kolibrios-fun/contrib/sdk/sources/Intel-2D/sna/kgem_debug.c

425 lines
12 KiB
C
Raw Normal View History

/*
* Copyright © 2007-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
//#include <sys/mman.h>
#include <assert.h>
#include "sna.h"
#include "sna_reg.h"
#include "kgem_debug.h"
struct drm_i915_gem_relocation_entry *
kgem_debug_get_reloc_entry(struct kgem *kgem, uint32_t offset)
{
int i;
offset *= sizeof(uint32_t);
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == offset)
return kgem->reloc+i;
assert(!"valid relocation entry, unknown batch offset");
return NULL;
}
struct kgem_bo *
kgem_debug_get_bo_for_reloc_entry(struct kgem *kgem,
struct drm_i915_gem_relocation_entry *reloc)
{
struct kgem_bo *bo;
if (reloc == NULL)
return NULL;
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->target_handle == reloc->target_handle && bo->proxy == NULL)
break;
assert(&bo->request != &kgem->next_request->buffers);
return bo;
}
static int kgem_debug_handle_is_fenced(struct kgem *kgem, uint32_t handle)
{
int i;
if (kgem->has_handle_lut)
return kgem->exec[handle].flags & EXEC_OBJECT_NEEDS_FENCE;
for (i = 0; i < kgem->nexec; i++)
if (kgem->exec[i].handle == handle)
return kgem->exec[i].flags & EXEC_OBJECT_NEEDS_FENCE;
return 0;
}
static int kgem_debug_handle_tiling(struct kgem *kgem, uint32_t handle)
{
struct kgem_bo *bo;
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->target_handle == handle)
return bo->tiling;
return 0;
}
void
kgem_debug_print(const uint32_t *data,
uint32_t offset, unsigned int index,
const char *fmt, ...)
{
va_list va;
char buf[240];
int len;
len = snprintf(buf, sizeof(buf),
"0x%08x: 0x%08x: %s",
(offset + index) * 4,
data[index],
index == 0 ? "" : " ");
va_start(va, fmt);
vsnprintf(buf + len, sizeof(buf) - len, fmt, va);
va_end(va);
ErrorF("%s", buf);
delay(1);
}
static int
decode_nop(struct kgem *kgem, uint32_t offset)
{
uint32_t *data = kgem->batch + offset;
kgem_debug_print(data, offset, 0, "UNKNOWN\n");
assert(0);
return 1;
}
static int
decode_mi(struct kgem *kgem, uint32_t offset)
{
static const struct {
uint32_t opcode;
int len_mask;
int min_len;
int max_len;
const char *name;
} opcodes[] = {
{ 0x08, 0, 1, 1, "MI_ARB_ON_OFF" },
{ 0x0a, 0, 1, 1, "MI_BATCH_BUFFER_END" },
{ 0x30, 0x3f, 3, 3, "MI_BATCH_BUFFER" },
{ 0x31, 0x3f, 2, 2, "MI_BATCH_BUFFER_START" },
{ 0x14, 0x3f, 3, 3, "MI_DISPLAY_BUFFER_INFO" },
{ 0x04, 0, 1, 1, "MI_FLUSH" },
{ 0x22, 0x1f, 3, 3, "MI_LOAD_REGISTER_IMM" },
{ 0x13, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" },
{ 0x12, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_INCL" },
{ 0x00, 0, 1, 1, "MI_NOOP" },
{ 0x11, 0x3f, 2, 2, "MI_OVERLAY_FLIP" },
{ 0x07, 0, 1, 1, "MI_REPORT_HEAD" },
{ 0x18, 0x3f, 2, 2, "MI_SET_CONTEXT" },
{ 0x20, 0x3f, 3, 4, "MI_STORE_DATA_IMM" },
{ 0x21, 0x3f, 3, 4, "MI_STORE_DATA_INDEX" },
{ 0x24, 0x3f, 3, 3, "MI_STORE_REGISTER_MEM" },
{ 0x02, 0, 1, 1, "MI_USER_INTERRUPT" },
{ 0x03, 0, 1, 1, "MI_WAIT_FOR_EVENT" },
{ 0x16, 0x7f, 3, 3, "MI_SEMAPHORE_MBOX" },
{ 0x26, 0x1f, 3, 4, "MI_FLUSH_DW" },
{ 0x0b, 0, 1, 1, "MI_SUSPEND_FLUSH" },
};
uint32_t *data = kgem->batch + offset;
int op;
for (op = 0; op < ARRAY_SIZE(opcodes); op++) {
if ((data[0] & 0x1f800000) >> 23 == opcodes[op].opcode) {
unsigned int len = 1, i;
kgem_debug_print(data, offset, 0, "%s\n", opcodes[op].name);
if (opcodes[op].max_len > 1) {
len = (data[0] & opcodes[op].len_mask) + 2;
if (len < opcodes[op].min_len ||
len > opcodes[op].max_len)
{
ErrorF("Bad length (%d) in %s, [%d, %d]\n",
len, opcodes[op].name,
opcodes[op].min_len,
opcodes[op].max_len);
assert(0);
}
}
for (i = 1; i < len; i++)
kgem_debug_print(data, offset, i, "dword %d\n", i);
return len;
}
}
kgem_debug_print(data, offset, 0, "MI UNKNOWN\n");
assert(0);
return 1;
}
static int
decode_2d(struct kgem *kgem, uint32_t offset)
{
static const struct {
uint32_t opcode;
int min_len;
int max_len;
const char *name;
} opcodes[] = {
{ 0x40, 5, 5, "COLOR_BLT" },
{ 0x43, 6, 6, "SRC_COPY_BLT" },
{ 0x01, 8, 8, "XY_SETUP_BLT" },
{ 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" },
{ 0x03, 3, 3, "XY_SETUP_CLIP_BLT" },
{ 0x24, 2, 2, "XY_PIXEL_BLT" },
{ 0x25, 3, 3, "XY_SCANLINES_BLT" },
{ 0x26, 4, 4, "Y_TEXT_BLT" },
{ 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" },
{ 0x50, 6, 6, "XY_COLOR_BLT" },
{ 0x51, 6, 6, "XY_PAT_BLT" },
{ 0x76, 8, 8, "XY_PAT_CHROMA_BLT" },
{ 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" },
{ 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" },
{ 0x52, 9, 9, "XY_MONO_PAT_BLT" },
{ 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" },
{ 0x53, 8, 8, "XY_SRC_COPY_BLT" },
{ 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" },
{ 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" },
{ 0x55, 9, 9, "XY_FULL_BLT" },
{ 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" },
{ 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" },
{ 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" },
{ 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" },
{ 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" },
};
unsigned int op, len;
const char *format = NULL;
uint32_t *data = kgem->batch + offset;
struct drm_i915_gem_relocation_entry *reloc;
/* Special case the two most common ops that we detail in full */
switch ((data[0] & 0x1fc00000) >> 22) {
case 0x50:
kgem_debug_print(data, offset, 0,
"XY_COLOR_BLT (rgb %sabled, alpha %sabled, dst tile %d)\n",
(data[0] & (1 << 20)) ? "en" : "dis",
(data[0] & (1 << 21)) ? "en" : "dis",
(data[0] >> 11) & 1);
len = (data[0] & 0x000000ff) + 2;
assert(len == 6);
switch ((data[1] >> 24) & 0x3) {
case 0:
format="8";
break;
case 1:
format="565";
break;
case 2:
format="1555";
break;
case 3:
format="8888";
break;
}
kgem_debug_print(data, offset, 1, "format %s, rop %x, pitch %d, "
"clipping %sabled\n", format,
(data[1] >> 16) & 0xff,
(short)(data[1] & 0xffff),
data[1] & (1 << 30) ? "en" : "dis");
kgem_debug_print(data, offset, 2, "(%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
kgem_debug_print(data, offset, 3, "(%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
reloc = kgem_debug_get_reloc_entry(kgem, offset+4);
kgem_debug_print(data, offset, 4, "dst offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n",
data[4],
reloc->target_handle, reloc->delta,
reloc->read_domains, reloc->write_domain,
kgem_debug_handle_is_fenced(kgem, reloc->target_handle),
kgem_debug_handle_tiling(kgem, reloc->target_handle));
kgem_debug_print(data, offset, 5, "color\n");
assert(kgem->gen >= 040 ||
kgem_debug_handle_is_fenced(kgem, reloc->target_handle));
return len;
case 0x53:
kgem_debug_print(data, offset, 0,
"XY_SRC_COPY_BLT (rgb %sabled, alpha %sabled, "
"src tile %d, dst tile %d)\n",
(data[0] & (1 << 20)) ? "en" : "dis",
(data[0] & (1 << 21)) ? "en" : "dis",
(data[0] >> 15) & 1,
(data[0] >> 11) & 1);
len = (data[0] & 0x000000ff) + 2;
assert(len == 8);
switch ((data[1] >> 24) & 0x3) {
case 0:
format="8";
break;
case 1:
format="565";
break;
case 2:
format="1555";
break;
case 3:
format="8888";
break;
}
kgem_debug_print(data, offset, 1, "format %s, rop %x, dst pitch %d, "
"clipping %sabled\n", format,
(data[1] >> 16) & 0xff,
(short)(data[1] & 0xffff),
data[1] & (1 << 30) ? "en" : "dis");
kgem_debug_print(data, offset, 2, "dst (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
kgem_debug_print(data, offset, 3, "dst (%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
reloc = kgem_debug_get_reloc_entry(kgem, offset+4);
assert(reloc);
kgem_debug_print(data, offset, 4, "dst offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x, (fenced? %d, tiling? %d)]\n",
data[4],
reloc->target_handle, reloc->delta,
reloc->read_domains, reloc->write_domain,
kgem_debug_handle_is_fenced(kgem, reloc->target_handle),
kgem_debug_handle_tiling(kgem, reloc->target_handle));
assert(kgem->gen >= 040 ||
kgem_debug_handle_is_fenced(kgem, reloc->target_handle));
kgem_debug_print(data, offset, 5, "src (%d,%d)\n",
data[5] & 0xffff, data[5] >> 16);
kgem_debug_print(data, offset, 6, "src pitch %d\n",
(short)(data[6] & 0xffff));
reloc = kgem_debug_get_reloc_entry(kgem, offset+7);
assert(reloc);
kgem_debug_print(data, offset, 7, "src offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n",
data[7],
reloc->target_handle, reloc->delta,
reloc->read_domains, reloc->write_domain,
kgem_debug_handle_is_fenced(kgem, reloc->target_handle),
kgem_debug_handle_tiling(kgem, reloc->target_handle));
assert(kgem->gen >= 040 ||
kgem_debug_handle_is_fenced(kgem, reloc->target_handle));
return len;
}
for (op = 0; op < ARRAY_SIZE(opcodes); op++) {
if ((data[0] & 0x1fc00000) >> 22 == opcodes[op].opcode) {
unsigned int i;
len = 1;
kgem_debug_print(data, offset, 0, "%s\n", opcodes[op].name);
if (opcodes[op].max_len > 1) {
len = (data[0] & 0x000000ff) + 2;
assert(len >= opcodes[op].min_len &&
len <= opcodes[op].max_len);
}
for (i = 1; i < len; i++)
kgem_debug_print(data, offset, i, "dword %d\n", i);
return len;
}
}
kgem_debug_print(data, offset, 0, "2D UNKNOWN\n");
assert(0);
return 1;
}
static int (*decode_3d(int gen))(struct kgem*, uint32_t)
{
if (gen >= 0100) {
} else if (gen >= 070) {
return kgem_gen7_decode_3d;
} else if (gen >= 060) {
return kgem_gen6_decode_3d;
} else if (gen >= 050) {
return kgem_gen5_decode_3d;
} else if (gen >= 040) {
return kgem_gen4_decode_3d;
} else if (gen >= 030) {
return kgem_gen3_decode_3d;
}
assert(0);
}
static void (*finish_state(int gen))(struct kgem*)
{
if (gen >= 0100) {
} else if (gen >= 070) {
return kgem_gen7_finish_state;
} else if (gen >= 060) {
return kgem_gen6_finish_state;
} else if (gen >= 050) {
return kgem_gen5_finish_state;
} else if (gen >= 040) {
return kgem_gen4_finish_state;
} else if (gen >= 030) {
return kgem_gen3_finish_state;
}
assert(0);
}
void __kgem_batch_debug(struct kgem *kgem, uint32_t nbatch)
{
int (*const decode[])(struct kgem *, uint32_t) = {
decode_mi,
decode_nop,
decode_2d,
decode_3d(kgem->gen),
};
uint32_t offset = 0;
while (offset < nbatch) {
int class = (kgem->batch[offset] & 0xe0000000) >> 29;
assert(class < ARRAY_SIZE(decode));
offset += decode[class](kgem, offset);
}
finish_state(kgem->gen)(kgem);
}