdev)
|
|
return NULL;
|
|
|
|
if (!dev_priv->fbdev->fb)
|
|
return NULL;
|
|
|
|
obj = dev_priv->fbdev->fb->obj;
|
|
BUG_ON(!obj);
|
|
|
|
fb = &dev_priv->fbdev->fb->base;
|
|
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
|
|
fb->bits_per_pixel))
|
|
return NULL;
|
|
|
|
if (obj->base.size < mode->vdisplay * fb->pitches[0])
|
|
return NULL;
|
|
|
|
return fb;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
bool intel_get_load_detect_pipe(struct drm_connector *connector,
|
|
struct drm_display_mode *mode,
|
|
struct intel_load_detect_pipe *old,
|
|
struct drm_modeset_acquire_ctx *ctx)
|
|
{
|
|
struct intel_crtc *intel_crtc;
|
|
struct intel_encoder *intel_encoder =
|
|
intel_attached_encoder(connector);
|
|
struct drm_crtc *possible_crtc;
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_crtc *crtc = NULL;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_framebuffer *fb;
|
|
struct drm_mode_config *config = &dev->mode_config;
|
|
int ret, i = -1;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
|
|
connector->base.id, connector->name,
|
|
encoder->base.id, encoder->name);
|
|
|
|
retry:
|
|
ret = drm_modeset_lock(&config->connection_mutex, ctx);
|
|
if (ret)
|
|
goto fail_unlock;
|
|
|
|
/*
|
|
* Algorithm gets a little messy:
|
|
*
|
|
* - if the connector already has an assigned crtc, use it (but make
|
|
* sure it's on first)
|
|
*
|
|
* - try to find the first unused crtc that can drive this connector,
|
|
* and use that if we find one
|
|
*/
|
|
|
|
/* See if we already have a CRTC for this connector */
|
|
if (encoder->crtc) {
|
|
crtc = encoder->crtc;
|
|
|
|
ret = drm_modeset_lock(&crtc->mutex, ctx);
|
|
if (ret)
|
|
goto fail_unlock;
|
|
ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
|
|
if (ret)
|
|
goto fail_unlock;
|
|
|
|
old->dpms_mode = connector->dpms;
|
|
old->load_detect_temp = false;
|
|
|
|
/* Make sure the crtc and connector are running */
|
|
if (connector->dpms != DRM_MODE_DPMS_ON)
|
|
connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find an unused one (if possible) */
|
|
for_each_crtc(dev, possible_crtc) {
|
|
i++;
|
|
if (!(encoder->possible_crtcs & (1 << i)))
|
|
continue;
|
|
if (possible_crtc->enabled)
|
|
continue;
|
|
/* This can occur when applying the pipe A quirk on resume. */
|
|
if (to_intel_crtc(possible_crtc)->new_enabled)
|
|
continue;
|
|
|
|
crtc = possible_crtc;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we didn't find an unused CRTC, don't use any.
|
|
*/
|
|
if (!crtc) {
|
|
DRM_DEBUG_KMS("no pipe available for load-detect\n");
|
|
goto fail_unlock;
|
|
}
|
|
|
|
ret = drm_modeset_lock(&crtc->mutex, ctx);
|
|
if (ret)
|
|
goto fail_unlock;
|
|
ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
|
|
if (ret)
|
|
goto fail_unlock;
|
|
intel_encoder->new_crtc = to_intel_crtc(crtc);
|
|
to_intel_connector(connector)->new_encoder = intel_encoder;
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
intel_crtc->new_enabled = true;
|
|
intel_crtc->new_config = &intel_crtc->config;
|
|
old->dpms_mode = connector->dpms;
|
|
old->load_detect_temp = true;
|
|
old->release_fb = NULL;
|
|
|
|
if (!mode)
|
|
mode = &load_detect_mode;
|
|
|
|
/* We need a framebuffer large enough to accommodate all accesses
|
|
* that the plane may generate whilst we perform load detection.
|
|
* We can not rely on the fbcon either being present (we get called
|
|
* during its initialisation to detect all boot displays, or it may
|
|
* not even exist) or that it is large enough to satisfy the
|
|
* requested mode.
|
|
*/
|
|
fb = mode_fits_in_fbdev(dev, mode);
|
|
if (fb == NULL) {
|
|
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
|
|
fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
|
|
old->release_fb = fb;
|
|
} else
|
|
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
|
|
if (IS_ERR(fb)) {
|
|
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (intel_set_mode(crtc, mode, 0, 0, fb)) {
|
|
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
|
|
if (old->release_fb)
|
|
old->release_fb->funcs->destroy(old->release_fb);
|
|
goto fail;
|
|
}
|
|
|
|
/* let the connector get through one full cycle before testing */
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
return true;
|
|
|
|
fail:
|
|
intel_crtc->new_enabled = crtc->enabled;
|
|
if (intel_crtc->new_enabled)
|
|
intel_crtc->new_config = &intel_crtc->config;
|
|
else
|
|
intel_crtc->new_config = NULL;
|
|
fail_unlock:
|
|
if (ret == -EDEADLK) {
|
|
drm_modeset_backoff(ctx);
|
|
goto retry;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void intel_release_load_detect_pipe(struct drm_connector *connector,
|
|
struct intel_load_detect_pipe *old)
|
|
{
|
|
struct intel_encoder *intel_encoder =
|
|
intel_attached_encoder(connector);
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
|
|
connector->base.id, connector->name,
|
|
encoder->base.id, encoder->name);
|
|
|
|
if (old->load_detect_temp) {
|
|
to_intel_connector(connector)->new_encoder = NULL;
|
|
intel_encoder->new_crtc = NULL;
|
|
intel_crtc->new_enabled = false;
|
|
intel_crtc->new_config = NULL;
|
|
intel_set_mode(crtc, NULL, 0, 0, NULL);
|
|
|
|
if (old->release_fb) {
|
|
drm_framebuffer_unregister_private(old->release_fb);
|
|
drm_framebuffer_unreference(old->release_fb);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Switch crtc and encoder back off if necessary */
|
|
if (old->dpms_mode != DRM_MODE_DPMS_ON)
|
|
connector->funcs->dpms(connector, old->dpms_mode);
|
|
}
|
|
|
|
static int i9xx_pll_refclk(struct drm_device *dev,
|
|
const struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpll = pipe_config->dpll_hw_state.dpll;
|
|
|
|
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
|
|
return dev_priv->vbt.lvds_ssc_freq;
|
|
else if (HAS_PCH_SPLIT(dev))
|
|
return 120000;
|
|
else if (!IS_GEN2(dev))
|
|
return 96000;
|
|
else
|
|
return 48000;
|
|
}
|
|
|
|
/* Returns the clock of the currently programmed mode of the given pipe. */
|
|
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = pipe_config->cpu_transcoder;
|
|
u32 dpll = pipe_config->dpll_hw_state.dpll;
|
|
u32 fp;
|
|
intel_clock_t clock;
|
|
int refclk = i9xx_pll_refclk(dev, pipe_config);
|
|
|
|
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
|
|
fp = pipe_config->dpll_hw_state.fp0;
|
|
else
|
|
fp = pipe_config->dpll_hw_state.fp1;
|
|
|
|
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
|
|
if (IS_PINEVIEW(dev)) {
|
|
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
|
|
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
} else {
|
|
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
|
|
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
}
|
|
|
|
if (!IS_GEN2(dev)) {
|
|
if (IS_PINEVIEW(dev))
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
|
|
else
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
|
|
switch (dpll & DPLL_MODE_MASK) {
|
|
case DPLLB_MODE_DAC_SERIAL:
|
|
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
|
|
5 : 10;
|
|
break;
|
|
case DPLLB_MODE_LVDS:
|
|
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
|
|
7 : 14;
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
|
|
"mode\n", (int)(dpll & DPLL_MODE_MASK));
|
|
return;
|
|
}
|
|
|
|
if (IS_PINEVIEW(dev))
|
|
pineview_clock(refclk, &clock);
|
|
else
|
|
i9xx_clock(refclk, &clock);
|
|
} else {
|
|
u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
|
|
bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
|
|
|
|
if (is_lvds) {
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
|
|
if (lvds & LVDS_CLKB_POWER_UP)
|
|
clock.p2 = 7;
|
|
else
|
|
clock.p2 = 14;
|
|
} else {
|
|
if (dpll & PLL_P1_DIVIDE_BY_TWO)
|
|
clock.p1 = 2;
|
|
else {
|
|
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
|
|
}
|
|
if (dpll & PLL_P2_DIVIDE_BY_4)
|
|
clock.p2 = 4;
|
|
else
|
|
clock.p2 = 2;
|
|
}
|
|
|
|
i9xx_clock(refclk, &clock);
|
|
}
|
|
|
|
/*
|
|
* This value includes pixel_multiplier. We will use
|
|
* port_clock to compute adjusted_mode.crtc_clock in the
|
|
* encoder's get_config() function.
|
|
*/
|
|
pipe_config->port_clock = clock.dot;
|
|
}
|
|
|
|
int intel_dotclock_calculate(int link_freq,
|
|
const struct intel_link_m_n *m_n)
|
|
{
|
|
/*
|
|
* The calculation for the data clock is:
|
|
* pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
|
|
* But we want to avoid losing precison if possible, so:
|
|
* pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
|
|
*
|
|
* and the link clock is simpler:
|
|
* link_clock = (m * link_clock) / n
|
|
*/
|
|
|
|
if (!m_n->link_n)
|
|
return 0;
|
|
|
|
return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
|
|
}
|
|
|
|
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
|
|
/* read out port_clock from the DPLL */
|
|
i9xx_crtc_clock_get(crtc, pipe_config);
|
|
|
|
/*
|
|
* This value does not include pixel_multiplier.
|
|
* We will check that port_clock and adjusted_mode.crtc_clock
|
|
* agree once we know their relationship in the encoder's
|
|
* get_config() function.
|
|
*/
|
|
pipe_config->adjusted_mode.crtc_clock =
|
|
intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
|
|
&pipe_config->fdi_m_n);
|
|
}
|
|
|
|
/** Returns the currently programmed mode of the given pipe. */
|
|
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
|
|
struct drm_display_mode *mode;
|
|
struct intel_crtc_config pipe_config;
|
|
int htot = I915_READ(HTOTAL(cpu_transcoder));
|
|
int hsync = I915_READ(HSYNC(cpu_transcoder));
|
|
int vtot = I915_READ(VTOTAL(cpu_transcoder));
|
|
int vsync = I915_READ(VSYNC(cpu_transcoder));
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
|
|
if (!mode)
|
|
return NULL;
|
|
|
|
/*
|
|
* Construct a pipe_config sufficient for getting the clock info
|
|
* back out of crtc_clock_get.
|
|
*
|
|
* Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
|
|
* to use a real value here instead.
|
|
*/
|
|
pipe_config.cpu_transcoder = (enum transcoder) pipe;
|
|
pipe_config.pixel_multiplier = 1;
|
|
pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
|
|
pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
|
|
pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
|
|
i9xx_crtc_clock_get(intel_crtc, &pipe_config);
|
|
|
|
mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
|
|
mode->hdisplay = (htot & 0xffff) + 1;
|
|
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
|
|
mode->hsync_start = (hsync & 0xffff) + 1;
|
|
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
|
|
mode->vdisplay = (vtot & 0xffff) + 1;
|
|
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
|
|
mode->vsync_start = (vsync & 0xffff) + 1;
|
|
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
|
|
|
|
drm_mode_set_name(mode);
|
|
|
|
return mode;
|
|
}
|
|
|
|
static void intel_decrease_pllclock(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
if (!HAS_GMCH_DISPLAY(dev))
|
|
return;
|
|
|
|
if (!dev_priv->lvds_downclock_avail)
|
|
return;
|
|
|
|
/*
|
|
* Since this is called by a timer, we should never get here in
|
|
* the manual case.
|
|
*/
|
|
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
|
|
int pipe = intel_crtc->pipe;
|
|
int dpll_reg = DPLL(pipe);
|
|
int dpll;
|
|
|
|
DRM_DEBUG_DRIVER("downclocking LVDS\n");
|
|
|
|
assert_panel_unlocked(dev_priv, pipe);
|
|
|
|
dpll = I915_READ(dpll_reg);
|
|
dpll |= DISPLAY_RATE_SELECT_FPA1;
|
|
I915_WRITE(dpll_reg, dpll);
|
|
intel_wait_for_vblank(dev, pipe);
|
|
dpll = I915_READ(dpll_reg);
|
|
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
|
|
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
|
|
}
|
|
|
|
}
|
|
|
|
void intel_mark_busy(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->mm.busy)
|
|
return;
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
i915_update_gfx_val(dev_priv);
|
|
dev_priv->mm.busy = true;
|
|
}
|
|
|
|
void intel_mark_idle(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc;
|
|
|
|
if (!dev_priv->mm.busy)
|
|
return;
|
|
|
|
dev_priv->mm.busy = false;
|
|
|
|
if (!i915.powersave)
|
|
goto out;
|
|
|
|
for_each_crtc(dev, crtc) {
|
|
if (!crtc->primary->fb)
|
|
continue;
|
|
|
|
intel_decrease_pllclock(crtc);
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6)
|
|
gen6_rps_idle(dev->dev_private);
|
|
|
|
out:
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
static void intel_crtc_destroy(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_unpin_work *work;
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
work = intel_crtc->unpin_work;
|
|
intel_crtc->unpin_work = NULL;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
if (work) {
|
|
cancel_work_sync(&work->work);
|
|
kfree(work);
|
|
}
|
|
|
|
drm_crtc_cleanup(crtc);
|
|
|
|
kfree(intel_crtc);
|
|
}
|
|
|
|
#if 0
|
|
static void intel_unpin_work_fn(struct work_struct *__work)
|
|
{
|
|
struct intel_unpin_work *work =
|
|
container_of(__work, struct intel_unpin_work, work);
|
|
struct drm_device *dev = work->crtc->dev;
|
|
enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_unpin_fb_obj(work->old_fb_obj);
|
|
drm_gem_object_unreference(&work->pending_flip_obj->base);
|
|
drm_gem_object_unreference(&work->old_fb_obj->base);
|
|
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
|
|
BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
|
|
atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
|
|
|
|
kfree(work);
|
|
}
|
|
|
|
static void do_intel_finish_page_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_unpin_work *work;
|
|
unsigned long flags;
|
|
|
|
/* Ignore early vblank irqs */
|
|
if (intel_crtc == NULL)
|
|
return;
|
|
|
|
/*
|
|
* This is called both by irq handlers and the reset code (to complete
|
|
* lost pageflips) so needs the full irqsave spinlocks.
|
|
*/
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
work = intel_crtc->unpin_work;
|
|
|
|
/* Ensure we don't miss a work->pending update ... */
|
|
smp_rmb();
|
|
|
|
if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
return;
|
|
}
|
|
|
|
page_flip_completed(intel_crtc);
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
void intel_finish_page_flip(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
|
|
do_intel_finish_page_flip(dev, crtc);
|
|
}
|
|
|
|
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
|
|
|
|
do_intel_finish_page_flip(dev, crtc);
|
|
}
|
|
|
|
/* Is 'a' after or equal to 'b'? */
|
|
static bool g4x_flip_count_after_eq(u32 a, u32 b)
|
|
{
|
|
return !((a - b) & 0x80000000);
|
|
}
|
|
|
|
static bool page_flip_finished(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (i915_reset_in_progress(&dev_priv->gpu_error) ||
|
|
crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
|
|
return true;
|
|
|
|
/*
|
|
* The relevant registers doen't exist on pre-ctg.
|
|
* As the flip done interrupt doesn't trigger for mmio
|
|
* flips on gmch platforms, a flip count check isn't
|
|
* really needed there. But since ctg has the registers,
|
|
* include it in the check anyway.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
|
|
return true;
|
|
|
|
/*
|
|
* A DSPSURFLIVE check isn't enough in case the mmio and CS flips
|
|
* used the same base address. In that case the mmio flip might
|
|
* have completed, but the CS hasn't even executed the flip yet.
|
|
*
|
|
* A flip count check isn't enough as the CS might have updated
|
|
* the base address just after start of vblank, but before we
|
|
* managed to process the interrupt. This means we'd complete the
|
|
* CS flip too soon.
|
|
*
|
|
* Combining both checks should get us a good enough result. It may
|
|
* still happen that the CS flip has been executed, but has not
|
|
* yet actually completed. But in case the base address is the same
|
|
* anyway, we don't really care.
|
|
*/
|
|
return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
|
|
crtc->unpin_work->gtt_offset &&
|
|
g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
|
|
crtc->unpin_work->flip_count);
|
|
}
|
|
|
|
void intel_prepare_page_flip(struct drm_device *dev, int plane)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
|
|
unsigned long flags;
|
|
|
|
|
|
/*
|
|
* This is called both by irq handlers and the reset code (to complete
|
|
* lost pageflips) so needs the full irqsave spinlocks.
|
|
*
|
|
* NB: An MMIO update of the plane base pointer will also
|
|
* generate a page-flip completion irq, i.e. every modeset
|
|
* is also accompanied by a spurious intel_prepare_page_flip().
|
|
*/
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
|
|
atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
|
|
{
|
|
/* Ensure that the work item is consistent when activating it ... */
|
|
smp_wmb();
|
|
atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
|
|
/* and that it is marked active as soon as the irq could fire. */
|
|
smp_wmb();
|
|
}
|
|
|
|
static int intel_gen2_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
u32 flip_mask;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Can't queue multiple flips, so wait for the previous
|
|
* one to finish before executing the next.
|
|
*/
|
|
if (intel_crtc->plane)
|
|
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
|
|
else
|
|
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
|
|
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
|
|
intel_ring_emit(ring, 0); /* aux display base address, unused */
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
__intel_ring_advance(ring);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen3_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
u32 flip_mask;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (intel_crtc->plane)
|
|
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
|
|
else
|
|
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
|
|
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
__intel_ring_advance(ring);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen4_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring,
|
|
uint32_t flags)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t pf, pipesrc;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* i965+ uses the linear or tiled offsets from the
|
|
* Display Registers (which do not change across a page-flip)
|
|
* so we need only reprogram the base address.
|
|
*/
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0]);
|
|
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
|
|
obj->tiling_mode);
|
|
|
|
/* XXX Enabling the panel-fitter across page-flip is so far
|
|
* untested on non-native modes, so ignore it for now.
|
|
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
|
|
*/
|
|
pf = 0;
|
|
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
|
|
intel_ring_emit(ring, pf | pipesrc);
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
__intel_ring_advance(ring);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen6_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring,
|
|
uint32_t flags)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t pf, pipesrc;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
|
|
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
|
|
|
|
/* Contrary to the suggestions in the documentation,
|
|
* "Enable Panel Fitter" does not seem to be required when page
|
|
* flipping with a non-native mode, and worse causes a normal
|
|
* modeset to fail.
|
|
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
|
|
*/
|
|
pf = 0;
|
|
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
|
|
intel_ring_emit(ring, pf | pipesrc);
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
__intel_ring_advance(ring);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gen7_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring,
|
|
uint32_t flags)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
uint32_t plane_bit = 0;
|
|
int len, ret;
|
|
|
|
switch (intel_crtc->plane) {
|
|
case PLANE_A:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
|
|
break;
|
|
case PLANE_B:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
|
|
break;
|
|
case PLANE_C:
|
|
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "unknown plane in flip command\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
len = 4;
|
|
if (ring->id == RCS) {
|
|
len += 6;
|
|
/*
|
|
* On Gen 8, SRM is now taking an extra dword to accommodate
|
|
* 48bits addresses, and we need a NOOP for the batch size to
|
|
* stay even.
|
|
*/
|
|
if (IS_GEN8(dev))
|
|
len += 2;
|
|
}
|
|
|
|
/*
|
|
* BSpec MI_DISPLAY_FLIP for IVB:
|
|
* "The full packet must be contained within the same cache line."
|
|
*
|
|
* Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
|
|
* cacheline, if we ever start emitting more commands before
|
|
* the MI_DISPLAY_FLIP we may need to first emit everything else,
|
|
* then do the cacheline alignment, and finally emit the
|
|
* MI_DISPLAY_FLIP.
|
|
*/
|
|
ret = intel_ring_cacheline_align(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Unmask the flip-done completion message. Note that the bspec says that
|
|
* we should do this for both the BCS and RCS, and that we must not unmask
|
|
* more than one flip event at any time (or ensure that one flip message
|
|
* can be sent by waiting for flip-done prior to queueing new flips).
|
|
* Experimentation says that BCS works despite DERRMR masking all
|
|
* flip-done completion events and that unmasking all planes at once
|
|
* for the RCS also doesn't appear to drop events. Setting the DERRMR
|
|
* to zero does lead to lockups within MI_DISPLAY_FLIP.
|
|
*/
|
|
if (ring->id == RCS) {
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, DERRMR);
|
|
intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
|
|
DERRMR_PIPEB_PRI_FLIP_DONE |
|
|
DERRMR_PIPEC_PRI_FLIP_DONE));
|
|
if (IS_GEN8(dev))
|
|
intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
|
|
MI_SRM_LRM_GLOBAL_GTT);
|
|
else
|
|
intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
|
|
MI_SRM_LRM_GLOBAL_GTT);
|
|
intel_ring_emit(ring, DERRMR);
|
|
intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
|
|
if (IS_GEN8(dev)) {
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
}
|
|
}
|
|
|
|
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
|
|
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
|
|
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
|
|
intel_ring_emit(ring, (MI_NOOP));
|
|
|
|
intel_mark_page_flip_active(intel_crtc);
|
|
__intel_ring_advance(ring);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_default_queue_flip(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring,
|
|
uint32_t flags)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int intel_crtc_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event,
|
|
uint32_t page_flip_flags)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_framebuffer *old_fb = crtc->primary->fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
struct intel_unpin_work *work;
|
|
struct intel_engine_cs *ring;
|
|
int ret;
|
|
|
|
/*
|
|
* drm_mode_page_flip_ioctl() should already catch this, but double
|
|
* check to be safe. In the future we may enable pageflipping from
|
|
* a disabled primary plane.
|
|
*/
|
|
if (WARN_ON(intel_fb_obj(old_fb) == NULL))
|
|
return -EBUSY;
|
|
|
|
/* Can't change pixel format via MI display flips. */
|
|
if (fb->pixel_format != crtc->primary->fb->pixel_format)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* TILEOFF/LINOFF registers can't be changed via MI display flips.
|
|
* Note that pitch changes could also affect these register.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen > 3 &&
|
|
(fb->offsets[0] != crtc->primary->fb->offsets[0] ||
|
|
fb->pitches[0] != crtc->primary->fb->pitches[0]))
|
|
return -EINVAL;
|
|
|
|
if (i915_terminally_wedged(&dev_priv->gpu_error))
|
|
goto out_hang;
|
|
|
|
work = kzalloc(sizeof(*work), GFP_KERNEL);
|
|
if (work == NULL)
|
|
return -ENOMEM;
|
|
|
|
work->event = event;
|
|
work->crtc = crtc;
|
|
work->old_fb_obj = intel_fb_obj(old_fb);
|
|
INIT_WORK(&work->work, intel_unpin_work_fn);
|
|
|
|
ret = drm_crtc_vblank_get(crtc);
|
|
if (ret)
|
|
goto free_work;
|
|
|
|
/* We borrow the event spin lock for protecting unpin_work */
|
|
spin_lock_irq(&dev->event_lock);
|
|
if (intel_crtc->unpin_work) {
|
|
/* Before declaring the flip queue wedged, check if
|
|
* the hardware completed the operation behind our backs.
|
|
*/
|
|
if (__intel_pageflip_stall_check(dev, crtc)) {
|
|
DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
|
|
page_flip_completed(intel_crtc);
|
|
} else {
|
|
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
kfree(work);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
intel_crtc->unpin_work = work;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
|
|
flush_workqueue(dev_priv->wq);
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto cleanup;
|
|
|
|
/* Reference the objects for the scheduled work. */
|
|
drm_gem_object_reference(&work->old_fb_obj->base);
|
|
drm_gem_object_reference(&obj->base);
|
|
|
|
crtc->primary->fb = fb;
|
|
|
|
work->pending_flip_obj = obj;
|
|
|
|
atomic_inc(&intel_crtc->unpin_work_count);
|
|
intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
|
|
work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
|
|
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
ring = &dev_priv->ring[BCS];
|
|
if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
|
|
/* vlv: DISPLAY_FLIP fails to change tiling */
|
|
ring = NULL;
|
|
} else if (IS_IVYBRIDGE(dev)) {
|
|
ring = &dev_priv->ring[BCS];
|
|
} else if (INTEL_INFO(dev)->gen >= 7) {
|
|
ring = obj->ring;
|
|
if (ring == NULL || ring->id != RCS)
|
|
ring = &dev_priv->ring[BCS];
|
|
} else {
|
|
ring = &dev_priv->ring[RCS];
|
|
}
|
|
|
|
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
|
|
if (ret)
|
|
goto cleanup_pending;
|
|
|
|
work->gtt_offset =
|
|
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
|
|
|
|
if (use_mmio_flip(ring, obj)) {
|
|
ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
|
|
page_flip_flags);
|
|
if (ret)
|
|
goto cleanup_unpin;
|
|
|
|
work->flip_queued_seqno = obj->last_write_seqno;
|
|
work->flip_queued_ring = obj->ring;
|
|
} else {
|
|
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
|
|
page_flip_flags);
|
|
if (ret)
|
|
goto cleanup_unpin;
|
|
|
|
work->flip_queued_seqno = intel_ring_get_seqno(ring);
|
|
work->flip_queued_ring = ring;
|
|
}
|
|
|
|
work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
|
|
work->enable_stall_check = true;
|
|
|
|
i915_gem_track_fb(work->old_fb_obj, obj,
|
|
INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
|
|
intel_disable_fbc(dev);
|
|
intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
trace_i915_flip_request(intel_crtc->plane, obj);
|
|
|
|
return 0;
|
|
|
|
cleanup_unpin:
|
|
intel_unpin_fb_obj(obj);
|
|
cleanup_pending:
|
|
atomic_dec(&intel_crtc->unpin_work_count);
|
|
crtc->primary->fb = old_fb;
|
|
drm_gem_object_unreference(&work->old_fb_obj->base);
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
cleanup:
|
|
spin_lock_irq(&dev->event_lock);
|
|
intel_crtc->unpin_work = NULL;
|
|
spin_unlock_irq(&dev->event_lock);
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
free_work:
|
|
kfree(work);
|
|
|
|
if (ret == -EIO) {
|
|
out_hang:
|
|
// intel_crtc_wait_for_pending_flips(crtc);
|
|
ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
|
|
if (ret == 0 && event) {
|
|
spin_lock_irq(&dev->event_lock);
|
|
drm_send_vblank_event(dev, pipe, event);
|
|
spin_unlock_irq(&dev->event_lock);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static struct drm_crtc_helper_funcs intel_helper_funcs = {
|
|
.mode_set_base_atomic = intel_pipe_set_base_atomic,
|
|
.load_lut = intel_crtc_load_lut,
|
|
};
|
|
|
|
/**
|
|
* intel_modeset_update_staged_output_state
|
|
*
|
|
* Updates the staged output configuration state, e.g. after we've read out the
|
|
* current hw state.
|
|
*/
|
|
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
connector->new_encoder =
|
|
to_intel_encoder(connector->base.encoder);
|
|
}
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
encoder->new_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
}
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
crtc->new_enabled = crtc->base.enabled;
|
|
|
|
if (crtc->new_enabled)
|
|
crtc->new_config = &crtc->config;
|
|
else
|
|
crtc->new_config = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intel_modeset_commit_output_state
|
|
*
|
|
* This function copies the stage display pipe configuration to the real one.
|
|
*/
|
|
static void intel_modeset_commit_output_state(struct drm_device *dev)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
connector->base.encoder = &connector->new_encoder->base;
|
|
}
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
encoder->base.crtc = &encoder->new_crtc->base;
|
|
}
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
crtc->base.enabled = crtc->new_enabled;
|
|
}
|
|
}
|
|
|
|
static void
|
|
connected_sink_compute_bpp(struct intel_connector *connector,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
int bpp = pipe_config->pipe_bpp;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
|
|
connector->base.base.id,
|
|
connector->base.name);
|
|
|
|
/* Don't use an invalid EDID bpc value */
|
|
if (connector->base.display_info.bpc &&
|
|
connector->base.display_info.bpc * 3 < bpp) {
|
|
DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
|
|
bpp, connector->base.display_info.bpc*3);
|
|
pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
|
|
}
|
|
|
|
/* Clamp bpp to 8 on screens without EDID 1.4 */
|
|
if (connector->base.display_info.bpc == 0 && bpp > 24) {
|
|
DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
|
|
bpp);
|
|
pipe_config->pipe_bpp = 24;
|
|
}
|
|
}
|
|
|
|
static int
|
|
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_connector *connector;
|
|
int bpp;
|
|
|
|
switch (fb->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
bpp = 8*3; /* since we go through a colormap */
|
|
break;
|
|
case DRM_FORMAT_XRGB1555:
|
|
case DRM_FORMAT_ARGB1555:
|
|
/* checked in intel_framebuffer_init already */
|
|
if (WARN_ON(INTEL_INFO(dev)->gen > 3))
|
|
return -EINVAL;
|
|
case DRM_FORMAT_RGB565:
|
|
bpp = 6*3; /* min is 18bpp */
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
/* checked in intel_framebuffer_init already */
|
|
if (WARN_ON(INTEL_INFO(dev)->gen < 4))
|
|
return -EINVAL;
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
bpp = 8*3;
|
|
break;
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_ARGB2101010:
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_ABGR2101010:
|
|
/* checked in intel_framebuffer_init already */
|
|
if (WARN_ON(INTEL_INFO(dev)->gen < 4))
|
|
return -EINVAL;
|
|
bpp = 10*3;
|
|
break;
|
|
/* TODO: gen4+ supports 16 bpc floating point, too. */
|
|
default:
|
|
DRM_DEBUG_KMS("unsupported depth\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pipe_config->pipe_bpp = bpp;
|
|
|
|
/* Clamp display bpp to EDID value */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (!connector->new_encoder ||
|
|
connector->new_encoder->new_crtc != crtc)
|
|
continue;
|
|
|
|
connected_sink_compute_bpp(connector, pipe_config);
|
|
}
|
|
|
|
return bpp;
|
|
}
|
|
|
|
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
|
|
{
|
|
DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
|
|
"type: 0x%x flags: 0x%x\n",
|
|
mode->crtc_clock,
|
|
mode->crtc_hdisplay, mode->crtc_hsync_start,
|
|
mode->crtc_hsync_end, mode->crtc_htotal,
|
|
mode->crtc_vdisplay, mode->crtc_vsync_start,
|
|
mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
|
|
}
|
|
|
|
static void intel_dump_pipe_config(struct intel_crtc *crtc,
|
|
struct intel_crtc_config *pipe_config,
|
|
const char *context)
|
|
{
|
|
DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
|
|
context, pipe_name(crtc->pipe));
|
|
|
|
DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
|
|
DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
|
|
pipe_config->pipe_bpp, pipe_config->dither);
|
|
DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
|
|
pipe_config->has_pch_encoder,
|
|
pipe_config->fdi_lanes,
|
|
pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
|
|
pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
|
|
pipe_config->fdi_m_n.tu);
|
|
DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
|
|
pipe_config->has_dp_encoder,
|
|
pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
|
|
pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
|
|
pipe_config->dp_m_n.tu);
|
|
|
|
DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
|
|
pipe_config->has_dp_encoder,
|
|
pipe_config->dp_m2_n2.gmch_m,
|
|
pipe_config->dp_m2_n2.gmch_n,
|
|
pipe_config->dp_m2_n2.link_m,
|
|
pipe_config->dp_m2_n2.link_n,
|
|
pipe_config->dp_m2_n2.tu);
|
|
|
|
DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
|
|
pipe_config->has_audio,
|
|
pipe_config->has_infoframe);
|
|
|
|
DRM_DEBUG_KMS("requested mode:\n");
|
|
drm_mode_debug_printmodeline(&pipe_config->requested_mode);
|
|
DRM_DEBUG_KMS("adjusted mode:\n");
|
|
drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
|
|
intel_dump_crtc_timings(&pipe_config->adjusted_mode);
|
|
DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
|
|
DRM_DEBUG_KMS("pipe src size: %dx%d\n",
|
|
pipe_config->pipe_src_w, pipe_config->pipe_src_h);
|
|
DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
|
|
pipe_config->gmch_pfit.control,
|
|
pipe_config->gmch_pfit.pgm_ratios,
|
|
pipe_config->gmch_pfit.lvds_border_bits);
|
|
DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
|
|
pipe_config->pch_pfit.pos,
|
|
pipe_config->pch_pfit.size,
|
|
pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
|
|
DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
|
|
DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
|
|
}
|
|
|
|
static bool encoders_cloneable(const struct intel_encoder *a,
|
|
const struct intel_encoder *b)
|
|
{
|
|
/* masks could be asymmetric, so check both ways */
|
|
return a == b || (a->cloneable & (1 << b->type) &&
|
|
b->cloneable & (1 << a->type));
|
|
}
|
|
|
|
static bool check_single_encoder_cloning(struct intel_crtc *crtc,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_encoder *source_encoder;
|
|
|
|
for_each_intel_encoder(dev, source_encoder) {
|
|
if (source_encoder->new_crtc != crtc)
|
|
continue;
|
|
|
|
if (!encoders_cloneable(encoder, source_encoder))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool check_encoder_cloning(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
if (encoder->new_crtc != crtc)
|
|
continue;
|
|
|
|
if (!check_single_encoder_cloning(crtc, encoder))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool check_digital_port_conflicts(struct drm_device *dev)
|
|
{
|
|
struct intel_connector *connector;
|
|
unsigned int used_ports = 0;
|
|
|
|
/*
|
|
* Walk the connector list instead of the encoder
|
|
* list to detect the problem on ddi platforms
|
|
* where there's just one encoder per digital port.
|
|
*/
|
|
list_for_each_entry(connector,
|
|
&dev->mode_config.connector_list, base.head) {
|
|
struct intel_encoder *encoder = connector->new_encoder;
|
|
|
|
if (!encoder)
|
|
continue;
|
|
|
|
WARN_ON(!encoder->new_crtc);
|
|
|
|
switch (encoder->type) {
|
|
unsigned int port_mask;
|
|
case INTEL_OUTPUT_UNKNOWN:
|
|
if (WARN_ON(!HAS_DDI(dev)))
|
|
break;
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
case INTEL_OUTPUT_HDMI:
|
|
case INTEL_OUTPUT_EDP:
|
|
port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
|
|
|
|
/* the same port mustn't appear more than once */
|
|
if (used_ports & port_mask)
|
|
return false;
|
|
|
|
used_ports |= port_mask;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct intel_crtc_config *
|
|
intel_modeset_pipe_config(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc_config *pipe_config;
|
|
int plane_bpp, ret = -EINVAL;
|
|
bool retry = true;
|
|
|
|
if (!check_encoder_cloning(to_intel_crtc(crtc))) {
|
|
DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (!check_digital_port_conflicts(dev)) {
|
|
DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
|
|
if (!pipe_config)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
drm_mode_copy(&pipe_config->adjusted_mode, mode);
|
|
drm_mode_copy(&pipe_config->requested_mode, mode);
|
|
|
|
pipe_config->cpu_transcoder =
|
|
(enum transcoder) to_intel_crtc(crtc)->pipe;
|
|
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
|
|
|
|
/*
|
|
* Sanitize sync polarity flags based on requested ones. If neither
|
|
* positive or negative polarity is requested, treat this as meaning
|
|
* negative polarity.
|
|
*/
|
|
if (!(pipe_config->adjusted_mode.flags &
|
|
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
|
|
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (!(pipe_config->adjusted_mode.flags &
|
|
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
|
|
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
|
|
|
|
/* Compute a starting value for pipe_config->pipe_bpp taking the source
|
|
* plane pixel format and any sink constraints into account. Returns the
|
|
* source plane bpp so that dithering can be selected on mismatches
|
|
* after encoders and crtc also have had their say. */
|
|
plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
|
|
fb, pipe_config);
|
|
if (plane_bpp < 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* Determine the real pipe dimensions. Note that stereo modes can
|
|
* increase the actual pipe size due to the frame doubling and
|
|
* insertion of additional space for blanks between the frame. This
|
|
* is stored in the crtc timings. We use the requested mode to do this
|
|
* computation to clearly distinguish it from the adjusted mode, which
|
|
* can be changed by the connectors in the below retry loop.
|
|
*/
|
|
drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
|
|
pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
|
|
pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
|
|
|
|
encoder_retry:
|
|
/* Ensure the port clock defaults are reset when retrying. */
|
|
pipe_config->port_clock = 0;
|
|
pipe_config->pixel_multiplier = 1;
|
|
|
|
/* Fill in default crtc timings, allow encoders to overwrite them. */
|
|
drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
|
|
|
|
/* Pass our mode to the connectors and the CRTC to give them a chance to
|
|
* adjust it according to limitations or connector properties, and also
|
|
* a chance to reject the mode entirely.
|
|
*/
|
|
for_each_intel_encoder(dev, encoder) {
|
|
|
|
if (&encoder->new_crtc->base != crtc)
|
|
continue;
|
|
|
|
if (!(encoder->compute_config(encoder, pipe_config))) {
|
|
DRM_DEBUG_KMS("Encoder config failure\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Set default port clock if not overwritten by the encoder. Needs to be
|
|
* done afterwards in case the encoder adjusts the mode. */
|
|
if (!pipe_config->port_clock)
|
|
pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
|
|
* pipe_config->pixel_multiplier;
|
|
|
|
ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_KMS("CRTC fixup failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (ret == RETRY) {
|
|
if (WARN(!retry, "loop in pipe configuration computation\n")) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
|
|
retry = false;
|
|
goto encoder_retry;
|
|
}
|
|
|
|
pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
|
|
DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
|
|
plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
|
|
|
|
return pipe_config;
|
|
fail:
|
|
kfree(pipe_config);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
|
|
* simplicity we use the crtc's pipe number (because it's easier to obtain). */
|
|
static void
|
|
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
|
|
unsigned *prepare_pipes, unsigned *disable_pipes)
|
|
{
|
|
struct intel_crtc *intel_crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
struct drm_crtc *tmp_crtc;
|
|
|
|
*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
|
|
|
|
/* Check which crtcs have changed outputs connected to them, these need
|
|
* to be part of the prepare_pipes mask. We don't (yet) support global
|
|
* modeset across multiple crtcs, so modeset_pipes will only have one
|
|
* bit set at most. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->base.encoder == &connector->new_encoder->base)
|
|
continue;
|
|
|
|
if (connector->base.encoder) {
|
|
tmp_crtc = connector->base.encoder->crtc;
|
|
|
|
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
|
|
}
|
|
|
|
if (connector->new_encoder)
|
|
*prepare_pipes |=
|
|
1 << connector->new_encoder->new_crtc->pipe;
|
|
}
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
if (encoder->base.crtc == &encoder->new_crtc->base)
|
|
continue;
|
|
|
|
if (encoder->base.crtc) {
|
|
tmp_crtc = encoder->base.crtc;
|
|
|
|
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
|
|
}
|
|
|
|
if (encoder->new_crtc)
|
|
*prepare_pipes |= 1 << encoder->new_crtc->pipe;
|
|
}
|
|
|
|
/* Check for pipes that will be enabled/disabled ... */
|
|
for_each_intel_crtc(dev, intel_crtc) {
|
|
if (intel_crtc->base.enabled == intel_crtc->new_enabled)
|
|
continue;
|
|
|
|
if (!intel_crtc->new_enabled)
|
|
*disable_pipes |= 1 << intel_crtc->pipe;
|
|
else
|
|
*prepare_pipes |= 1 << intel_crtc->pipe;
|
|
}
|
|
|
|
|
|
/* set_mode is also used to update properties on life display pipes. */
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
if (intel_crtc->new_enabled)
|
|
*prepare_pipes |= 1 << intel_crtc->pipe;
|
|
|
|
/*
|
|
* For simplicity do a full modeset on any pipe where the output routing
|
|
* changed. We could be more clever, but that would require us to be
|
|
* more careful with calling the relevant encoder->mode_set functions.
|
|
*/
|
|
if (*prepare_pipes)
|
|
*modeset_pipes = *prepare_pipes;
|
|
|
|
/* ... and mask these out. */
|
|
*modeset_pipes &= ~(*disable_pipes);
|
|
*prepare_pipes &= ~(*disable_pipes);
|
|
|
|
/*
|
|
* HACK: We don't (yet) fully support global modesets. intel_set_config
|
|
* obies this rule, but the modeset restore mode of
|
|
* intel_modeset_setup_hw_state does not.
|
|
*/
|
|
*modeset_pipes &= 1 << intel_crtc->pipe;
|
|
*prepare_pipes &= 1 << intel_crtc->pipe;
|
|
|
|
DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
|
|
*modeset_pipes, *prepare_pipes, *disable_pipes);
|
|
}
|
|
|
|
static bool intel_crtc_in_use(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_encoder *encoder;
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
|
|
if (encoder->crtc == crtc)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *intel_encoder;
|
|
struct intel_crtc *intel_crtc;
|
|
struct drm_connector *connector;
|
|
|
|
intel_shared_dpll_commit(dev_priv);
|
|
|
|
for_each_intel_encoder(dev, intel_encoder) {
|
|
if (!intel_encoder->base.crtc)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
|
|
|
|
if (prepare_pipes & (1 << intel_crtc->pipe))
|
|
intel_encoder->connectors_active = false;
|
|
}
|
|
|
|
intel_modeset_commit_output_state(dev);
|
|
|
|
/* Double check state. */
|
|
for_each_intel_crtc(dev, intel_crtc) {
|
|
WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
|
|
WARN_ON(intel_crtc->new_config &&
|
|
intel_crtc->new_config != &intel_crtc->config);
|
|
WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
|
|
}
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
if (!connector->encoder || !connector->encoder->crtc)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(connector->encoder->crtc);
|
|
|
|
if (prepare_pipes & (1 << intel_crtc->pipe)) {
|
|
struct drm_property *dpms_property =
|
|
dev->mode_config.dpms_property;
|
|
|
|
connector->dpms = DRM_MODE_DPMS_ON;
|
|
drm_object_property_set_value(&connector->base,
|
|
dpms_property,
|
|
DRM_MODE_DPMS_ON);
|
|
|
|
intel_encoder = to_intel_encoder(connector->encoder);
|
|
intel_encoder->connectors_active = true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static bool intel_fuzzy_clock_check(int clock1, int clock2)
|
|
{
|
|
int diff;
|
|
|
|
if (clock1 == clock2)
|
|
return true;
|
|
|
|
if (!clock1 || !clock2)
|
|
return false;
|
|
|
|
diff = abs(clock1 - clock2);
|
|
|
|
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
|
|
list_for_each_entry((intel_crtc), \
|
|
&(dev)->mode_config.crtc_list, \
|
|
base.head) \
|
|
if (mask & (1 <<(intel_crtc)->pipe))
|
|
|
|
static bool
|
|
intel_pipe_config_compare(struct drm_device *dev,
|
|
struct intel_crtc_config *current_config,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
#define PIPE_CONF_CHECK_X(name) \
|
|
if (current_config->name != pipe_config->name) { \
|
|
DRM_ERROR("mismatch in " #name " " \
|
|
"(expected 0x%08x, found 0x%08x)\n", \
|
|
current_config->name, \
|
|
pipe_config->name); \
|
|
return false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_I(name) \
|
|
if (current_config->name != pipe_config->name) { \
|
|
DRM_ERROR("mismatch in " #name " " \
|
|
"(expected %i, found %i)\n", \
|
|
current_config->name, \
|
|
pipe_config->name); \
|
|
return false; \
|
|
}
|
|
|
|
/* This is required for BDW+ where there is only one set of registers for
|
|
* switching between high and low RR.
|
|
* This macro can be used whenever a comparison has to be made between one
|
|
* hw state and multiple sw state variables.
|
|
*/
|
|
#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
|
|
if ((current_config->name != pipe_config->name) && \
|
|
(current_config->alt_name != pipe_config->name)) { \
|
|
DRM_ERROR("mismatch in " #name " " \
|
|
"(expected %i or %i, found %i)\n", \
|
|
current_config->name, \
|
|
current_config->alt_name, \
|
|
pipe_config->name); \
|
|
return false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_FLAGS(name, mask) \
|
|
if ((current_config->name ^ pipe_config->name) & (mask)) { \
|
|
DRM_ERROR("mismatch in " #name "(" #mask ") " \
|
|
"(expected %i, found %i)\n", \
|
|
current_config->name & (mask), \
|
|
pipe_config->name & (mask)); \
|
|
return false; \
|
|
}
|
|
|
|
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
|
|
if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
|
|
DRM_ERROR("mismatch in " #name " " \
|
|
"(expected %i, found %i)\n", \
|
|
current_config->name, \
|
|
pipe_config->name); \
|
|
return false; \
|
|
}
|
|
|
|
#define PIPE_CONF_QUIRK(quirk) \
|
|
((current_config->quirks | pipe_config->quirks) & (quirk))
|
|
|
|
PIPE_CONF_CHECK_I(cpu_transcoder);
|
|
|
|
PIPE_CONF_CHECK_I(has_pch_encoder);
|
|
PIPE_CONF_CHECK_I(fdi_lanes);
|
|
PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
|
|
PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
|
|
PIPE_CONF_CHECK_I(fdi_m_n.link_m);
|
|
PIPE_CONF_CHECK_I(fdi_m_n.link_n);
|
|
PIPE_CONF_CHECK_I(fdi_m_n.tu);
|
|
|
|
PIPE_CONF_CHECK_I(has_dp_encoder);
|
|
|
|
if (INTEL_INFO(dev)->gen < 8) {
|
|
PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
|
|
PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
|
|
PIPE_CONF_CHECK_I(dp_m_n.link_m);
|
|
PIPE_CONF_CHECK_I(dp_m_n.link_n);
|
|
PIPE_CONF_CHECK_I(dp_m_n.tu);
|
|
|
|
if (current_config->has_drrs) {
|
|
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
|
|
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
|
|
PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
|
|
PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
|
|
PIPE_CONF_CHECK_I(dp_m2_n2.tu);
|
|
}
|
|
} else {
|
|
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
|
|
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
|
|
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
|
|
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
|
|
PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
|
|
}
|
|
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
|
|
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
|
|
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
|
|
|
|
PIPE_CONF_CHECK_I(pixel_multiplier);
|
|
PIPE_CONF_CHECK_I(has_hdmi_sink);
|
|
if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
|
|
IS_VALLEYVIEW(dev))
|
|
PIPE_CONF_CHECK_I(limited_color_range);
|
|
PIPE_CONF_CHECK_I(has_infoframe);
|
|
|
|
PIPE_CONF_CHECK_I(has_audio);
|
|
|
|
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
|
|
DRM_MODE_FLAG_INTERLACE);
|
|
|
|
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
|
|
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
|
|
DRM_MODE_FLAG_PHSYNC);
|
|
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
|
|
DRM_MODE_FLAG_NHSYNC);
|
|
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
|
|
DRM_MODE_FLAG_PVSYNC);
|
|
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
|
|
DRM_MODE_FLAG_NVSYNC);
|
|
}
|
|
|
|
PIPE_CONF_CHECK_I(pipe_src_w);
|
|
PIPE_CONF_CHECK_I(pipe_src_h);
|
|
|
|
/*
|
|
* FIXME: BIOS likes to set up a cloned config with lvds+external
|
|
* screen. Since we don't yet re-compute the pipe config when moving
|
|
* just the lvds port away to another pipe the sw tracking won't match.
|
|
*
|
|
* Proper atomic modesets with recomputed global state will fix this.
|
|
* Until then just don't check gmch state for inherited modes.
|
|
*/
|
|
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
|
|
PIPE_CONF_CHECK_I(gmch_pfit.control);
|
|
/* pfit ratios are autocomputed by the hw on gen4+ */
|
|
if (INTEL_INFO(dev)->gen < 4)
|
|
PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
|
|
PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
|
|
}
|
|
|
|
PIPE_CONF_CHECK_I(pch_pfit.enabled);
|
|
if (current_config->pch_pfit.enabled) {
|
|
PIPE_CONF_CHECK_I(pch_pfit.pos);
|
|
PIPE_CONF_CHECK_I(pch_pfit.size);
|
|
}
|
|
|
|
/* BDW+ don't expose a synchronous way to read the state */
|
|
if (IS_HASWELL(dev))
|
|
PIPE_CONF_CHECK_I(ips_enabled);
|
|
|
|
PIPE_CONF_CHECK_I(double_wide);
|
|
|
|
PIPE_CONF_CHECK_X(ddi_pll_sel);
|
|
|
|
PIPE_CONF_CHECK_I(shared_dpll);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
|
|
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
|
|
|
|
if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
|
|
PIPE_CONF_CHECK_I(pipe_bpp);
|
|
|
|
PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
|
|
PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
|
|
|
|
#undef PIPE_CONF_CHECK_X
|
|
#undef PIPE_CONF_CHECK_I
|
|
#undef PIPE_CONF_CHECK_I_ALT
|
|
#undef PIPE_CONF_CHECK_FLAGS
|
|
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
|
|
#undef PIPE_CONF_QUIRK
|
|
|
|
return true;
|
|
}
|
|
|
|
static void check_wm_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct skl_ddb_allocation hw_ddb, *sw_ddb;
|
|
struct intel_crtc *intel_crtc;
|
|
int plane;
|
|
|
|
if (INTEL_INFO(dev)->gen < 9)
|
|
return;
|
|
|
|
skl_ddb_get_hw_state(dev_priv, &hw_ddb);
|
|
sw_ddb = &dev_priv->wm.skl_hw.ddb;
|
|
|
|
for_each_intel_crtc(dev, intel_crtc) {
|
|
struct skl_ddb_entry *hw_entry, *sw_entry;
|
|
const enum pipe pipe = intel_crtc->pipe;
|
|
|
|
if (!intel_crtc->active)
|
|
continue;
|
|
|
|
/* planes */
|
|
for_each_plane(pipe, plane) {
|
|
hw_entry = &hw_ddb.plane[pipe][plane];
|
|
sw_entry = &sw_ddb->plane[pipe][plane];
|
|
|
|
if (skl_ddb_entry_equal(hw_entry, sw_entry))
|
|
continue;
|
|
|
|
DRM_ERROR("mismatch in DDB state pipe %c plane %d "
|
|
"(expected (%u,%u), found (%u,%u))\n",
|
|
pipe_name(pipe), plane + 1,
|
|
sw_entry->start, sw_entry->end,
|
|
hw_entry->start, hw_entry->end);
|
|
}
|
|
|
|
/* cursor */
|
|
hw_entry = &hw_ddb.cursor[pipe];
|
|
sw_entry = &sw_ddb->cursor[pipe];
|
|
|
|
if (skl_ddb_entry_equal(hw_entry, sw_entry))
|
|
continue;
|
|
|
|
DRM_ERROR("mismatch in DDB state pipe %c cursor "
|
|
"(expected (%u,%u), found (%u,%u))\n",
|
|
pipe_name(pipe),
|
|
sw_entry->start, sw_entry->end,
|
|
hw_entry->start, hw_entry->end);
|
|
}
|
|
}
|
|
|
|
static void
|
|
check_connector_state(struct drm_device *dev)
|
|
{
|
|
struct intel_connector *connector;
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
/* This also checks the encoder/connector hw state with the
|
|
* ->get_hw_state callbacks. */
|
|
intel_connector_check_state(connector);
|
|
|
|
WARN(&connector->new_encoder->base != connector->base.encoder,
|
|
"connector's staged encoder doesn't match current encoder\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
check_encoder_state(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
bool enabled = false;
|
|
bool active = false;
|
|
enum pipe pipe, tracked_pipe;
|
|
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name);
|
|
|
|
WARN(&encoder->new_crtc->base != encoder->base.crtc,
|
|
"encoder's stage crtc doesn't match current crtc\n");
|
|
WARN(encoder->connectors_active && !encoder->base.crtc,
|
|
"encoder's active_connectors set, but no crtc\n");
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->base.encoder != &encoder->base)
|
|
continue;
|
|
enabled = true;
|
|
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
|
|
active = true;
|
|
}
|
|
/*
|
|
* for MST connectors if we unplug the connector is gone
|
|
* away but the encoder is still connected to a crtc
|
|
* until a modeset happens in response to the hotplug.
|
|
*/
|
|
if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
|
|
continue;
|
|
|
|
WARN(!!encoder->base.crtc != enabled,
|
|
"encoder's enabled state mismatch "
|
|
"(expected %i, found %i)\n",
|
|
!!encoder->base.crtc, enabled);
|
|
WARN(active && !encoder->base.crtc,
|
|
"active encoder with no crtc\n");
|
|
|
|
WARN(encoder->connectors_active != active,
|
|
"encoder's computed active state doesn't match tracked active state "
|
|
"(expected %i, found %i)\n", active, encoder->connectors_active);
|
|
|
|
active = encoder->get_hw_state(encoder, &pipe);
|
|
WARN(active != encoder->connectors_active,
|
|
"encoder's hw state doesn't match sw tracking "
|
|
"(expected %i, found %i)\n",
|
|
encoder->connectors_active, active);
|
|
|
|
if (!encoder->base.crtc)
|
|
continue;
|
|
|
|
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
|
|
WARN(active && pipe != tracked_pipe,
|
|
"active encoder's pipe doesn't match"
|
|
"(expected %i, found %i)\n",
|
|
tracked_pipe, pipe);
|
|
|
|
}
|
|
}
|
|
|
|
static void
|
|
check_crtc_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc_config pipe_config;
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
bool enabled = false;
|
|
bool active = false;
|
|
|
|
memset(&pipe_config, 0, sizeof(pipe_config));
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d]\n",
|
|
crtc->base.base.id);
|
|
|
|
WARN(crtc->active && !crtc->base.enabled,
|
|
"active crtc, but not enabled in sw tracking\n");
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
if (encoder->base.crtc != &crtc->base)
|
|
continue;
|
|
enabled = true;
|
|
if (encoder->connectors_active)
|
|
active = true;
|
|
}
|
|
|
|
WARN(active != crtc->active,
|
|
"crtc's computed active state doesn't match tracked active state "
|
|
"(expected %i, found %i)\n", active, crtc->active);
|
|
WARN(enabled != crtc->base.enabled,
|
|
"crtc's computed enabled state doesn't match tracked enabled state "
|
|
"(expected %i, found %i)\n", enabled, crtc->base.enabled);
|
|
|
|
active = dev_priv->display.get_pipe_config(crtc,
|
|
&pipe_config);
|
|
|
|
/* hw state is inconsistent with the pipe quirk */
|
|
if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
|
|
(crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
|
|
active = crtc->active;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
enum pipe pipe;
|
|
if (encoder->base.crtc != &crtc->base)
|
|
continue;
|
|
if (encoder->get_hw_state(encoder, &pipe))
|
|
encoder->get_config(encoder, &pipe_config);
|
|
}
|
|
|
|
WARN(crtc->active != active,
|
|
"crtc active state doesn't match with hw state "
|
|
"(expected %i, found %i)\n", crtc->active, active);
|
|
|
|
if (active &&
|
|
!intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
|
|
WARN(1, "pipe state doesn't match!\n");
|
|
intel_dump_pipe_config(crtc, &pipe_config,
|
|
"[hw state]");
|
|
intel_dump_pipe_config(crtc, &crtc->config,
|
|
"[sw state]");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
check_shared_dpll_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc;
|
|
struct intel_dpll_hw_state dpll_hw_state;
|
|
int i;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
|
|
int enabled_crtcs = 0, active_crtcs = 0;
|
|
bool active;
|
|
|
|
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
|
|
|
|
DRM_DEBUG_KMS("%s\n", pll->name);
|
|
|
|
active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
|
|
|
|
WARN(pll->active > hweight32(pll->config.crtc_mask),
|
|
"more active pll users than references: %i vs %i\n",
|
|
pll->active, hweight32(pll->config.crtc_mask));
|
|
WARN(pll->active && !pll->on,
|
|
"pll in active use but not on in sw tracking\n");
|
|
WARN(pll->on && !pll->active,
|
|
"pll in on but not on in use in sw tracking\n");
|
|
WARN(pll->on != active,
|
|
"pll on state mismatch (expected %i, found %i)\n",
|
|
pll->on, active);
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
|
|
enabled_crtcs++;
|
|
if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
|
|
active_crtcs++;
|
|
}
|
|
WARN(pll->active != active_crtcs,
|
|
"pll active crtcs mismatch (expected %i, found %i)\n",
|
|
pll->active, active_crtcs);
|
|
WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
|
|
"pll enabled crtcs mismatch (expected %i, found %i)\n",
|
|
hweight32(pll->config.crtc_mask), enabled_crtcs);
|
|
|
|
WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
|
|
sizeof(dpll_hw_state)),
|
|
"pll hw state mismatch\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
intel_modeset_check_state(struct drm_device *dev)
|
|
{
|
|
check_wm_state(dev);
|
|
check_connector_state(dev);
|
|
check_encoder_state(dev);
|
|
check_crtc_state(dev);
|
|
check_shared_dpll_state(dev);
|
|
}
|
|
|
|
void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
|
|
int dotclock)
|
|
{
|
|
/*
|
|
* FDI already provided one idea for the dotclock.
|
|
* Yell if the encoder disagrees.
|
|
*/
|
|
WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
|
|
"FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
|
|
pipe_config->adjusted_mode.crtc_clock, dotclock);
|
|
}
|
|
|
|
static void update_scanline_offset(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
|
|
/*
|
|
* The scanline counter increments at the leading edge of hsync.
|
|
*
|
|
* On most platforms it starts counting from vtotal-1 on the
|
|
* first active line. That means the scanline counter value is
|
|
* always one less than what we would expect. Ie. just after
|
|
* start of vblank, which also occurs at start of hsync (on the
|
|
* last active line), the scanline counter will read vblank_start-1.
|
|
*
|
|
* On gen2 the scanline counter starts counting from 1 instead
|
|
* of vtotal-1, so we have to subtract one (or rather add vtotal-1
|
|
* to keep the value positive), instead of adding one.
|
|
*
|
|
* On HSW+ the behaviour of the scanline counter depends on the output
|
|
* type. For DP ports it behaves like most other platforms, but on HDMI
|
|
* there's an extra 1 line difference. So we need to add two instead of
|
|
* one to the value.
|
|
*/
|
|
if (IS_GEN2(dev)) {
|
|
const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
|
|
int vtotal;
|
|
|
|
vtotal = mode->crtc_vtotal;
|
|
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
|
|
vtotal /= 2;
|
|
|
|
crtc->scanline_offset = vtotal - 1;
|
|
} else if (HAS_DDI(dev) &&
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
|
|
crtc->scanline_offset = 2;
|
|
} else
|
|
crtc->scanline_offset = 1;
|
|
}
|
|
|
|
static struct intel_crtc_config *
|
|
intel_modeset_compute_config(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_framebuffer *fb,
|
|
unsigned *modeset_pipes,
|
|
unsigned *prepare_pipes,
|
|
unsigned *disable_pipes)
|
|
{
|
|
struct intel_crtc_config *pipe_config = NULL;
|
|
|
|
intel_modeset_affected_pipes(crtc, modeset_pipes,
|
|
prepare_pipes, disable_pipes);
|
|
|
|
if ((*modeset_pipes) == 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Note this needs changes when we start tracking multiple modes
|
|
* and crtcs. At that point we'll need to compute the whole config
|
|
* (i.e. one pipe_config for each crtc) rather than just the one
|
|
* for this crtc.
|
|
*/
|
|
pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
|
|
if (IS_ERR(pipe_config)) {
|
|
goto out;
|
|
}
|
|
intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
|
|
"[modeset]");
|
|
|
|
out:
|
|
return pipe_config;
|
|
}
|
|
|
|
static int __intel_set_mode(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
int x, int y, struct drm_framebuffer *fb,
|
|
struct intel_crtc_config *pipe_config,
|
|
unsigned modeset_pipes,
|
|
unsigned prepare_pipes,
|
|
unsigned disable_pipes)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_display_mode *saved_mode;
|
|
struct intel_crtc *intel_crtc;
|
|
int ret = 0;
|
|
|
|
saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
|
|
if (!saved_mode)
|
|
return -ENOMEM;
|
|
|
|
*saved_mode = crtc->mode;
|
|
|
|
if (modeset_pipes)
|
|
to_intel_crtc(crtc)->new_config = pipe_config;
|
|
|
|
/*
|
|
* See if the config requires any additional preparation, e.g.
|
|
* to adjust global state with pipes off. We need to do this
|
|
* here so we can get the modeset_pipe updated config for the new
|
|
* mode set on this crtc. For other crtcs we need to use the
|
|
* adjusted_mode bits in the crtc directly.
|
|
*/
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
valleyview_modeset_global_pipes(dev, &prepare_pipes);
|
|
|
|
/* may have added more to prepare_pipes than we should */
|
|
prepare_pipes &= ~disable_pipes;
|
|
}
|
|
|
|
if (dev_priv->display.crtc_compute_clock) {
|
|
unsigned clear_pipes = modeset_pipes | disable_pipes;
|
|
|
|
ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
|
|
if (ret)
|
|
goto done;
|
|
|
|
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
|
|
ret = dev_priv->display.crtc_compute_clock(intel_crtc);
|
|
if (ret) {
|
|
intel_shared_dpll_abort_config(dev_priv);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
|
|
intel_crtc_disable(&intel_crtc->base);
|
|
|
|
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
|
|
if (intel_crtc->base.enabled)
|
|
dev_priv->display.crtc_disable(&intel_crtc->base);
|
|
}
|
|
|
|
/* crtc->mode is already used by the ->mode_set callbacks, hence we need
|
|
* to set it here already despite that we pass it down the callchain.
|
|
*
|
|
* Note we'll need to fix this up when we start tracking multiple
|
|
* pipes; here we assume a single modeset_pipe and only track the
|
|
* single crtc and mode.
|
|
*/
|
|
if (modeset_pipes) {
|
|
crtc->mode = *mode;
|
|
/* mode_set/enable/disable functions rely on a correct pipe
|
|
* config. */
|
|
to_intel_crtc(crtc)->config = *pipe_config;
|
|
to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
|
|
|
|
/*
|
|
* Calculate and store various constants which
|
|
* are later needed by vblank and swap-completion
|
|
* timestamping. They are derived from true hwmode.
|
|
*/
|
|
drm_calc_timestamping_constants(crtc,
|
|
&pipe_config->adjusted_mode);
|
|
}
|
|
|
|
/* Only after disabling all output pipelines that will be changed can we
|
|
* update the the output configuration. */
|
|
intel_modeset_update_state(dev, prepare_pipes);
|
|
|
|
modeset_update_crtc_power_domains(dev);
|
|
|
|
/* Set up the DPLL and any encoders state that needs to adjust or depend
|
|
* on the DPLL.
|
|
*/
|
|
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
|
|
struct drm_framebuffer *old_fb = crtc->primary->fb;
|
|
struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
|
|
if (ret != 0) {
|
|
DRM_ERROR("pin & fence failed\n");
|
|
mutex_unlock(&dev->struct_mutex);
|
|
goto done;
|
|
}
|
|
if (old_fb)
|
|
intel_unpin_fb_obj(old_obj);
|
|
i915_gem_track_fb(old_obj, obj,
|
|
INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
crtc->primary->fb = fb;
|
|
crtc->x = x;
|
|
crtc->y = y;
|
|
}
|
|
|
|
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
|
|
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
|
|
update_scanline_offset(intel_crtc);
|
|
|
|
dev_priv->display.crtc_enable(&intel_crtc->base);
|
|
}
|
|
|
|
/* FIXME: add subpixel order */
|
|
done:
|
|
if (ret && crtc->enabled)
|
|
crtc->mode = *saved_mode;
|
|
|
|
kfree(pipe_config);
|
|
kfree(saved_mode);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_set_mode_pipes(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
int x, int y, struct drm_framebuffer *fb,
|
|
struct intel_crtc_config *pipe_config,
|
|
unsigned modeset_pipes,
|
|
unsigned prepare_pipes,
|
|
unsigned disable_pipes)
|
|
{
|
|
int ret;
|
|
|
|
ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
|
|
prepare_pipes, disable_pipes);
|
|
|
|
if (ret == 0)
|
|
intel_modeset_check_state(crtc->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int intel_set_mode(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
int x, int y, struct drm_framebuffer *fb)
|
|
{
|
|
struct intel_crtc_config *pipe_config;
|
|
unsigned modeset_pipes, prepare_pipes, disable_pipes;
|
|
|
|
pipe_config = intel_modeset_compute_config(crtc, mode, fb,
|
|
&modeset_pipes,
|
|
&prepare_pipes,
|
|
&disable_pipes);
|
|
|
|
if (IS_ERR(pipe_config))
|
|
return PTR_ERR(pipe_config);
|
|
|
|
return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
|
|
modeset_pipes, prepare_pipes,
|
|
disable_pipes);
|
|
}
|
|
|
|
void intel_crtc_restore_mode(struct drm_crtc *crtc)
|
|
{
|
|
intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
|
|
}
|
|
|
|
#undef for_each_intel_crtc_masked
|
|
|
|
static void intel_set_config_free(struct intel_set_config *config)
|
|
{
|
|
if (!config)
|
|
return;
|
|
|
|
kfree(config->save_connector_encoders);
|
|
kfree(config->save_encoder_crtcs);
|
|
kfree(config->save_crtc_enabled);
|
|
kfree(config);
|
|
}
|
|
|
|
static int intel_set_config_save_state(struct drm_device *dev,
|
|
struct intel_set_config *config)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
struct drm_encoder *encoder;
|
|
struct drm_connector *connector;
|
|
int count;
|
|
|
|
config->save_crtc_enabled =
|
|
kcalloc(dev->mode_config.num_crtc,
|
|
sizeof(bool), GFP_KERNEL);
|
|
if (!config->save_crtc_enabled)
|
|
return -ENOMEM;
|
|
|
|
config->save_encoder_crtcs =
|
|
kcalloc(dev->mode_config.num_encoder,
|
|
sizeof(struct drm_crtc *), GFP_KERNEL);
|
|
if (!config->save_encoder_crtcs)
|
|
return -ENOMEM;
|
|
|
|
config->save_connector_encoders =
|
|
kcalloc(dev->mode_config.num_connector,
|
|
sizeof(struct drm_encoder *), GFP_KERNEL);
|
|
if (!config->save_connector_encoders)
|
|
return -ENOMEM;
|
|
|
|
/* Copy data. Note that driver private data is not affected.
|
|
* Should anything bad happen only the expected state is
|
|
* restored, not the drivers personal bookkeeping.
|
|
*/
|
|
count = 0;
|
|
for_each_crtc(dev, crtc) {
|
|
config->save_crtc_enabled[count++] = crtc->enabled;
|
|
}
|
|
|
|
count = 0;
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
|
|
config->save_encoder_crtcs[count++] = encoder->crtc;
|
|
}
|
|
|
|
count = 0;
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
config->save_connector_encoders[count++] = connector->encoder;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_set_config_restore_state(struct drm_device *dev,
|
|
struct intel_set_config *config)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
int count;
|
|
|
|
count = 0;
|
|
for_each_intel_crtc(dev, crtc) {
|
|
crtc->new_enabled = config->save_crtc_enabled[count++];
|
|
|
|
if (crtc->new_enabled)
|
|
crtc->new_config = &crtc->config;
|
|
else
|
|
crtc->new_config = NULL;
|
|
}
|
|
|
|
count = 0;
|
|
for_each_intel_encoder(dev, encoder) {
|
|
encoder->new_crtc =
|
|
to_intel_crtc(config->save_encoder_crtcs[count++]);
|
|
}
|
|
|
|
count = 0;
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
|
|
connector->new_encoder =
|
|
to_intel_encoder(config->save_connector_encoders[count++]);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
is_crtc_connector_off(struct drm_mode_set *set)
|
|
{
|
|
int i;
|
|
|
|
if (set->num_connectors == 0)
|
|
return false;
|
|
|
|
if (WARN_ON(set->connectors == NULL))
|
|
return false;
|
|
|
|
for (i = 0; i < set->num_connectors; i++)
|
|
if (set->connectors[i]->encoder &&
|
|
set->connectors[i]->encoder->crtc == set->crtc &&
|
|
set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
|
|
struct intel_set_config *config)
|
|
{
|
|
|
|
/* We should be able to check here if the fb has the same properties
|
|
* and then just flip_or_move it */
|
|
if (is_crtc_connector_off(set)) {
|
|
config->mode_changed = true;
|
|
} else if (set->crtc->primary->fb != set->fb) {
|
|
/*
|
|
* If we have no fb, we can only flip as long as the crtc is
|
|
* active, otherwise we need a full mode set. The crtc may
|
|
* be active if we've only disabled the primary plane, or
|
|
* in fastboot situations.
|
|
*/
|
|
if (set->crtc->primary->fb == NULL) {
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(set->crtc);
|
|
|
|
if (intel_crtc->active) {
|
|
DRM_DEBUG_KMS("crtc has no fb, will flip\n");
|
|
config->fb_changed = true;
|
|
} else {
|
|
DRM_DEBUG_KMS("inactive crtc, full mode set\n");
|
|
config->mode_changed = true;
|
|
}
|
|
} else if (set->fb == NULL) {
|
|
config->mode_changed = true;
|
|
} else if (set->fb->pixel_format !=
|
|
set->crtc->primary->fb->pixel_format) {
|
|
config->mode_changed = true;
|
|
} else {
|
|
config->fb_changed = true;
|
|
}
|
|
}
|
|
|
|
if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
|
|
config->fb_changed = true;
|
|
|
|
if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
|
|
DRM_DEBUG_KMS("modes are different, full mode set\n");
|
|
drm_mode_debug_printmodeline(&set->crtc->mode);
|
|
drm_mode_debug_printmodeline(set->mode);
|
|
config->mode_changed = true;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
|
|
set->crtc->base.id, config->mode_changed, config->fb_changed);
|
|
}
|
|
|
|
static int
|
|
intel_modeset_stage_output_state(struct drm_device *dev,
|
|
struct drm_mode_set *set,
|
|
struct intel_set_config *config)
|
|
{
|
|
struct intel_connector *connector;
|
|
struct intel_encoder *encoder;
|
|
struct intel_crtc *crtc;
|
|
int ro;
|
|
|
|
/* The upper layers ensure that we either disable a crtc or have a list
|
|
* of connectors. For paranoia, double-check this. */
|
|
WARN_ON(!set->fb && (set->num_connectors != 0));
|
|
WARN_ON(set->fb && (set->num_connectors == 0));
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
/* Otherwise traverse passed in connector list and get encoders
|
|
* for them. */
|
|
for (ro = 0; ro < set->num_connectors; ro++) {
|
|
if (set->connectors[ro] == &connector->base) {
|
|
connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we disable the crtc, disable all its connectors. Also, if
|
|
* the connector is on the changing crtc but not on the new
|
|
* connector list, disable it. */
|
|
if ((!set->fb || ro == set->num_connectors) &&
|
|
connector->base.encoder &&
|
|
connector->base.encoder->crtc == set->crtc) {
|
|
connector->new_encoder = NULL;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
|
|
connector->base.base.id,
|
|
connector->base.name);
|
|
}
|
|
|
|
|
|
if (&connector->new_encoder->base != connector->base.encoder) {
|
|
DRM_DEBUG_KMS("encoder changed, full mode switch\n");
|
|
config->mode_changed = true;
|
|
}
|
|
}
|
|
/* connector->new_encoder is now updated for all connectors. */
|
|
|
|
/* Update crtc of enabled connectors. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
struct drm_crtc *new_crtc;
|
|
|
|
if (!connector->new_encoder)
|
|
continue;
|
|
|
|
new_crtc = connector->new_encoder->base.crtc;
|
|
|
|
for (ro = 0; ro < set->num_connectors; ro++) {
|
|
if (set->connectors[ro] == &connector->base)
|
|
new_crtc = set->crtc;
|
|
}
|
|
|
|
/* Make sure the new CRTC will work with the encoder */
|
|
if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
|
|
new_crtc)) {
|
|
return -EINVAL;
|
|
}
|
|
connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
|
|
connector->base.base.id,
|
|
connector->base.name,
|
|
new_crtc->base.id);
|
|
}
|
|
|
|
/* Check for any encoders that needs to be disabled. */
|
|
for_each_intel_encoder(dev, encoder) {
|
|
int num_connectors = 0;
|
|
list_for_each_entry(connector,
|
|
&dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->new_encoder == encoder) {
|
|
WARN_ON(!connector->new_encoder->new_crtc);
|
|
num_connectors++;
|
|
}
|
|
}
|
|
|
|
if (num_connectors == 0)
|
|
encoder->new_crtc = NULL;
|
|
else if (num_connectors > 1)
|
|
return -EINVAL;
|
|
|
|
/* Only now check for crtc changes so we don't miss encoders
|
|
* that will be disabled. */
|
|
if (&encoder->new_crtc->base != encoder->base.crtc) {
|
|
DRM_DEBUG_KMS("crtc changed, full mode switch\n");
|
|
config->mode_changed = true;
|
|
}
|
|
}
|
|
/* Now we've also updated encoder->new_crtc for all encoders. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->new_encoder)
|
|
if (connector->new_encoder != connector->encoder)
|
|
connector->encoder = connector->new_encoder;
|
|
}
|
|
for_each_intel_crtc(dev, crtc) {
|
|
crtc->new_enabled = false;
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
if (encoder->new_crtc == crtc) {
|
|
crtc->new_enabled = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (crtc->new_enabled != crtc->base.enabled) {
|
|
DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
|
|
crtc->new_enabled ? "en" : "dis");
|
|
config->mode_changed = true;
|
|
}
|
|
|
|
if (crtc->new_enabled)
|
|
crtc->new_config = &crtc->config;
|
|
else
|
|
crtc->new_config = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void disable_crtc_nofb(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
|
|
DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
|
|
pipe_name(crtc->pipe));
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
|
|
if (connector->new_encoder &&
|
|
connector->new_encoder->new_crtc == crtc)
|
|
connector->new_encoder = NULL;
|
|
}
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
if (encoder->new_crtc == crtc)
|
|
encoder->new_crtc = NULL;
|
|
}
|
|
|
|
crtc->new_enabled = false;
|
|
crtc->new_config = NULL;
|
|
}
|
|
|
|
static int intel_crtc_set_config(struct drm_mode_set *set)
|
|
{
|
|
struct drm_device *dev;
|
|
struct drm_mode_set save_set;
|
|
struct intel_set_config *config;
|
|
struct intel_crtc_config *pipe_config;
|
|
unsigned modeset_pipes, prepare_pipes, disable_pipes;
|
|
int ret;
|
|
|
|
BUG_ON(!set);
|
|
BUG_ON(!set->crtc);
|
|
BUG_ON(!set->crtc->helper_private);
|
|
|
|
/* Enforce sane interface api - has been abused by the fb helper. */
|
|
BUG_ON(!set->mode && set->fb);
|
|
BUG_ON(set->fb && set->num_connectors == 0);
|
|
|
|
if (set->fb) {
|
|
DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
|
|
set->crtc->base.id, set->fb->base.id,
|
|
(int)set->num_connectors, set->x, set->y);
|
|
} else {
|
|
DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
|
|
}
|
|
|
|
dev = set->crtc->dev;
|
|
|
|
ret = -ENOMEM;
|
|
config = kzalloc(sizeof(*config), GFP_KERNEL);
|
|
if (!config)
|
|
goto out_config;
|
|
|
|
ret = intel_set_config_save_state(dev, config);
|
|
if (ret)
|
|
goto out_config;
|
|
|
|
save_set.crtc = set->crtc;
|
|
save_set.mode = &set->crtc->mode;
|
|
save_set.x = set->crtc->x;
|
|
save_set.y = set->crtc->y;
|
|
save_set.fb = set->crtc->primary->fb;
|
|
|
|
/* Compute whether we need a full modeset, only an fb base update or no
|
|
* change at all. In the future we might also check whether only the
|
|
* mode changed, e.g. for LVDS where we only change the panel fitter in
|
|
* such cases. */
|
|
intel_set_config_compute_mode_changes(set, config);
|
|
|
|
ret = intel_modeset_stage_output_state(dev, set, config);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
|
|
set->fb,
|
|
&modeset_pipes,
|
|
&prepare_pipes,
|
|
&disable_pipes);
|
|
if (IS_ERR(pipe_config)) {
|
|
ret = PTR_ERR(pipe_config);
|
|
goto fail;
|
|
} else if (pipe_config) {
|
|
if (pipe_config->has_audio !=
|
|
to_intel_crtc(set->crtc)->config.has_audio)
|
|
config->mode_changed = true;
|
|
|
|
/*
|
|
* Note we have an issue here with infoframes: current code
|
|
* only updates them on the full mode set path per hw
|
|
* requirements. So here we should be checking for any
|
|
* required changes and forcing a mode set.
|
|
*/
|
|
}
|
|
|
|
/* set_mode will free it in the mode_changed case */
|
|
if (!config->mode_changed)
|
|
kfree(pipe_config);
|
|
|
|
intel_update_pipe_size(to_intel_crtc(set->crtc));
|
|
|
|
if (config->mode_changed) {
|
|
ret = intel_set_mode_pipes(set->crtc, set->mode,
|
|
set->x, set->y, set->fb, pipe_config,
|
|
modeset_pipes, prepare_pipes,
|
|
disable_pipes);
|
|
} else if (config->fb_changed) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
|
|
|
|
// intel_crtc_wait_for_pending_flips(set->crtc);
|
|
|
|
ret = intel_pipe_set_base(set->crtc,
|
|
set->x, set->y, set->fb);
|
|
|
|
/*
|
|
* We need to make sure the primary plane is re-enabled if it
|
|
* has previously been turned off.
|
|
*/
|
|
if (!intel_crtc->primary_enabled && ret == 0) {
|
|
WARN_ON(!intel_crtc->active);
|
|
intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
|
|
}
|
|
|
|
/*
|
|
* In the fastboot case this may be our only check of the
|
|
* state after boot. It would be better to only do it on
|
|
* the first update, but we don't have a nice way of doing that
|
|
* (and really, set_config isn't used much for high freq page
|
|
* flipping, so increasing its cost here shouldn't be a big
|
|
* deal).
|
|
*/
|
|
if (i915.fastboot && ret == 0)
|
|
intel_modeset_check_state(set->crtc->dev);
|
|
}
|
|
|
|
if (ret) {
|
|
DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
|
|
set->crtc->base.id, ret);
|
|
fail:
|
|
intel_set_config_restore_state(dev, config);
|
|
|
|
/*
|
|
* HACK: if the pipe was on, but we didn't have a framebuffer,
|
|
* force the pipe off to avoid oopsing in the modeset code
|
|
* due to fb==NULL. This should only happen during boot since
|
|
* we don't yet reconstruct the FB from the hardware state.
|
|
*/
|
|
if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
|
|
disable_crtc_nofb(to_intel_crtc(save_set.crtc));
|
|
|
|
/* Try to restore the config */
|
|
if (config->mode_changed &&
|
|
intel_set_mode(save_set.crtc, save_set.mode,
|
|
save_set.x, save_set.y, save_set.fb))
|
|
DRM_ERROR("failed to restore config after modeset failure\n");
|
|
}
|
|
|
|
out_config:
|
|
intel_set_config_free(config);
|
|
return ret;
|
|
}
|
|
|
|
static const struct drm_crtc_funcs intel_crtc_funcs = {
|
|
.gamma_set = intel_crtc_gamma_set,
|
|
.set_config = intel_crtc_set_config,
|
|
.destroy = intel_crtc_destroy,
|
|
// .page_flip = intel_crtc_page_flip,
|
|
};
|
|
|
|
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
|
|
return false;
|
|
|
|
val = I915_READ(PCH_DPLL(pll->id));
|
|
hw_state->dpll = val;
|
|
hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
|
|
hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
|
|
|
|
return val & DPLL_VCO_ENABLE;
|
|
}
|
|
|
|
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
|
|
I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
|
|
}
|
|
|
|
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
/* PCH refclock must be enabled first */
|
|
ibx_assert_pch_refclk_enabled(dev_priv);
|
|
|
|
I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(PCH_DPLL(pll->id));
|
|
udelay(150);
|
|
|
|
/* The pixel multiplier can only be updated once the
|
|
* DPLL is enabled and the clocks are stable.
|
|
*
|
|
* So write it again.
|
|
*/
|
|
I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
|
|
POSTING_READ(PCH_DPLL(pll->id));
|
|
udelay(200);
|
|
}
|
|
|
|
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct intel_crtc *crtc;
|
|
|
|
/* Make sure no transcoder isn't still depending on us. */
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (intel_crtc_to_shared_dpll(crtc) == pll)
|
|
assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
|
|
}
|
|
|
|
I915_WRITE(PCH_DPLL(pll->id), 0);
|
|
POSTING_READ(PCH_DPLL(pll->id));
|
|
udelay(200);
|
|
}
|
|
|
|
static char *ibx_pch_dpll_names[] = {
|
|
"PCH DPLL A",
|
|
"PCH DPLL B",
|
|
};
|
|
|
|
static void ibx_pch_dpll_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
dev_priv->num_shared_dpll = 2;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
dev_priv->shared_dplls[i].id = i;
|
|
dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
|
|
dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
|
|
dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
|
|
dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
|
|
dev_priv->shared_dplls[i].get_hw_state =
|
|
ibx_pch_dpll_get_hw_state;
|
|
}
|
|
}
|
|
|
|
static void intel_shared_dpll_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (HAS_DDI(dev))
|
|
intel_ddi_pll_init(dev);
|
|
else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
|
|
ibx_pch_dpll_init(dev);
|
|
else
|
|
dev_priv->num_shared_dpll = 0;
|
|
|
|
BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
|
|
}
|
|
|
|
static int
|
|
intel_primary_plane_disable(struct drm_plane *plane)
|
|
{
|
|
struct drm_device *dev = plane->dev;
|
|
struct intel_crtc *intel_crtc;
|
|
|
|
if (!plane->fb)
|
|
return 0;
|
|
|
|
BUG_ON(!plane->crtc);
|
|
|
|
intel_crtc = to_intel_crtc(plane->crtc);
|
|
|
|
/*
|
|
* Even though we checked plane->fb above, it's still possible that
|
|
* the primary plane has been implicitly disabled because the crtc
|
|
* coordinates given weren't visible, or because we detected
|
|
* that it was 100% covered by a sprite plane. Or, the CRTC may be
|
|
* off and we've set a fb, but haven't actually turned on the CRTC yet.
|
|
* In either case, we need to unpin the FB and let the fb pointer get
|
|
* updated, but otherwise we don't need to touch the hardware.
|
|
*/
|
|
if (!intel_crtc->primary_enabled)
|
|
goto disable_unpin;
|
|
|
|
// intel_crtc_wait_for_pending_flips(plane->crtc);
|
|
intel_disable_primary_hw_plane(plane, plane->crtc);
|
|
|
|
disable_unpin:
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
|
|
INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
|
|
intel_unpin_fb_obj(intel_fb_obj(plane->fb));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
plane->fb = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
intel_check_primary_plane(struct drm_plane *plane,
|
|
struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = state->crtc;
|
|
struct drm_framebuffer *fb = state->fb;
|
|
struct drm_rect *dest = &state->dst;
|
|
struct drm_rect *src = &state->src;
|
|
const struct drm_rect *clip = &state->clip;
|
|
|
|
return drm_plane_helper_check_update(plane, crtc, fb,
|
|
src, dest, clip,
|
|
DRM_PLANE_HELPER_NO_SCALING,
|
|
DRM_PLANE_HELPER_NO_SCALING,
|
|
false, true, &state->visible);
|
|
}
|
|
|
|
static int
|
|
intel_prepare_primary_plane(struct drm_plane *plane,
|
|
struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = state->crtc;
|
|
struct drm_framebuffer *fb = state->fb;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
|
|
int ret;
|
|
|
|
|
|
|
|
if (old_obj != obj) {
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
|
|
if (ret == 0)
|
|
i915_gem_track_fb(old_obj, obj,
|
|
INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
if (ret != 0) {
|
|
DRM_DEBUG_KMS("pin & fence failed\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
intel_commit_primary_plane(struct drm_plane *plane,
|
|
struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = state->crtc;
|
|
struct drm_framebuffer *fb = state->fb;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
struct drm_framebuffer *old_fb = plane->fb;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
|
|
struct intel_plane *intel_plane = to_intel_plane(plane);
|
|
struct drm_rect *src = &state->src;
|
|
|
|
crtc->primary->fb = fb;
|
|
crtc->x = src->x1 >> 16;
|
|
crtc->y = src->y1 >> 16;
|
|
|
|
intel_plane->crtc_x = state->orig_dst.x1;
|
|
intel_plane->crtc_y = state->orig_dst.y1;
|
|
intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
|
|
intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
|
|
intel_plane->src_x = state->orig_src.x1;
|
|
intel_plane->src_y = state->orig_src.y1;
|
|
intel_plane->src_w = drm_rect_width(&state->orig_src);
|
|
intel_plane->src_h = drm_rect_height(&state->orig_src);
|
|
intel_plane->obj = obj;
|
|
|
|
if (intel_crtc->active) {
|
|
/*
|
|
* FBC does not work on some platforms for rotated
|
|
* planes, so disable it when rotation is not 0 and
|
|
* update it when rotation is set back to 0.
|
|
*
|
|
* FIXME: This is redundant with the fbc update done in
|
|
* the primary plane enable function except that that
|
|
* one is done too late. We eventually need to unify
|
|
* this.
|
|
*/
|
|
if (intel_crtc->primary_enabled &&
|
|
INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
|
|
dev_priv->fbc.plane == intel_crtc->plane &&
|
|
intel_plane->rotation != BIT(DRM_ROTATE_0)) {
|
|
intel_disable_fbc(dev);
|
|
}
|
|
|
|
if (state->visible) {
|
|
bool was_enabled = intel_crtc->primary_enabled;
|
|
|
|
/* FIXME: kill this fastboot hack */
|
|
intel_update_pipe_size(intel_crtc);
|
|
|
|
intel_crtc->primary_enabled = true;
|
|
|
|
dev_priv->display.update_primary_plane(crtc, plane->fb,
|
|
crtc->x, crtc->y);
|
|
|
|
/*
|
|
* BDW signals flip done immediately if the plane
|
|
* is disabled, even if the plane enable is already
|
|
* armed to occur at the next vblank :(
|
|
*/
|
|
if (IS_BROADWELL(dev) && !was_enabled)
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
} else {
|
|
/*
|
|
* If clipping results in a non-visible primary plane,
|
|
* we'll disable the primary plane. Note that this is
|
|
* a bit different than what happens if userspace
|
|
* explicitly disables the plane by passing fb=0
|
|
* because plane->fb still gets set and pinned.
|
|
*/
|
|
intel_disable_primary_hw_plane(plane, crtc);
|
|
}
|
|
|
|
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_update_fbc(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
if (old_fb && old_fb != fb) {
|
|
if (intel_crtc->active)
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_unpin_fb_obj(old_obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb, int crtc_x, int crtc_y,
|
|
unsigned int crtc_w, unsigned int crtc_h,
|
|
uint32_t src_x, uint32_t src_y,
|
|
uint32_t src_w, uint32_t src_h)
|
|
{
|
|
struct intel_plane_state state;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int ret;
|
|
|
|
state.crtc = crtc;
|
|
state.fb = fb;
|
|
|
|
/* sample coordinates in 16.16 fixed point */
|
|
state.src.x1 = src_x;
|
|
state.src.x2 = src_x + src_w;
|
|
state.src.y1 = src_y;
|
|
state.src.y2 = src_y + src_h;
|
|
|
|
/* integer pixels */
|
|
state.dst.x1 = crtc_x;
|
|
state.dst.x2 = crtc_x + crtc_w;
|
|
state.dst.y1 = crtc_y;
|
|
state.dst.y2 = crtc_y + crtc_h;
|
|
|
|
state.clip.x1 = 0;
|
|
state.clip.y1 = 0;
|
|
state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
|
|
state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
|
|
|
|
state.orig_src = state.src;
|
|
state.orig_dst = state.dst;
|
|
|
|
ret = intel_check_primary_plane(plane, &state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_prepare_primary_plane(plane, &state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_commit_primary_plane(plane, &state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Common destruction function for both primary and cursor planes */
|
|
static void intel_plane_destroy(struct drm_plane *plane)
|
|
{
|
|
struct intel_plane *intel_plane = to_intel_plane(plane);
|
|
drm_plane_cleanup(plane);
|
|
kfree(intel_plane);
|
|
}
|
|
|
|
static const struct drm_plane_funcs intel_primary_plane_funcs = {
|
|
.update_plane = intel_primary_plane_setplane,
|
|
.disable_plane = intel_primary_plane_disable,
|
|
.destroy = intel_plane_destroy,
|
|
.set_property = intel_plane_set_property
|
|
};
|
|
|
|
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
|
|
int pipe)
|
|
{
|
|
struct intel_plane *primary;
|
|
const uint32_t *intel_primary_formats;
|
|
int num_formats;
|
|
|
|
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
|
|
if (primary == NULL)
|
|
return NULL;
|
|
|
|
primary->can_scale = false;
|
|
primary->max_downscale = 1;
|
|
primary->pipe = pipe;
|
|
primary->plane = pipe;
|
|
primary->rotation = BIT(DRM_ROTATE_0);
|
|
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
|
|
primary->plane = !pipe;
|
|
|
|
if (INTEL_INFO(dev)->gen <= 3) {
|
|
intel_primary_formats = intel_primary_formats_gen2;
|
|
num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
|
|
} else {
|
|
intel_primary_formats = intel_primary_formats_gen4;
|
|
num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
|
|
}
|
|
|
|
drm_universal_plane_init(dev, &primary->base, 0,
|
|
&intel_primary_plane_funcs,
|
|
intel_primary_formats, num_formats,
|
|
DRM_PLANE_TYPE_PRIMARY);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (!dev->mode_config.rotation_property)
|
|
dev->mode_config.rotation_property =
|
|
drm_mode_create_rotation_property(dev,
|
|
BIT(DRM_ROTATE_0) |
|
|
BIT(DRM_ROTATE_180));
|
|
if (dev->mode_config.rotation_property)
|
|
drm_object_attach_property(&primary->base.base,
|
|
dev->mode_config.rotation_property,
|
|
primary->rotation);
|
|
}
|
|
|
|
return &primary->base;
|
|
}
|
|
|
|
static int
|
|
intel_cursor_plane_disable(struct drm_plane *plane)
|
|
{
|
|
if (!plane->fb)
|
|
return 0;
|
|
|
|
BUG_ON(!plane->crtc);
|
|
|
|
return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
|
|
}
|
|
|
|
static int
|
|
intel_check_cursor_plane(struct drm_plane *plane,
|
|
struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = state->crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_framebuffer *fb = state->fb;
|
|
struct drm_rect *dest = &state->dst;
|
|
struct drm_rect *src = &state->src;
|
|
const struct drm_rect *clip = &state->clip;
|
|
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
|
|
int crtc_w, crtc_h;
|
|
unsigned stride;
|
|
int ret;
|
|
|
|
ret = drm_plane_helper_check_update(plane, crtc, fb,
|
|
src, dest, clip,
|
|
DRM_PLANE_HELPER_NO_SCALING,
|
|
DRM_PLANE_HELPER_NO_SCALING,
|
|
true, true, &state->visible);
|
|
if (ret)
|
|
return ret;
|
|
|
|
|
|
/* if we want to turn off the cursor ignore width and height */
|
|
if (!obj)
|
|
return 0;
|
|
|
|
/* Check for which cursor types we support */
|
|
crtc_w = drm_rect_width(&state->orig_dst);
|
|
crtc_h = drm_rect_height(&state->orig_dst);
|
|
if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
|
|
DRM_DEBUG("Cursor dimension not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
stride = roundup_pow_of_two(crtc_w) * 4;
|
|
if (obj->base.size < stride * crtc_h) {
|
|
DRM_DEBUG_KMS("buffer is too small\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (fb == crtc->cursor->fb)
|
|
return 0;
|
|
|
|
/* we only need to pin inside GTT if cursor is non-phy */
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
|
|
DRM_DEBUG_KMS("cursor cannot be tiled\n");
|
|
ret = -EINVAL;
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
intel_commit_cursor_plane(struct drm_plane *plane,
|
|
struct intel_plane_state *state)
|
|
{
|
|
struct drm_crtc *crtc = state->crtc;
|
|
struct drm_framebuffer *fb = state->fb;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_plane *intel_plane = to_intel_plane(plane);
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_i915_gem_object *obj = intel_fb->obj;
|
|
int crtc_w, crtc_h;
|
|
|
|
crtc->cursor_x = state->orig_dst.x1;
|
|
crtc->cursor_y = state->orig_dst.y1;
|
|
|
|
intel_plane->crtc_x = state->orig_dst.x1;
|
|
intel_plane->crtc_y = state->orig_dst.y1;
|
|
intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
|
|
intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
|
|
intel_plane->src_x = state->orig_src.x1;
|
|
intel_plane->src_y = state->orig_src.y1;
|
|
intel_plane->src_w = drm_rect_width(&state->orig_src);
|
|
intel_plane->src_h = drm_rect_height(&state->orig_src);
|
|
intel_plane->obj = obj;
|
|
|
|
if (fb != crtc->cursor->fb) {
|
|
crtc_w = drm_rect_width(&state->orig_dst);
|
|
crtc_h = drm_rect_height(&state->orig_dst);
|
|
return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
|
|
} else {
|
|
intel_crtc_update_cursor(crtc, state->visible);
|
|
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb, int crtc_x, int crtc_y,
|
|
unsigned int crtc_w, unsigned int crtc_h,
|
|
uint32_t src_x, uint32_t src_y,
|
|
uint32_t src_w, uint32_t src_h)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_plane_state state;
|
|
int ret;
|
|
|
|
state.crtc = crtc;
|
|
state.fb = fb;
|
|
|
|
/* sample coordinates in 16.16 fixed point */
|
|
state.src.x1 = src_x;
|
|
state.src.x2 = src_x + src_w;
|
|
state.src.y1 = src_y;
|
|
state.src.y2 = src_y + src_h;
|
|
|
|
/* integer pixels */
|
|
state.dst.x1 = crtc_x;
|
|
state.dst.x2 = crtc_x + crtc_w;
|
|
state.dst.y1 = crtc_y;
|
|
state.dst.y2 = crtc_y + crtc_h;
|
|
|
|
state.clip.x1 = 0;
|
|
state.clip.y1 = 0;
|
|
state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
|
|
state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
|
|
|
|
state.orig_src = state.src;
|
|
state.orig_dst = state.dst;
|
|
|
|
ret = intel_check_cursor_plane(plane, &state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return intel_commit_cursor_plane(plane, &state);
|
|
}
|
|
|
|
static const struct drm_plane_funcs intel_cursor_plane_funcs = {
|
|
.update_plane = intel_cursor_plane_update,
|
|
.disable_plane = intel_cursor_plane_disable,
|
|
.destroy = intel_plane_destroy,
|
|
.set_property = intel_plane_set_property,
|
|
};
|
|
|
|
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
|
|
int pipe)
|
|
{
|
|
struct intel_plane *cursor;
|
|
|
|
cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
|
|
if (cursor == NULL)
|
|
return NULL;
|
|
|
|
cursor->can_scale = false;
|
|
cursor->max_downscale = 1;
|
|
cursor->pipe = pipe;
|
|
cursor->plane = pipe;
|
|
cursor->rotation = BIT(DRM_ROTATE_0);
|
|
|
|
drm_universal_plane_init(dev, &cursor->base, 0,
|
|
&intel_cursor_plane_funcs,
|
|
intel_cursor_formats,
|
|
ARRAY_SIZE(intel_cursor_formats),
|
|
DRM_PLANE_TYPE_CURSOR);
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (!dev->mode_config.rotation_property)
|
|
dev->mode_config.rotation_property =
|
|
drm_mode_create_rotation_property(dev,
|
|
BIT(DRM_ROTATE_0) |
|
|
BIT(DRM_ROTATE_180));
|
|
if (dev->mode_config.rotation_property)
|
|
drm_object_attach_property(&cursor->base.base,
|
|
dev->mode_config.rotation_property,
|
|
cursor->rotation);
|
|
}
|
|
|
|
return &cursor->base;
|
|
}
|
|
|
|
static void intel_crtc_init(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc;
|
|
struct drm_plane *primary = NULL;
|
|
struct drm_plane *cursor = NULL;
|
|
int i, ret;
|
|
|
|
intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
|
|
if (intel_crtc == NULL)
|
|
return;
|
|
|
|
primary = intel_primary_plane_create(dev, pipe);
|
|
if (!primary)
|
|
goto fail;
|
|
|
|
cursor = intel_cursor_plane_create(dev, pipe);
|
|
if (!cursor)
|
|
goto fail;
|
|
|
|
ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
|
|
cursor, &intel_crtc_funcs);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
|
|
for (i = 0; i < 256; i++) {
|
|
intel_crtc->lut_r[i] = i;
|
|
intel_crtc->lut_g[i] = i;
|
|
intel_crtc->lut_b[i] = i;
|
|
}
|
|
|
|
/*
|
|
* On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
|
|
* is hooked to pipe B. Hence we want plane A feeding pipe B.
|
|
*/
|
|
intel_crtc->pipe = pipe;
|
|
intel_crtc->plane = pipe;
|
|
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
|
|
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
|
|
intel_crtc->plane = !pipe;
|
|
}
|
|
|
|
intel_crtc->cursor_base = ~0;
|
|
intel_crtc->cursor_cntl = ~0;
|
|
intel_crtc->cursor_size = ~0;
|
|
|
|
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
|
|
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
|
|
|
|
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
|
|
|
|
WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
|
|
return;
|
|
|
|
fail:
|
|
if (primary)
|
|
drm_plane_cleanup(primary);
|
|
if (cursor)
|
|
drm_plane_cleanup(cursor);
|
|
kfree(intel_crtc);
|
|
}
|
|
|
|
enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
|
|
{
|
|
struct drm_encoder *encoder = connector->base.encoder;
|
|
struct drm_device *dev = connector->base.dev;
|
|
|
|
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
|
|
|
|
if (!encoder || WARN_ON(!encoder->crtc))
|
|
return INVALID_PIPE;
|
|
|
|
return to_intel_crtc(encoder->crtc)->pipe;
|
|
}
|
|
|
|
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
|
|
struct drm_crtc *drmmode_crtc;
|
|
struct intel_crtc *crtc;
|
|
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return -ENODEV;
|
|
|
|
drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
|
|
|
|
if (!drmmode_crtc) {
|
|
DRM_ERROR("no such CRTC id\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
crtc = to_intel_crtc(drmmode_crtc);
|
|
pipe_from_crtc_id->pipe = crtc->pipe;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_encoder_clones(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct intel_encoder *source_encoder;
|
|
int index_mask = 0;
|
|
int entry = 0;
|
|
|
|
for_each_intel_encoder(dev, source_encoder) {
|
|
if (encoders_cloneable(encoder, source_encoder))
|
|
index_mask |= (1 << entry);
|
|
|
|
entry++;
|
|
}
|
|
|
|
return index_mask;
|
|
}
|
|
|
|
static bool has_edp_a(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!IS_MOBILE(dev))
|
|
return false;
|
|
|
|
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
|
|
return false;
|
|
|
|
if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
const char *intel_output_name(int output)
|
|
{
|
|
static const char *names[] = {
|
|
[INTEL_OUTPUT_UNUSED] = "Unused",
|
|
[INTEL_OUTPUT_ANALOG] = "Analog",
|
|
[INTEL_OUTPUT_DVO] = "DVO",
|
|
[INTEL_OUTPUT_SDVO] = "SDVO",
|
|
[INTEL_OUTPUT_LVDS] = "LVDS",
|
|
[INTEL_OUTPUT_TVOUT] = "TV",
|
|
[INTEL_OUTPUT_HDMI] = "HDMI",
|
|
[INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
|
|
[INTEL_OUTPUT_EDP] = "eDP",
|
|
[INTEL_OUTPUT_DSI] = "DSI",
|
|
[INTEL_OUTPUT_UNKNOWN] = "Unknown",
|
|
};
|
|
|
|
if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
|
|
return "Invalid";
|
|
|
|
return names[output];
|
|
}
|
|
|
|
static bool intel_crt_present(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
return false;
|
|
|
|
if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
|
|
return false;
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
return false;
|
|
|
|
if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_setup_outputs(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *encoder;
|
|
bool dpd_is_edp = false;
|
|
|
|
intel_lvds_init(dev);
|
|
|
|
if (intel_crt_present(dev))
|
|
intel_crt_init(dev);
|
|
|
|
if (HAS_DDI(dev)) {
|
|
int found;
|
|
|
|
/* Haswell uses DDI functions to detect digital outputs */
|
|
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
|
|
/* DDI A only supports eDP */
|
|
if (found)
|
|
intel_ddi_init(dev, PORT_A);
|
|
|
|
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
|
|
* register */
|
|
found = I915_READ(SFUSE_STRAP);
|
|
|
|
if (found & SFUSE_STRAP_DDIB_DETECTED)
|
|
intel_ddi_init(dev, PORT_B);
|
|
if (found & SFUSE_STRAP_DDIC_DETECTED)
|
|
intel_ddi_init(dev, PORT_C);
|
|
if (found & SFUSE_STRAP_DDID_DETECTED)
|
|
intel_ddi_init(dev, PORT_D);
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
int found;
|
|
dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
|
|
|
|
if (has_edp_a(dev))
|
|
intel_dp_init(dev, DP_A, PORT_A);
|
|
|
|
if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
|
|
/* PCH SDVOB multiplex with HDMIB */
|
|
found = intel_sdvo_init(dev, PCH_SDVOB, true);
|
|
if (!found)
|
|
intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
|
|
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
|
|
intel_dp_init(dev, PCH_DP_B, PORT_B);
|
|
}
|
|
|
|
if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
|
|
intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
|
|
|
|
if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
|
|
intel_hdmi_init(dev, PCH_HDMID, PORT_D);
|
|
|
|
if (I915_READ(PCH_DP_C) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_C, PORT_C);
|
|
|
|
if (I915_READ(PCH_DP_D) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_D, PORT_D);
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
/*
|
|
* The DP_DETECTED bit is the latched state of the DDC
|
|
* SDA pin at boot. However since eDP doesn't require DDC
|
|
* (no way to plug in a DP->HDMI dongle) the DDC pins for
|
|
* eDP ports may have been muxed to an alternate function.
|
|
* Thus we can't rely on the DP_DETECTED bit alone to detect
|
|
* eDP ports. Consult the VBT as well as DP_DETECTED to
|
|
* detect eDP ports.
|
|
*/
|
|
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
|
|
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
|
|
PORT_B);
|
|
if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
|
|
intel_dp_is_edp(dev, PORT_B))
|
|
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
|
|
|
|
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
|
|
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
|
|
PORT_C);
|
|
if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
|
|
intel_dp_is_edp(dev, PORT_C))
|
|
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
|
|
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
|
|
intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
|
|
PORT_D);
|
|
/* eDP not supported on port D, so don't check VBT */
|
|
if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
|
|
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
|
|
}
|
|
|
|
intel_dsi_init(dev);
|
|
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
|
|
bool found = false;
|
|
|
|
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
|
|
DRM_DEBUG_KMS("probing SDVOB\n");
|
|
found = intel_sdvo_init(dev, GEN3_SDVOB, true);
|
|
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
|
|
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
|
|
intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
|
|
}
|
|
|
|
if (!found && SUPPORTS_INTEGRATED_DP(dev))
|
|
intel_dp_init(dev, DP_B, PORT_B);
|
|
}
|
|
|
|
/* Before G4X SDVOC doesn't have its own detect register */
|
|
|
|
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
|
|
DRM_DEBUG_KMS("probing SDVOC\n");
|
|
found = intel_sdvo_init(dev, GEN3_SDVOC, false);
|
|
}
|
|
|
|
if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
|
|
|
|
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
|
|
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
|
|
intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
|
|
}
|
|
if (SUPPORTS_INTEGRATED_DP(dev))
|
|
intel_dp_init(dev, DP_C, PORT_C);
|
|
}
|
|
|
|
if (SUPPORTS_INTEGRATED_DP(dev) &&
|
|
(I915_READ(DP_D) & DP_DETECTED))
|
|
intel_dp_init(dev, DP_D, PORT_D);
|
|
} else if (IS_GEN2(dev))
|
|
intel_dvo_init(dev);
|
|
|
|
|
|
intel_psr_init(dev);
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
encoder->base.possible_crtcs = encoder->crtc_mask;
|
|
encoder->base.possible_clones =
|
|
intel_encoder_clones(encoder);
|
|
}
|
|
|
|
intel_init_pch_refclk(dev);
|
|
|
|
drm_helper_move_panel_connectors_to_head(dev);
|
|
}
|
|
|
|
|
|
|
|
static const struct drm_framebuffer_funcs intel_fb_funcs = {
|
|
// .destroy = intel_user_framebuffer_destroy,
|
|
// .create_handle = intel_user_framebuffer_create_handle,
|
|
};
|
|
|
|
static int intel_framebuffer_init(struct drm_device *dev,
|
|
struct intel_framebuffer *intel_fb,
|
|
struct drm_mode_fb_cmd2 *mode_cmd,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
int aligned_height;
|
|
int pitch_limit;
|
|
int ret;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
|
|
if (obj->tiling_mode == I915_TILING_Y) {
|
|
DRM_DEBUG("hardware does not support tiling Y\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mode_cmd->pitches[0] & 63) {
|
|
DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
|
|
mode_cmd->pitches[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
|
|
pitch_limit = 32*1024;
|
|
} else if (INTEL_INFO(dev)->gen >= 4) {
|
|
if (obj->tiling_mode)
|
|
pitch_limit = 16*1024;
|
|
else
|
|
pitch_limit = 32*1024;
|
|
} else if (INTEL_INFO(dev)->gen >= 3) {
|
|
if (obj->tiling_mode)
|
|
pitch_limit = 8*1024;
|
|
else
|
|
pitch_limit = 16*1024;
|
|
} else
|
|
/* XXX DSPC is limited to 4k tiled */
|
|
pitch_limit = 8*1024;
|
|
|
|
if (mode_cmd->pitches[0] > pitch_limit) {
|
|
DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
|
|
obj->tiling_mode ? "tiled" : "linear",
|
|
mode_cmd->pitches[0], pitch_limit);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (obj->tiling_mode != I915_TILING_NONE &&
|
|
mode_cmd->pitches[0] != obj->stride) {
|
|
DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
|
|
mode_cmd->pitches[0], obj->stride);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Reject formats not supported by any plane early. */
|
|
switch (mode_cmd->pixel_format) {
|
|
case DRM_FORMAT_C8:
|
|
case DRM_FORMAT_RGB565:
|
|
case DRM_FORMAT_XRGB8888:
|
|
case DRM_FORMAT_ARGB8888:
|
|
break;
|
|
case DRM_FORMAT_XRGB1555:
|
|
case DRM_FORMAT_ARGB1555:
|
|
if (INTEL_INFO(dev)->gen > 3) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_XBGR8888:
|
|
case DRM_FORMAT_ABGR8888:
|
|
case DRM_FORMAT_XRGB2101010:
|
|
case DRM_FORMAT_ARGB2101010:
|
|
case DRM_FORMAT_XBGR2101010:
|
|
case DRM_FORMAT_ABGR2101010:
|
|
if (INTEL_INFO(dev)->gen < 4) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case DRM_FORMAT_YUYV:
|
|
case DRM_FORMAT_UYVY:
|
|
case DRM_FORMAT_YVYU:
|
|
case DRM_FORMAT_VYUY:
|
|
if (INTEL_INFO(dev)->gen < 5) {
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
DRM_DEBUG("unsupported pixel format: %s\n",
|
|
drm_get_format_name(mode_cmd->pixel_format));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
|
|
if (mode_cmd->offsets[0] != 0)
|
|
return -EINVAL;
|
|
|
|
aligned_height = intel_align_height(dev, mode_cmd->height,
|
|
obj->tiling_mode);
|
|
/* FIXME drm helper for size checks (especially planar formats)? */
|
|
if (obj->base.size < aligned_height * mode_cmd->pitches[0])
|
|
return -EINVAL;
|
|
|
|
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
|
|
intel_fb->obj = obj;
|
|
intel_fb->obj->framebuffer_references++;
|
|
|
|
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
|
|
if (ret) {
|
|
DRM_ERROR("framebuffer init failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_DRM_I915_FBDEV
|
|
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static const struct drm_mode_config_funcs intel_mode_funcs = {
|
|
.fb_create = NULL,
|
|
.output_poll_changed = intel_fbdev_output_poll_changed,
|
|
};
|
|
|
|
/* Set up chip specific display functions */
|
|
static void intel_init_display(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
|
|
dev_priv->display.find_dpll = g4x_find_best_dpll;
|
|
else if (IS_CHERRYVIEW(dev))
|
|
dev_priv->display.find_dpll = chv_find_best_dpll;
|
|
else if (IS_VALLEYVIEW(dev))
|
|
dev_priv->display.find_dpll = vlv_find_best_dpll;
|
|
else if (IS_PINEVIEW(dev))
|
|
dev_priv->display.find_dpll = pnv_find_best_dpll;
|
|
else
|
|
dev_priv->display.find_dpll = i9xx_find_best_dpll;
|
|
|
|
if (HAS_DDI(dev)) {
|
|
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
|
|
dev_priv->display.get_plane_config = ironlake_get_plane_config;
|
|
dev_priv->display.crtc_compute_clock =
|
|
haswell_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = haswell_crtc_enable;
|
|
dev_priv->display.crtc_disable = haswell_crtc_disable;
|
|
dev_priv->display.off = ironlake_crtc_off;
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
dev_priv->display.update_primary_plane =
|
|
skylake_update_primary_plane;
|
|
else
|
|
dev_priv->display.update_primary_plane =
|
|
ironlake_update_primary_plane;
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
|
|
dev_priv->display.get_plane_config = ironlake_get_plane_config;
|
|
dev_priv->display.crtc_compute_clock =
|
|
ironlake_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = ironlake_crtc_enable;
|
|
dev_priv->display.crtc_disable = ironlake_crtc_disable;
|
|
dev_priv->display.off = ironlake_crtc_off;
|
|
dev_priv->display.update_primary_plane =
|
|
ironlake_update_primary_plane;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_plane_config = i9xx_get_plane_config;
|
|
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = valleyview_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
dev_priv->display.off = i9xx_crtc_off;
|
|
dev_priv->display.update_primary_plane =
|
|
i9xx_update_primary_plane;
|
|
} else {
|
|
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
|
|
dev_priv->display.get_plane_config = i9xx_get_plane_config;
|
|
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
|
|
dev_priv->display.crtc_enable = i9xx_crtc_enable;
|
|
dev_priv->display.crtc_disable = i9xx_crtc_disable;
|
|
dev_priv->display.off = i9xx_crtc_off;
|
|
dev_priv->display.update_primary_plane =
|
|
i9xx_update_primary_plane;
|
|
}
|
|
|
|
/* Returns the core display clock speed */
|
|
if (IS_VALLEYVIEW(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
valleyview_get_display_clock_speed;
|
|
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i945_get_display_clock_speed;
|
|
else if (IS_I915G(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915_get_display_clock_speed;
|
|
else if (IS_I945GM(dev) || IS_845G(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i9xx_misc_get_display_clock_speed;
|
|
else if (IS_PINEVIEW(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
pnv_get_display_clock_speed;
|
|
else if (IS_I915GM(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915gm_get_display_clock_speed;
|
|
else if (IS_I865G(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i865_get_display_clock_speed;
|
|
else if (IS_I85X(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i855_get_display_clock_speed;
|
|
else /* 852, 830 */
|
|
dev_priv->display.get_display_clock_speed =
|
|
i830_get_display_clock_speed;
|
|
|
|
if (IS_GEN5(dev)) {
|
|
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
|
|
} else if (IS_GEN6(dev)) {
|
|
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
|
|
} else if (IS_IVYBRIDGE(dev)) {
|
|
/* FIXME: detect B0+ stepping and use auto training */
|
|
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
|
|
dev_priv->display.modeset_global_resources =
|
|
ivb_modeset_global_resources;
|
|
} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
|
|
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
dev_priv->display.modeset_global_resources =
|
|
valleyview_modeset_global_resources;
|
|
}
|
|
|
|
/* Default just returns -ENODEV to indicate unsupported */
|
|
// dev_priv->display.queue_flip = intel_default_queue_flip;
|
|
|
|
|
|
|
|
|
|
intel_panel_init_backlight_funcs(dev);
|
|
|
|
mutex_init(&dev_priv->pps_mutex);
|
|
}
|
|
|
|
/*
|
|
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
|
|
* resume, or other times. This quirk makes sure that's the case for
|
|
* affected systems.
|
|
*/
|
|
static void quirk_pipea_force(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
|
|
DRM_INFO("applying pipe a force quirk\n");
|
|
}
|
|
|
|
static void quirk_pipeb_force(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
dev_priv->quirks |= QUIRK_PIPEB_FORCE;
|
|
DRM_INFO("applying pipe b force quirk\n");
|
|
}
|
|
|
|
/*
|
|
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
|
|
*/
|
|
static void quirk_ssc_force_disable(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
|
|
DRM_INFO("applying lvds SSC disable quirk\n");
|
|
}
|
|
|
|
/*
|
|
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
|
|
* brightness value
|
|
*/
|
|
static void quirk_invert_brightness(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
|
|
DRM_INFO("applying inverted panel brightness quirk\n");
|
|
}
|
|
|
|
/* Some VBT's incorrectly indicate no backlight is present */
|
|
static void quirk_backlight_present(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
|
|
DRM_INFO("applying backlight present quirk\n");
|
|
}
|
|
|
|
struct intel_quirk {
|
|
int device;
|
|
int subsystem_vendor;
|
|
int subsystem_device;
|
|
void (*hook)(struct drm_device *dev);
|
|
};
|
|
|
|
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
|
|
struct intel_dmi_quirk {
|
|
void (*hook)(struct drm_device *dev);
|
|
const struct dmi_system_id (*dmi_id_list)[];
|
|
};
|
|
|
|
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
|
|
{
|
|
DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
|
|
return 1;
|
|
}
|
|
|
|
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
|
|
{
|
|
.dmi_id_list = &(const struct dmi_system_id[]) {
|
|
{
|
|
.callback = intel_dmi_reverse_brightness,
|
|
.ident = "NCR Corporation",
|
|
.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, ""),
|
|
},
|
|
},
|
|
{ } /* terminating entry */
|
|
},
|
|
.hook = quirk_invert_brightness,
|
|
},
|
|
};
|
|
|
|
static struct intel_quirk intel_quirks[] = {
|
|
/* HP Mini needs pipe A force quirk (LP: #322104) */
|
|
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
|
|
|
|
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
|
|
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
|
|
|
|
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
|
|
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
|
|
|
|
/* 830 needs to leave pipe A & dpll A up */
|
|
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
|
|
|
|
/* 830 needs to leave pipe B & dpll B up */
|
|
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
|
|
|
|
/* Lenovo U160 cannot use SSC on LVDS */
|
|
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
|
|
|
|
/* Sony Vaio Y cannot use SSC on LVDS */
|
|
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
|
|
|
|
/* Acer Aspire 5734Z must invert backlight brightness */
|
|
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
|
|
|
|
/* Acer/eMachines G725 */
|
|
{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
|
|
|
|
/* Acer/eMachines e725 */
|
|
{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
|
|
|
|
/* Acer/Packard Bell NCL20 */
|
|
{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
|
|
|
|
/* Acer Aspire 4736Z */
|
|
{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
|
|
|
|
/* Acer Aspire 5336 */
|
|
{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
|
|
|
|
/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
|
|
{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
|
|
|
|
/* Acer C720 Chromebook (Core i3 4005U) */
|
|
{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
|
|
|
|
/* Apple Macbook 2,1 (Core 2 T7400) */
|
|
{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
|
|
|
|
/* Toshiba CB35 Chromebook (Celeron 2955U) */
|
|
{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
|
|
|
|
/* HP Chromebook 14 (Celeron 2955U) */
|
|
{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
|
|
};
|
|
|
|
static void intel_init_quirks(struct drm_device *dev)
|
|
{
|
|
struct pci_dev *d = dev->pdev;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
|
|
struct intel_quirk *q = &intel_quirks[i];
|
|
|
|
if (d->device == q->device &&
|
|
(d->subsystem_vendor == q->subsystem_vendor ||
|
|
q->subsystem_vendor == PCI_ANY_ID) &&
|
|
(d->subsystem_device == q->subsystem_device ||
|
|
q->subsystem_device == PCI_ANY_ID))
|
|
q->hook(dev);
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
|
|
if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
|
|
intel_dmi_quirks[i].hook(dev);
|
|
}
|
|
}
|
|
|
|
/* Disable the VGA plane that we never use */
|
|
static void i915_disable_vga(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u8 sr1;
|
|
u32 vga_reg = i915_vgacntrl_reg(dev);
|
|
|
|
// vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
|
|
outb(SR01, VGA_SR_INDEX);
|
|
sr1 = inb(VGA_SR_DATA);
|
|
outb(sr1 | 1<<5, VGA_SR_DATA);
|
|
// vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
|
|
udelay(300);
|
|
|
|
/*
|
|
* Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
|
|
* from S3 without preserving (some of?) the other bits.
|
|
*/
|
|
I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
|
|
POSTING_READ(vga_reg);
|
|
}
|
|
|
|
void intel_modeset_init_hw(struct drm_device *dev)
|
|
{
|
|
intel_prepare_ddi(dev);
|
|
|
|
if (IS_VALLEYVIEW(dev))
|
|
vlv_update_cdclk(dev);
|
|
|
|
intel_init_clock_gating(dev);
|
|
|
|
intel_enable_gt_powersave(dev);
|
|
}
|
|
|
|
void intel_modeset_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int sprite, ret;
|
|
enum pipe pipe;
|
|
struct intel_crtc *crtc;
|
|
|
|
drm_mode_config_init(dev);
|
|
|
|
dev->mode_config.min_width = 0;
|
|
dev->mode_config.min_height = 0;
|
|
|
|
dev->mode_config.preferred_depth = 24;
|
|
dev->mode_config.prefer_shadow = 1;
|
|
|
|
dev->mode_config.funcs = &intel_mode_funcs;
|
|
|
|
intel_init_quirks(dev);
|
|
|
|
intel_init_pm(dev);
|
|
|
|
if (INTEL_INFO(dev)->num_pipes == 0)
|
|
return;
|
|
|
|
intel_init_display(dev);
|
|
|
|
if (IS_GEN2(dev)) {
|
|
dev->mode_config.max_width = 2048;
|
|
dev->mode_config.max_height = 2048;
|
|
} else if (IS_GEN3(dev)) {
|
|
dev->mode_config.max_width = 4096;
|
|
dev->mode_config.max_height = 4096;
|
|
} else {
|
|
dev->mode_config.max_width = 8192;
|
|
dev->mode_config.max_height = 8192;
|
|
}
|
|
|
|
if (IS_GEN2(dev)) {
|
|
dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
|
|
dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
|
|
} else {
|
|
dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
|
|
dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
|
|
}
|
|
|
|
dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
|
|
|
|
DRM_DEBUG_KMS("%d display pipe%s available.\n",
|
|
INTEL_INFO(dev)->num_pipes,
|
|
INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
intel_crtc_init(dev, pipe);
|
|
for_each_sprite(pipe, sprite) {
|
|
ret = intel_plane_init(dev, pipe, sprite);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
|
|
pipe_name(pipe), sprite_name(pipe, sprite), ret);
|
|
}
|
|
}
|
|
|
|
intel_init_dpio(dev);
|
|
|
|
intel_shared_dpll_init(dev);
|
|
|
|
/* save the BIOS value before clobbering it */
|
|
dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
|
|
/* Just disable it once at startup */
|
|
i915_disable_vga(dev);
|
|
intel_setup_outputs(dev);
|
|
|
|
/* Just in case the BIOS is doing something questionable. */
|
|
intel_disable_fbc(dev);
|
|
|
|
drm_modeset_lock_all(dev);
|
|
intel_modeset_setup_hw_state(dev, false);
|
|
drm_modeset_unlock_all(dev);
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (!crtc->active)
|
|
continue;
|
|
|
|
/*
|
|
* Note that reserving the BIOS fb up front prevents us
|
|
* from stuffing other stolen allocations like the ring
|
|
* on top. This prevents some ugliness at boot time, and
|
|
* can even allow for smooth boot transitions if the BIOS
|
|
* fb is large enough for the active pipe configuration.
|
|
*/
|
|
if (dev_priv->display.get_plane_config) {
|
|
dev_priv->display.get_plane_config(crtc,
|
|
&crtc->plane_config);
|
|
/*
|
|
* If the fb is shared between multiple heads, we'll
|
|
* just get the first one.
|
|
*/
|
|
crtc->plane_config.size = 16*1024*1024;
|
|
intel_find_plane_obj(crtc, &crtc->plane_config);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void intel_enable_pipe_a(struct drm_device *dev)
|
|
{
|
|
struct intel_connector *connector;
|
|
struct drm_connector *crt = NULL;
|
|
struct intel_load_detect_pipe load_detect_temp;
|
|
struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
|
|
|
|
/* We can't just switch on the pipe A, we need to set things up with a
|
|
* proper mode and output configuration. As a gross hack, enable pipe A
|
|
* by enabling the load detect pipe once. */
|
|
list_for_each_entry(connector,
|
|
&dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
|
|
crt = &connector->base;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!crt)
|
|
return;
|
|
|
|
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
|
|
intel_release_load_detect_pipe(crt, &load_detect_temp);
|
|
}
|
|
|
|
static bool
|
|
intel_check_plane_mapping(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg, val;
|
|
|
|
if (INTEL_INFO(dev)->num_pipes == 1)
|
|
return true;
|
|
|
|
reg = DSPCNTR(!crtc->plane);
|
|
val = I915_READ(reg);
|
|
|
|
if ((val & DISPLAY_PLANE_ENABLE) &&
|
|
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_sanitize_crtc(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg;
|
|
|
|
/* Clear any frame start delays used for debugging left by the BIOS */
|
|
reg = PIPECONF(crtc->config.cpu_transcoder);
|
|
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
|
|
|
|
/* restore vblank interrupts to correct state */
|
|
if (crtc->active) {
|
|
update_scanline_offset(crtc);
|
|
drm_vblank_on(dev, crtc->pipe);
|
|
} else
|
|
drm_vblank_off(dev, crtc->pipe);
|
|
|
|
/* We need to sanitize the plane -> pipe mapping first because this will
|
|
* disable the crtc (and hence change the state) if it is wrong. Note
|
|
* that gen4+ has a fixed plane -> pipe mapping. */
|
|
if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
|
|
struct intel_connector *connector;
|
|
bool plane;
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
|
|
crtc->base.base.id);
|
|
|
|
/* Pipe has the wrong plane attached and the plane is active.
|
|
* Temporarily change the plane mapping and disable everything
|
|
* ... */
|
|
plane = crtc->plane;
|
|
crtc->plane = !plane;
|
|
crtc->primary_enabled = true;
|
|
dev_priv->display.crtc_disable(&crtc->base);
|
|
crtc->plane = plane;
|
|
|
|
/* ... and break all links. */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->encoder->base.crtc != &crtc->base)
|
|
continue;
|
|
|
|
connector->base.dpms = DRM_MODE_DPMS_OFF;
|
|
connector->base.encoder = NULL;
|
|
}
|
|
/* multiple connectors may have the same encoder:
|
|
* handle them and break crtc link separately */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head)
|
|
if (connector->encoder->base.crtc == &crtc->base) {
|
|
connector->encoder->base.crtc = NULL;
|
|
connector->encoder->connectors_active = false;
|
|
}
|
|
|
|
WARN_ON(crtc->active);
|
|
crtc->base.enabled = false;
|
|
}
|
|
|
|
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
|
|
crtc->pipe == PIPE_A && !crtc->active) {
|
|
/* BIOS forgot to enable pipe A, this mostly happens after
|
|
* resume. Force-enable the pipe to fix this, the update_dpms
|
|
* call below we restore the pipe to the right state, but leave
|
|
* the required bits on. */
|
|
intel_enable_pipe_a(dev);
|
|
}
|
|
|
|
/* Adjust the state of the output pipe according to whether we
|
|
* have active connectors/encoders. */
|
|
intel_crtc_update_dpms(&crtc->base);
|
|
|
|
if (crtc->active != crtc->base.enabled) {
|
|
struct intel_encoder *encoder;
|
|
|
|
/* This can happen either due to bugs in the get_hw_state
|
|
* functions or because the pipe is force-enabled due to the
|
|
* pipe A quirk. */
|
|
DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
|
|
crtc->base.base.id,
|
|
crtc->base.enabled ? "enabled" : "disabled",
|
|
crtc->active ? "enabled" : "disabled");
|
|
|
|
crtc->base.enabled = crtc->active;
|
|
|
|
/* Because we only establish the connector -> encoder ->
|
|
* crtc links if something is active, this means the
|
|
* crtc is now deactivated. Break the links. connector
|
|
* -> encoder links are only establish when things are
|
|
* actually up, hence no need to break them. */
|
|
WARN_ON(crtc->active);
|
|
|
|
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
|
|
WARN_ON(encoder->connectors_active);
|
|
encoder->base.crtc = NULL;
|
|
}
|
|
}
|
|
|
|
if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
|
|
/*
|
|
* We start out with underrun reporting disabled to avoid races.
|
|
* For correct bookkeeping mark this on active crtcs.
|
|
*
|
|
* Also on gmch platforms we dont have any hardware bits to
|
|
* disable the underrun reporting. Which means we need to start
|
|
* out with underrun reporting disabled also on inactive pipes,
|
|
* since otherwise we'll complain about the garbage we read when
|
|
* e.g. coming up after runtime pm.
|
|
*
|
|
* No protection against concurrent access is required - at
|
|
* worst a fifo underrun happens which also sets this to false.
|
|
*/
|
|
crtc->cpu_fifo_underrun_disabled = true;
|
|
crtc->pch_fifo_underrun_disabled = true;
|
|
}
|
|
}
|
|
|
|
static void intel_sanitize_encoder(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_connector *connector;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
|
|
/* We need to check both for a crtc link (meaning that the
|
|
* encoder is active and trying to read from a pipe) and the
|
|
* pipe itself being active. */
|
|
bool has_active_crtc = encoder->base.crtc &&
|
|
to_intel_crtc(encoder->base.crtc)->active;
|
|
|
|
if (encoder->connectors_active && !has_active_crtc) {
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name);
|
|
|
|
/* Connector is active, but has no active pipe. This is
|
|
* fallout from our resume register restoring. Disable
|
|
* the encoder manually again. */
|
|
if (encoder->base.crtc) {
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name);
|
|
encoder->disable(encoder);
|
|
if (encoder->post_disable)
|
|
encoder->post_disable(encoder);
|
|
}
|
|
encoder->base.crtc = NULL;
|
|
encoder->connectors_active = false;
|
|
|
|
/* Inconsistent output/port/pipe state happens presumably due to
|
|
* a bug in one of the get_hw_state functions. Or someplace else
|
|
* in our code, like the register restore mess on resume. Clamp
|
|
* things to off as a safer default. */
|
|
list_for_each_entry(connector,
|
|
&dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->encoder != encoder)
|
|
continue;
|
|
connector->base.dpms = DRM_MODE_DPMS_OFF;
|
|
connector->base.encoder = NULL;
|
|
}
|
|
}
|
|
/* Enabled encoders without active connectors will be fixed in
|
|
* the crtc fixup. */
|
|
}
|
|
|
|
void i915_redisable_vga_power_on(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 vga_reg = i915_vgacntrl_reg(dev);
|
|
|
|
if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
|
|
DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
|
|
i915_disable_vga(dev);
|
|
}
|
|
}
|
|
|
|
void i915_redisable_vga(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* This function can be called both from intel_modeset_setup_hw_state or
|
|
* at a very early point in our resume sequence, where the power well
|
|
* structures are not yet restored. Since this function is at a very
|
|
* paranoid "someone might have enabled VGA while we were not looking"
|
|
* level, just check if the power well is enabled instead of trying to
|
|
* follow the "don't touch the power well if we don't need it" policy
|
|
* the rest of the driver uses. */
|
|
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
|
|
return;
|
|
|
|
i915_redisable_vga_power_on(dev);
|
|
}
|
|
|
|
static bool primary_get_hw_state(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
|
|
|
|
if (!crtc->active)
|
|
return false;
|
|
|
|
return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
|
|
}
|
|
|
|
static void intel_modeset_readout_hw_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe;
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
struct intel_connector *connector;
|
|
int i;
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
memset(&crtc->config, 0, sizeof(crtc->config));
|
|
|
|
crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
|
|
|
|
crtc->active = dev_priv->display.get_pipe_config(crtc,
|
|
&crtc->config);
|
|
|
|
crtc->base.enabled = crtc->active;
|
|
crtc->primary_enabled = primary_get_hw_state(crtc);
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
|
|
crtc->base.base.id,
|
|
crtc->active ? "enabled" : "disabled");
|
|
}
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
|
|
|
|
pll->on = pll->get_hw_state(dev_priv, pll,
|
|
&pll->config.hw_state);
|
|
pll->active = 0;
|
|
pll->config.crtc_mask = 0;
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
|
|
pll->active++;
|
|
pll->config.crtc_mask |= 1 << crtc->pipe;
|
|
}
|
|
}
|
|
|
|
DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
|
|
pll->name, pll->config.crtc_mask, pll->on);
|
|
|
|
if (pll->config.crtc_mask)
|
|
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
|
|
}
|
|
|
|
for_each_intel_encoder(dev, encoder) {
|
|
pipe = 0;
|
|
|
|
if (encoder->get_hw_state(encoder, &pipe)) {
|
|
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
encoder->base.crtc = &crtc->base;
|
|
encoder->get_config(encoder, &crtc->config);
|
|
} else {
|
|
encoder->base.crtc = NULL;
|
|
}
|
|
|
|
encoder->connectors_active = false;
|
|
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
|
|
encoder->base.base.id,
|
|
encoder->base.name,
|
|
encoder->base.crtc ? "enabled" : "disabled",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list,
|
|
base.head) {
|
|
if (connector->get_hw_state(connector)) {
|
|
connector->base.dpms = DRM_MODE_DPMS_ON;
|
|
connector->encoder->connectors_active = true;
|
|
connector->base.encoder = &connector->encoder->base;
|
|
} else {
|
|
connector->base.dpms = DRM_MODE_DPMS_OFF;
|
|
connector->base.encoder = NULL;
|
|
}
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
|
|
connector->base.base.id,
|
|
connector->base.name,
|
|
connector->base.encoder ? "enabled" : "disabled");
|
|
}
|
|
}
|
|
|
|
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
|
|
* and i915 state tracking structures. */
|
|
void intel_modeset_setup_hw_state(struct drm_device *dev,
|
|
bool force_restore)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe;
|
|
struct intel_crtc *crtc;
|
|
struct intel_encoder *encoder;
|
|
int i;
|
|
|
|
intel_modeset_readout_hw_state(dev);
|
|
|
|
/*
|
|
* Now that we have the config, copy it to each CRTC struct
|
|
* Note that this could go away if we move to using crtc_config
|
|
* checking everywhere.
|
|
*/
|
|
for_each_intel_crtc(dev, crtc) {
|
|
if (crtc->active && i915.fastboot) {
|
|
intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
|
|
DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
|
|
crtc->base.base.id);
|
|
drm_mode_debug_printmodeline(&crtc->base.mode);
|
|
}
|
|
}
|
|
|
|
/* HW state is read out, now we need to sanitize this mess. */
|
|
for_each_intel_encoder(dev, encoder) {
|
|
intel_sanitize_encoder(encoder);
|
|
}
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
|
|
intel_sanitize_crtc(crtc);
|
|
intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
|
|
}
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
|
|
|
|
if (!pll->on || pll->active)
|
|
continue;
|
|
|
|
DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
|
|
|
|
pll->disable(dev_priv, pll);
|
|
pll->on = false;
|
|
}
|
|
|
|
if (IS_GEN9(dev))
|
|
skl_wm_get_hw_state(dev);
|
|
else if (HAS_PCH_SPLIT(dev))
|
|
ilk_wm_get_hw_state(dev);
|
|
|
|
if (force_restore) {
|
|
i915_redisable_vga(dev);
|
|
|
|
/*
|
|
* We need to use raw interfaces for restoring state to avoid
|
|
* checking (bogus) intermediate states.
|
|
*/
|
|
for_each_pipe(dev_priv, pipe) {
|
|
struct drm_crtc *crtc =
|
|
dev_priv->pipe_to_crtc_mapping[pipe];
|
|
|
|
intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
|
|
crtc->primary->fb);
|
|
}
|
|
} else {
|
|
intel_modeset_update_staged_output_state(dev);
|
|
}
|
|
|
|
intel_modeset_check_state(dev);
|
|
}
|
|
|
|
void intel_modeset_gem_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *c;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_init_gt_powersave(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/*
|
|
* There may be no VBT; and if the BIOS enabled SSC we can
|
|
* just keep using it to avoid unnecessary flicker. Whereas if the
|
|
* BIOS isn't using it, don't assume it will work even if the VBT
|
|
* indicates as much.
|
|
*/
|
|
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
|
|
dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
|
|
DREF_SSC1_ENABLE);
|
|
|
|
intel_modeset_init_hw(dev);
|
|
|
|
// intel_setup_overlay(dev);
|
|
|
|
/*
|
|
* Make sure any fbs we allocated at startup are properly
|
|
* pinned & fenced. When we do the allocation it's too early
|
|
* for this.
|
|
*/
|
|
mutex_lock(&dev->struct_mutex);
|
|
for_each_crtc(dev, c) {
|
|
obj = intel_fb_obj(c->primary->fb);
|
|
if (obj == NULL)
|
|
continue;
|
|
|
|
if (intel_pin_and_fence_fb_obj(c->primary,
|
|
c->primary->fb,
|
|
NULL)) {
|
|
DRM_ERROR("failed to pin boot fb on pipe %d\n",
|
|
to_intel_crtc(c)->pipe);
|
|
drm_framebuffer_unreference(c->primary->fb);
|
|
c->primary->fb = NULL;
|
|
}
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
void intel_connector_unregister(struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
|
|
intel_panel_destroy_backlight(connector);
|
|
drm_connector_unregister(connector);
|
|
}
|
|
|
|
void intel_modeset_cleanup(struct drm_device *dev)
|
|
{
|
|
#if 0
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_connector *connector;
|
|
|
|
intel_disable_gt_powersave(dev);
|
|
|
|
intel_backlight_unregister(dev);
|
|
|
|
/*
|
|
* Interrupts and polling as the first thing to avoid creating havoc.
|
|
* Too much stuff here (turning of connectors, ...) would
|
|
* experience fancy races otherwise.
|
|
*/
|
|
intel_irq_uninstall(dev_priv);
|
|
|
|
/*
|
|
* Due to the hpd irq storm handling the hotplug work can re-arm the
|
|
* poll handlers. Hence disable polling after hpd handling is shut down.
|
|
*/
|
|
drm_kms_helper_poll_fini(dev);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
intel_unregister_dsm_handler();
|
|
|
|
intel_disable_fbc(dev);
|
|
|
|
ironlake_teardown_rc6(dev);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/* flush any delayed tasks or pending work */
|
|
flush_scheduled_work();
|
|
|
|
/* destroy the backlight and sysfs files before encoders/connectors */
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
struct intel_connector *intel_connector;
|
|
|
|
intel_connector = to_intel_connector(connector);
|
|
intel_connector->unregister(intel_connector);
|
|
}
|
|
|
|
drm_mode_config_cleanup(dev);
|
|
|
|
intel_cleanup_overlay(dev);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
intel_cleanup_gt_powersave(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Return which encoder is currently attached for connector.
|
|
*/
|
|
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
|
|
{
|
|
return &intel_attached_encoder(connector)->base;
|
|
}
|
|
|
|
void intel_connector_attach_encoder(struct intel_connector *connector,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
connector->encoder = encoder;
|
|
drm_mode_connector_attach_encoder(&connector->base,
|
|
&encoder->base);
|
|
}
|
|
|
|
/*
|
|
* set vga decode state - true == enable VGA decode
|
|
*/
|
|
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
|
|
u16 gmch_ctrl;
|
|
|
|
if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
|
|
DRM_ERROR("failed to read control word\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
|
|
return 0;
|
|
|
|
if (state)
|
|
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
|
|
else
|
|
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
|
|
|
|
if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
|
|
DRM_ERROR("failed to write control word\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
struct intel_display_error_state {
|
|
|
|
u32 power_well_driver;
|
|
|
|
int num_transcoders;
|
|
|
|
struct intel_cursor_error_state {
|
|
u32 control;
|
|
u32 position;
|
|
u32 base;
|
|
u32 size;
|
|
} cursor[I915_MAX_PIPES];
|
|
|
|
struct intel_pipe_error_state {
|
|
bool power_domain_on;
|
|
u32 source;
|
|
u32 stat;
|
|
} pipe[I915_MAX_PIPES];
|
|
|
|
struct intel_plane_error_state {
|
|
u32 control;
|
|
u32 stride;
|
|
u32 size;
|
|
u32 pos;
|
|
u32 addr;
|
|
u32 surface;
|
|
u32 tile_offset;
|
|
} plane[I915_MAX_PIPES];
|
|
|
|
struct intel_transcoder_error_state {
|
|
bool power_domain_on;
|
|
enum transcoder cpu_transcoder;
|
|
|
|
u32 conf;
|
|
|
|
u32 htotal;
|
|
u32 hblank;
|
|
u32 hsync;
|
|
u32 vtotal;
|
|
u32 vblank;
|
|
u32 vsync;
|
|
} transcoder[4];
|
|
};
|
|
|
|
struct intel_display_error_state *
|
|
intel_display_capture_error_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_display_error_state *error;
|
|
int transcoders[] = {
|
|
TRANSCODER_A,
|
|
TRANSCODER_B,
|
|
TRANSCODER_C,
|
|
TRANSCODER_EDP,
|
|
};
|
|
int i;
|
|
|
|
if (INTEL_INFO(dev)->num_pipes == 0)
|
|
return NULL;
|
|
|
|
error = kzalloc(sizeof(*error), GFP_ATOMIC);
|
|
if (error == NULL)
|
|
return NULL;
|
|
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
|
|
error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
|
|
|
|
for_each_pipe(dev_priv, i) {
|
|
error->pipe[i].power_domain_on =
|
|
__intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_PIPE(i));
|
|
if (!error->pipe[i].power_domain_on)
|
|
continue;
|
|
|
|
error->cursor[i].control = I915_READ(CURCNTR(i));
|
|
error->cursor[i].position = I915_READ(CURPOS(i));
|
|
error->cursor[i].base = I915_READ(CURBASE(i));
|
|
|
|
error->plane[i].control = I915_READ(DSPCNTR(i));
|
|
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
|
|
if (INTEL_INFO(dev)->gen <= 3) {
|
|
error->plane[i].size = I915_READ(DSPSIZE(i));
|
|
error->plane[i].pos = I915_READ(DSPPOS(i));
|
|
}
|
|
if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
|
|
error->plane[i].addr = I915_READ(DSPADDR(i));
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
error->plane[i].surface = I915_READ(DSPSURF(i));
|
|
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
|
|
}
|
|
|
|
error->pipe[i].source = I915_READ(PIPESRC(i));
|
|
|
|
if (HAS_GMCH_DISPLAY(dev))
|
|
error->pipe[i].stat = I915_READ(PIPESTAT(i));
|
|
}
|
|
|
|
error->num_transcoders = INTEL_INFO(dev)->num_pipes;
|
|
if (HAS_DDI(dev_priv->dev))
|
|
error->num_transcoders++; /* Account for eDP. */
|
|
|
|
for (i = 0; i < error->num_transcoders; i++) {
|
|
enum transcoder cpu_transcoder = transcoders[i];
|
|
|
|
error->transcoder[i].power_domain_on =
|
|
__intel_display_power_is_enabled(dev_priv,
|
|
POWER_DOMAIN_TRANSCODER(cpu_transcoder));
|
|
if (!error->transcoder[i].power_domain_on)
|
|
continue;
|
|
|
|
error->transcoder[i].cpu_transcoder = cpu_transcoder;
|
|
|
|
error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
|
|
error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
|
|
error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
|
|
error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
|
|
error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
|
|
error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
|
|
error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
|
|
|
|
void
|
|
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
|
|
struct drm_device *dev,
|
|
struct intel_display_error_state *error)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
if (!error)
|
|
return;
|
|
|
|
err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
|
|
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
|
|
err_printf(m, "PWR_WELL_CTL2: %08x\n",
|
|
error->power_well_driver);
|
|
for_each_pipe(dev_priv, i) {
|
|
err_printf(m, "Pipe [%d]:\n", i);
|
|
err_printf(m, " Power: %s\n",
|
|
error->pipe[i].power_domain_on ? "on" : "off");
|
|
err_printf(m, " SRC: %08x\n", error->pipe[i].source);
|
|
err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
|
|
|
|
err_printf(m, "Plane [%d]:\n", i);
|
|
err_printf(m, " CNTR: %08x\n", error->plane[i].control);
|
|
err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
|
|
if (INTEL_INFO(dev)->gen <= 3) {
|
|
err_printf(m, " SIZE: %08x\n", error->plane[i].size);
|
|
err_printf(m, " POS: %08x\n", error->plane[i].pos);
|
|
}
|
|
if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
|
|
err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
|
err_printf(m, " SURF: %08x\n", error->plane[i].surface);
|
|
err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
|
|
}
|
|
|
|
err_printf(m, "Cursor [%d]:\n", i);
|
|
err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
|
|
err_printf(m, " POS: %08x\n", error->cursor[i].position);
|
|
err_printf(m, " BASE: %08x\n", error->cursor[i].base);
|
|
}
|
|
|
|
for (i = 0; i < error->num_transcoders; i++) {
|
|
err_printf(m, "CPU transcoder: %c\n",
|
|
transcoder_name(error->transcoder[i].cpu_transcoder));
|
|
err_printf(m, " Power: %s\n",
|
|
error->transcoder[i].power_domain_on ? "on" : "off");
|
|
err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
|
|
err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
|
|
err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
|
|
err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
|
|
err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
|
|
err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
|
|
err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
struct intel_unpin_work *work;
|
|
|
|
spin_lock_irq(&dev->event_lock);
|
|
|
|
work = crtc->unpin_work;
|
|
|
|
if (work && work->event &&
|
|
work->event->base.file_priv == file) {
|
|
kfree(work->event);
|
|
work->event = NULL;
|
|
}
|
|
|
|
spin_unlock_irq(&dev->event_lock);
|
|
}
|
|
}
|