kolibrios-fun/drivers/video/drm/radeon/radeon_object.c

769 lines
20 KiB
C
Raw Normal View History

/*
* Copyright 2009 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
* Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Dave Airlie
*/
#include <linux/list.h>
#include <drm/drmP.h>
#include "radeon_drm.h"
#include "radeon.h"
#include <drm_mm.h>
#include "radeon_object.h"
int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
int pages, u32_t *pagelist);
static struct drm_mm mm_gtt;
static struct drm_mm mm_vram;
int radeon_object_init(struct radeon_device *rdev)
{
int r = 0;
ENTER();
r = drm_mm_init(&mm_vram, 0xC00000 >> PAGE_SHIFT,
((rdev->mc.real_vram_size - 0xC00000) >> PAGE_SHIFT));
if (r) {
DRM_ERROR("Failed initializing VRAM heap.\n");
return r;
};
r = drm_mm_init(&mm_gtt, 0, ((rdev->mc.gtt_size) >> PAGE_SHIFT));
if (r) {
DRM_ERROR("Failed initializing GTT heap.\n");
return r;
}
return r;
// return radeon_ttm_init(rdev);
}
static inline uint32_t radeon_object_flags_from_domain(uint32_t domain)
{
uint32_t flags = 0;
if (domain & RADEON_GEM_DOMAIN_VRAM) {
flags |= TTM_PL_FLAG_VRAM;
}
if (domain & RADEON_GEM_DOMAIN_GTT) {
flags |= TTM_PL_FLAG_TT;
}
if (domain & RADEON_GEM_DOMAIN_CPU) {
flags |= TTM_PL_FLAG_SYSTEM;
}
if (!flags) {
flags |= TTM_PL_FLAG_SYSTEM;
}
return flags;
}
int radeon_object_create(struct radeon_device *rdev,
struct drm_gem_object *gobj,
unsigned long size,
bool kernel,
uint32_t domain,
bool interruptible,
struct radeon_object **robj_ptr)
{
struct radeon_object *robj;
enum ttm_bo_type type;
uint32_t flags;
int r;
if (kernel) {
type = ttm_bo_type_kernel;
} else {
type = ttm_bo_type_device;
}
*robj_ptr = NULL;
robj = kzalloc(sizeof(struct radeon_object), GFP_KERNEL);
if (robj == NULL) {
return -ENOMEM;
}
robj->rdev = rdev;
// robj->gobj = gobj;
INIT_LIST_HEAD(&robj->list);
flags = radeon_object_flags_from_domain(domain);
robj->flags = flags;
if( flags & TTM_PL_FLAG_VRAM)
{
size_t num_pages;
struct drm_mm_node *vm_node;
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
dbgprintf("Illegal buffer object size.\n");
return -EINVAL;
}
retry_pre_get:
r = drm_mm_pre_get(&mm_vram);
if (unlikely(r != 0))
return r;
vm_node = drm_mm_search_free(&mm_vram, num_pages, 0, 0);
if (unlikely(vm_node == NULL)) {
r = -ENOMEM;
return r;
}
robj->mm_node = drm_mm_get_block_atomic(vm_node, num_pages, 0);
if (unlikely(robj->mm_node == NULL)) {
goto retry_pre_get;
}
robj->vm_addr = ((uint32_t)robj->mm_node->start);
// dbgprintf("alloc vram: base %x size %x\n",
// robj->vm_addr << PAGE_SHIFT, num_pages << PAGE_SHIFT);
};
if( flags & TTM_PL_FLAG_TT)
{
size_t num_pages;
struct drm_mm_node *vm_node;
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
dbgprintf("Illegal buffer object size.\n");
return -EINVAL;
}
retry_pre_get1:
r = drm_mm_pre_get(&mm_gtt);
if (unlikely(r != 0))
return r;
vm_node = drm_mm_search_free(&mm_gtt, num_pages, 0, 0);
if (unlikely(vm_node == NULL)) {
r = -ENOMEM;
return r;
}
robj->mm_node = drm_mm_get_block_atomic(vm_node, num_pages, 0);
if (unlikely(robj->mm_node == NULL)) {
goto retry_pre_get1;
}
robj->vm_addr = ((uint32_t)robj->mm_node->start) ;
// dbgprintf("alloc gtt: base %x size %x\n",
// robj->vm_addr << PAGE_SHIFT, num_pages << PAGE_SHIFT);
};
// r = ttm_buffer_object_init(&rdev->mman.bdev, &robj->tobj, size, type, flags,
// 0, 0, false, NULL, size,
// &radeon_ttm_object_object_destroy);
if (unlikely(r != 0)) {
/* ttm call radeon_ttm_object_object_destroy if error happen */
DRM_ERROR("Failed to allocate TTM object (%ld, 0x%08X, %u)\n",
size, flags, 0);
return r;
}
*robj_ptr = robj;
// if (gobj) {
// list_add_tail(&robj->list, &rdev->gem.objects);
// }
return 0;
}
#define page_tabs 0xFDC00000
int radeon_object_pin(struct radeon_object *robj, uint32_t domain,
uint64_t *gpu_addr)
{
uint32_t flags;
uint32_t tmp;
int r = 0;
// flags = radeon_object_flags_from_domain(domain);
// spin_lock(&robj->tobj.lock);
if (robj->pin_count) {
robj->pin_count++;
if (gpu_addr != NULL) {
*gpu_addr = robj->gpu_addr;
}
// spin_unlock(&robj->tobj.lock);
return 0;
}
// spin_unlock(&robj->tobj.lock);
// r = radeon_object_reserve(robj, false);
// if (unlikely(r != 0)) {
// DRM_ERROR("radeon: failed to reserve object for pinning it.\n");
// return r;
// }
// tmp = robj->tobj.mem.placement;
// ttm_flag_masked(&tmp, flags, TTM_PL_MASK_MEM);
// robj->tobj.proposed_placement = tmp | TTM_PL_FLAG_NO_EVICT | TTM_PL_MASK_CACHING;
// r = ttm_buffer_object_validate(&robj->tobj,
// robj->tobj.proposed_placement,
// false, false);
robj->gpu_addr = ((u64)robj->vm_addr) << PAGE_SHIFT;
if(robj->flags & TTM_PL_FLAG_VRAM)
robj->gpu_addr += (u64)robj->rdev->mc.vram_location;
else if (robj->flags & TTM_PL_FLAG_TT)
{
u32_t *pagelist;
robj->kptr = KernelAlloc( robj->mm_node->size << PAGE_SHIFT );
dbgprintf("kernel alloc %x\n", robj->kptr );
pagelist = &((u32_t*)page_tabs)[(u32_t)robj->kptr >> 12];
dbgprintf("pagelist %x\n", pagelist);
radeon_gart_bind(robj->rdev, robj->gpu_addr,
robj->mm_node->size, pagelist);
robj->gpu_addr += (u64)robj->rdev->mc.gtt_location;
}
else
{
DRM_ERROR("Unknown placement %d\n", robj->flags);
robj->gpu_addr = 0xFFFFFFFFFFFFFFFFULL;
r = -1;
};
// flags & TTM_PL_FLAG_VRAM
if (gpu_addr != NULL) {
*gpu_addr = robj->gpu_addr;
}
robj->pin_count = 1;
if (unlikely(r != 0)) {
DRM_ERROR("radeon: failed to pin object.\n");
}
return r;
}
int radeon_object_kmap(struct radeon_object *robj, void **ptr)
{
int r = 0;
// spin_lock(&robj->tobj.lock);
if (robj->kptr) {
if (ptr) {
*ptr = robj->kptr;
}
// spin_unlock(&robj->tobj.lock);
return 0;
}
// spin_unlock(&robj->tobj.lock);
if(robj->flags & TTM_PL_FLAG_VRAM)
{
robj->cpu_addr = robj->rdev->mc.aper_base +
(robj->vm_addr << PAGE_SHIFT);
robj->kptr = (void*)MapIoMem(robj->cpu_addr,
robj->mm_node->size << 12, PG_SW);
}
else
{
return -1;
}
if (ptr) {
*ptr = robj->kptr;
}
return 0;
}
void radeon_object_kunmap(struct radeon_object *robj)
{
// spin_lock(&robj->tobj.lock);
if (robj->kptr == NULL) {
// spin_unlock(&robj->tobj.lock);
return;
}
if (robj->flags & TTM_PL_FLAG_VRAM)
{
FreeKernelSpace(robj->kptr);
robj->kptr = NULL;
}
// spin_unlock(&robj->tobj.lock);
}
void radeon_object_unpin(struct radeon_object *robj)
{
uint32_t flags;
int r;
// spin_lock(&robj->tobj.lock);
if (!robj->pin_count) {
// spin_unlock(&robj->tobj.lock);
printk(KERN_WARNING "Unpin not necessary for %p !\n", robj);
return;
}
robj->pin_count--;
if (robj->pin_count) {
// spin_unlock(&robj->tobj.lock);
return;
}
// spin_unlock(&robj->tobj.lock);
drm_mm_put_block(robj->mm_node);
kfree(robj);
}
#if 0
/*
* To exclude mutual BO access we rely on bo_reserve exclusion, as all
* function are calling it.
*/
static int radeon_object_reserve(struct radeon_object *robj, bool interruptible)
{
return ttm_bo_reserve(&robj->tobj, interruptible, false, false, 0);
}
static void radeon_object_unreserve(struct radeon_object *robj)
{
ttm_bo_unreserve(&robj->tobj);
}
static void radeon_ttm_object_object_destroy(struct ttm_buffer_object *tobj)
{
struct radeon_object *robj;
robj = container_of(tobj, struct radeon_object, tobj);
// list_del_init(&robj->list);
kfree(robj);
}
static inline void radeon_object_gpu_addr(struct radeon_object *robj)
{
/* Default gpu address */
robj->gpu_addr = 0xFFFFFFFFFFFFFFFFULL;
if (robj->tobj.mem.mm_node == NULL) {
return;
}
robj->gpu_addr = ((u64)robj->tobj.mem.mm_node->start) << PAGE_SHIFT;
switch (robj->tobj.mem.mem_type) {
case TTM_PL_VRAM:
robj->gpu_addr += (u64)robj->rdev->mc.vram_location;
break;
case TTM_PL_TT:
robj->gpu_addr += (u64)robj->rdev->mc.gtt_location;
break;
default:
DRM_ERROR("Unknown placement %d\n", robj->tobj.mem.mem_type);
robj->gpu_addr = 0xFFFFFFFFFFFFFFFFULL;
return;
}
}
int radeon_object_create(struct radeon_device *rdev,
struct drm_gem_object *gobj,
unsigned long size,
bool kernel,
uint32_t domain,
bool interruptible,
struct radeon_object **robj_ptr)
{
struct radeon_object *robj;
enum ttm_bo_type type;
uint32_t flags;
int r;
// if (unlikely(rdev->mman.bdev.dev_mapping == NULL)) {
// rdev->mman.bdev.dev_mapping = rdev->ddev->dev_mapping;
// }
if (kernel) {
type = ttm_bo_type_kernel;
} else {
type = ttm_bo_type_device;
}
*robj_ptr = NULL;
robj = kzalloc(sizeof(struct radeon_object), GFP_KERNEL);
if (robj == NULL) {
return -ENOMEM;
}
robj->rdev = rdev;
robj->gobj = gobj;
// INIT_LIST_HEAD(&robj->list);
flags = radeon_object_flags_from_domain(domain);
// r = ttm_buffer_object_init(&rdev->mman.bdev, &robj->tobj, size, type, flags,
// 0, 0, false, NULL, size,
// &radeon_ttm_object_object_destroy);
if (unlikely(r != 0)) {
/* ttm call radeon_ttm_object_object_destroy if error happen */
DRM_ERROR("Failed to allocate TTM object (%ld, 0x%08X, %u)\n",
size, flags, 0);
return r;
}
*robj_ptr = robj;
// if (gobj) {
// list_add_tail(&robj->list, &rdev->gem.objects);
// }
return 0;
}
int radeon_object_kmap(struct radeon_object *robj, void **ptr)
{
int r;
// spin_lock(&robj->tobj.lock);
if (robj->kptr) {
if (ptr) {
*ptr = robj->kptr;
}
// spin_unlock(&robj->tobj.lock);
return 0;
}
// spin_unlock(&robj->tobj.lock);
r = ttm_bo_kmap(&robj->tobj, 0, robj->tobj.num_pages, &robj->kmap);
if (r) {
return r;
}
// spin_lock(&robj->tobj.lock);
robj->kptr = ttm_kmap_obj_virtual(&robj->kmap, &robj->is_iomem);
// spin_unlock(&robj->tobj.lock);
if (ptr) {
*ptr = robj->kptr;
}
return 0;
}
void radeon_object_kunmap(struct radeon_object *robj)
{
// spin_lock(&robj->tobj.lock);
if (robj->kptr == NULL) {
// spin_unlock(&robj->tobj.lock);
return;
}
robj->kptr = NULL;
// spin_unlock(&robj->tobj.lock);
ttm_bo_kunmap(&robj->kmap);
}
void radeon_object_unref(struct radeon_object **robj)
{
struct ttm_buffer_object *tobj;
if ((*robj) == NULL) {
return;
}
tobj = &((*robj)->tobj);
ttm_bo_unref(&tobj);
if (tobj == NULL) {
*robj = NULL;
}
}
int radeon_object_mmap(struct radeon_object *robj, uint64_t *offset)
{
*offset = robj->tobj.addr_space_offset;
return 0;
}
int radeon_object_pin(struct radeon_object *robj, uint32_t domain,
uint64_t *gpu_addr)
{
uint32_t flags;
uint32_t tmp;
int r;
flags = radeon_object_flags_from_domain(domain);
// spin_lock(&robj->tobj.lock);
if (robj->pin_count) {
robj->pin_count++;
if (gpu_addr != NULL) {
*gpu_addr = robj->gpu_addr;
}
// spin_unlock(&robj->tobj.lock);
return 0;
}
// spin_unlock(&robj->tobj.lock);
r = radeon_object_reserve(robj, false);
if (unlikely(r != 0)) {
DRM_ERROR("radeon: failed to reserve object for pinning it.\n");
return r;
}
tmp = robj->tobj.mem.placement;
ttm_flag_masked(&tmp, flags, TTM_PL_MASK_MEM);
robj->tobj.proposed_placement = tmp | TTM_PL_FLAG_NO_EVICT | TTM_PL_MASK_CACHING;
r = ttm_buffer_object_validate(&robj->tobj,
robj->tobj.proposed_placement,
false, false);
radeon_object_gpu_addr(robj);
if (gpu_addr != NULL) {
*gpu_addr = robj->gpu_addr;
}
robj->pin_count = 1;
if (unlikely(r != 0)) {
DRM_ERROR("radeon: failed to pin object.\n");
}
radeon_object_unreserve(robj);
return r;
}
void radeon_object_unpin(struct radeon_object *robj)
{
uint32_t flags;
int r;
// spin_lock(&robj->tobj.lock);
if (!robj->pin_count) {
// spin_unlock(&robj->tobj.lock);
printk(KERN_WARNING "Unpin not necessary for %p !\n", robj);
return;
}
robj->pin_count--;
if (robj->pin_count) {
// spin_unlock(&robj->tobj.lock);
return;
}
// spin_unlock(&robj->tobj.lock);
r = radeon_object_reserve(robj, false);
if (unlikely(r != 0)) {
DRM_ERROR("radeon: failed to reserve object for unpinning it.\n");
return;
}
flags = robj->tobj.mem.placement;
robj->tobj.proposed_placement = flags & ~TTM_PL_FLAG_NO_EVICT;
r = ttm_buffer_object_validate(&robj->tobj,
robj->tobj.proposed_placement,
false, false);
if (unlikely(r != 0)) {
DRM_ERROR("radeon: failed to unpin buffer.\n");
}
radeon_object_unreserve(robj);
}
int radeon_object_wait(struct radeon_object *robj)
{
int r = 0;
/* FIXME: should use block reservation instead */
r = radeon_object_reserve(robj, true);
if (unlikely(r != 0)) {
DRM_ERROR("radeon: failed to reserve object for waiting.\n");
return r;
}
// spin_lock(&robj->tobj.lock);
if (robj->tobj.sync_obj) {
r = ttm_bo_wait(&robj->tobj, true, false, false);
}
// spin_unlock(&robj->tobj.lock);
radeon_object_unreserve(robj);
return r;
}
int radeon_object_evict_vram(struct radeon_device *rdev)
{
if (rdev->flags & RADEON_IS_IGP) {
/* Useless to evict on IGP chips */
return 0;
}
return ttm_bo_evict_mm(&rdev->mman.bdev, TTM_PL_VRAM);
}
void radeon_object_force_delete(struct radeon_device *rdev)
{
struct radeon_object *robj, *n;
struct drm_gem_object *gobj;
if (list_empty(&rdev->gem.objects)) {
return;
}
DRM_ERROR("Userspace still has active objects !\n");
list_for_each_entry_safe(robj, n, &rdev->gem.objects, list) {
mutex_lock(&rdev->ddev->struct_mutex);
gobj = robj->gobj;
DRM_ERROR("Force free for (%p,%p,%lu,%lu)\n",
gobj, robj, (unsigned long)gobj->size,
*((unsigned long *)&gobj->refcount));
list_del_init(&robj->list);
radeon_object_unref(&robj);
gobj->driver_private = NULL;
drm_gem_object_unreference(gobj);
mutex_unlock(&rdev->ddev->struct_mutex);
}
}
void radeon_object_fini(struct radeon_device *rdev)
{
radeon_ttm_fini(rdev);
}
void radeon_object_list_add_object(struct radeon_object_list *lobj,
struct list_head *head)
{
if (lobj->wdomain) {
list_add(&lobj->list, head);
} else {
list_add_tail(&lobj->list, head);
}
}
int radeon_object_list_reserve(struct list_head *head)
{
struct radeon_object_list *lobj;
struct list_head *i;
int r;
list_for_each(i, head) {
lobj = list_entry(i, struct radeon_object_list, list);
if (!lobj->robj->pin_count) {
r = radeon_object_reserve(lobj->robj, true);
if (unlikely(r != 0)) {
DRM_ERROR("radeon: failed to reserve object.\n");
return r;
}
} else {
}
}
return 0;
}
void radeon_object_list_unreserve(struct list_head *head)
{
struct radeon_object_list *lobj;
struct list_head *i;
list_for_each(i, head) {
lobj = list_entry(i, struct radeon_object_list, list);
if (!lobj->robj->pin_count) {
radeon_object_unreserve(lobj->robj);
} else {
}
}
}
int radeon_object_list_validate(struct list_head *head, void *fence)
{
struct radeon_object_list *lobj;
struct radeon_object *robj;
struct radeon_fence *old_fence = NULL;
struct list_head *i;
uint32_t flags;
int r;
r = radeon_object_list_reserve(head);
if (unlikely(r != 0)) {
radeon_object_list_unreserve(head);
return r;
}
list_for_each(i, head) {
lobj = list_entry(i, struct radeon_object_list, list);
robj = lobj->robj;
if (lobj->wdomain) {
flags = radeon_object_flags_from_domain(lobj->wdomain);
flags |= TTM_PL_FLAG_TT;
} else {
flags = radeon_object_flags_from_domain(lobj->rdomain);
flags |= TTM_PL_FLAG_TT;
flags |= TTM_PL_FLAG_VRAM;
}
if (!robj->pin_count) {
robj->tobj.proposed_placement = flags | TTM_PL_MASK_CACHING;
r = ttm_buffer_object_validate(&robj->tobj,
robj->tobj.proposed_placement,
true, false);
if (unlikely(r)) {
radeon_object_list_unreserve(head);
DRM_ERROR("radeon: failed to validate.\n");
return r;
}
radeon_object_gpu_addr(robj);
}
lobj->gpu_offset = robj->gpu_addr;
if (fence) {
old_fence = (struct radeon_fence *)robj->tobj.sync_obj;
robj->tobj.sync_obj = radeon_fence_ref(fence);
robj->tobj.sync_obj_arg = NULL;
}
if (old_fence) {
radeon_fence_unref(&old_fence);
}
}
return 0;
}
void radeon_object_list_unvalidate(struct list_head *head)
{
struct radeon_object_list *lobj;
struct radeon_fence *old_fence = NULL;
struct list_head *i;
list_for_each(i, head) {
lobj = list_entry(i, struct radeon_object_list, list);
old_fence = (struct radeon_fence *)lobj->robj->tobj.sync_obj;
lobj->robj->tobj.sync_obj = NULL;
if (old_fence) {
radeon_fence_unref(&old_fence);
}
}
radeon_object_list_unreserve(head);
}
void radeon_object_list_clean(struct list_head *head)
{
radeon_object_list_unreserve(head);
}
int radeon_object_fbdev_mmap(struct radeon_object *robj,
struct vm_area_struct *vma)
{
return ttm_fbdev_mmap(vma, &robj->tobj);
}
#endif
unsigned long radeon_object_size(struct radeon_object *robj)
{
return robj->tobj.num_pages << PAGE_SHIFT;
}