kolibrios-fun/drivers/video/Intel-2D/gen4_vertex.c

305 lines
10 KiB
C
Raw Normal View History

/*
* Copyright <EFBFBD> 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sna.h"
#include "sna_render.h"
#include "sna_render_inline.h"
#include "gen4_vertex.h"
void gen4_vertex_flush(struct sna *sna)
{
DBG(("%s[%x] = %d\n", __FUNCTION__,
4*sna->render.vertex_offset,
sna->render.vertex_index - sna->render.vertex_start));
assert(sna->render.vertex_offset);
assert(sna->render.vertex_index > sna->render.vertex_start);
sna->kgem.batch[sna->render.vertex_offset] =
sna->render.vertex_index - sna->render.vertex_start;
sna->render.vertex_offset = 0;
}
int gen4_vertex_finish(struct sna *sna)
{
struct kgem_bo *bo;
unsigned int i;
unsigned hint, size;
DBG(("%s: used=%d / %d\n", __FUNCTION__,
sna->render.vertex_used, sna->render.vertex_size));
assert(sna->render.vertex_offset == 0);
assert(sna->render.vertex_used);
sna_vertex_wait__locked(&sna->render);
/* Note: we only need dword alignment (currently) */
bo = sna->render.vbo;
if (bo) {
for (i = 0; i < sna->render.nvertex_reloc; i++) {
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
i, sna->render.vertex_reloc[i]));
sna->kgem.batch[sna->render.vertex_reloc[i]] =
kgem_add_reloc(&sna->kgem,
sna->render.vertex_reloc[i], bo,
I915_GEM_DOMAIN_VERTEX << 16,
0);
}
assert(!sna->render.active);
sna->render.nvertex_reloc = 0;
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
sna->render.vbo = NULL;
sna->render.vb_id = 0;
kgem_bo_destroy(&sna->kgem, bo);
}
hint = CREATE_GTT_MAP;
if (bo)
hint |= CREATE_CACHED | CREATE_NO_THROTTLE;
size = 256*1024;
assert(!sna->render.active);
sna->render.vertices = NULL;
sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint);
while (sna->render.vbo == NULL && size > 16*1024) {
size /= 2;
sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint);
}
if (sna->render.vbo == NULL)
sna->render.vbo = kgem_create_linear(&sna->kgem,
256*1024, CREATE_GTT_MAP);
if (sna->render.vbo)
sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo);
if (sna->render.vertices == NULL) {
if (sna->render.vbo) {
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
sna->render.vbo = NULL;
}
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
return 0;
}
if (sna->render.vertex_used) {
DBG(("%s: copying initial buffer x %d to handle=%d\n",
__FUNCTION__,
sna->render.vertex_used,
sna->render.vbo->handle));
assert(sizeof(float)*sna->render.vertex_used <=
__kgem_bo_size(sna->render.vbo));
memcpy(sna->render.vertices,
sna->render.vertex_data,
sizeof(float)*sna->render.vertex_used);
}
size = __kgem_bo_size(sna->render.vbo)/4;
if (size >= UINT16_MAX)
size = UINT16_MAX - 1;
DBG(("%s: create vbo handle=%d, size=%d\n",
__FUNCTION__, sna->render.vbo->handle, size));
sna->render.vertex_size = size;
return sna->render.vertex_size - sna->render.vertex_used;
}
void gen4_vertex_close(struct sna *sna)
{
struct kgem_bo *bo, *free_bo = NULL;
unsigned int i, delta = 0;
assert(sna->render.vertex_offset == 0);
if (!sna->render.vb_id)
return;
DBG(("%s: used=%d, vbo active? %d, vb=%x, nreloc=%d\n",
__FUNCTION__, sna->render.vertex_used, sna->render.vbo ? sna->render.vbo->handle : 0,
sna->render.vb_id, sna->render.nvertex_reloc));
assert(!sna->render.active);
bo = sna->render.vbo;
if (bo) {
if (sna->render.vertex_size - sna->render.vertex_used < 64) {
DBG(("%s: discarding vbo (full), handle=%d\n", __FUNCTION__, sna->render.vbo->handle));
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
} else if (IS_CPU_MAP(bo->map) && !sna->kgem.has_llc) {
DBG(("%s: converting CPU map to GTT\n", __FUNCTION__));
sna->render.vertices =
kgem_bo_map__gtt(&sna->kgem, sna->render.vbo);
if (sna->render.vertices == NULL) {
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
}
}
} else {
if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) {
DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__,
sna->render.vertex_used, sna->kgem.nbatch));
memcpy(sna->kgem.batch + sna->kgem.nbatch,
sna->render.vertex_data,
sna->render.vertex_used * 4);
delta = sna->kgem.nbatch * 4;
bo = NULL;
sna->kgem.nbatch += sna->render.vertex_used;
} else {
bo = kgem_create_linear(&sna->kgem,
4*sna->render.vertex_used,
CREATE_NO_THROTTLE);
if (bo && !kgem_bo_write(&sna->kgem, bo,
sna->render.vertex_data,
4*sna->render.vertex_used)) {
kgem_bo_destroy(&sna->kgem, bo);
bo = NULL;
}
DBG(("%s: new vbo: %d\n", __FUNCTION__,
sna->render.vertex_used));
free_bo = bo;
}
}
assert(sna->render.nvertex_reloc);
for (i = 0; i < sna->render.nvertex_reloc; i++) {
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
i, sna->render.vertex_reloc[i]));
sna->kgem.batch[sna->render.vertex_reloc[i]] =
kgem_add_reloc(&sna->kgem,
sna->render.vertex_reloc[i], bo,
I915_GEM_DOMAIN_VERTEX << 16,
delta);
}
sna->render.nvertex_reloc = 0;
sna->render.vb_id = 0;
if (sna->render.vbo == NULL) {
assert(!sna->render.active);
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
assert(sna->render.vertices == sna->render.vertex_data);
assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data));
}
if (free_bo)
kgem_bo_destroy(&sna->kgem, free_bo);
}
fastcall static void
emit_primitive_identity_source_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float src_x, src_y;
float msk_x, msk_y;
float w, h;
float *v;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
assert(op->floats_per_rect == 15);
assert((sna->render.vertex_used % 5) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 15;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = (src_x + w) * op->src.scale[0];
v[2] = (src_y + h) * op->src.scale[1];
v[3] = (msk_x + w) * op->mask.scale[0];
v[4] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[5] = dst.f;
v[6] = src_x * op->src.scale[0];
v[7] = v[2];
v[8] = msk_x * op->mask.scale[0];
v[9] = v[4];
dst.p.y = r->dst.y;
v[10] = dst.f;
v[11] = v[6];
v[12] = src_y * op->src.scale[1];
v[13] = v[8];
v[14] = msk_y * op->mask.scale[1];
}
unsigned gen4_choose_composite_emitter(struct sna_composite_op *tmp)
{
unsigned vb;
if (tmp->mask.bo) {
if (tmp->mask.transform == NULL) {
if (tmp->src.is_solid) {
DBG(("%s: solid, identity mask\n", __FUNCTION__));
} else if (tmp->src.is_linear) {
DBG(("%s: linear, identity mask\n", __FUNCTION__));
} else if (tmp->src.transform == NULL) {
DBG(("%s: identity source, identity mask\n", __FUNCTION__));
tmp->prim_emit = emit_primitive_identity_source_mask;
tmp->floats_per_vertex = 5;
vb = 2 << 2 | 2;
} else if (tmp->src.is_affine) {
DBG(("%s: simple src, identity mask\n", __FUNCTION__));
} else {
DBG(("%s: projective source, identity mask\n", __FUNCTION__));
}
} else {
DBG(("%s: general mask: floats-per-vertex=%d, vb=%x\n",
__FUNCTION__,tmp->floats_per_vertex, vb));
}
} else {
}
tmp->floats_per_rect = 3 * tmp->floats_per_vertex;
return vb;
}