kolibrios-fun/drivers/video/drm/i915/i915_guc_submission.c

977 lines
27 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <linux/circ_buf.h>
#include "intel_drv.h"
#include "i915_drv.h"
#include "intel_guc.h"
/**
* DOC: GuC Client
*
* i915_guc_client:
* We use the term client to avoid confusion with contexts. A i915_guc_client is
* equivalent to GuC object guc_context_desc. This context descriptor is
* allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
* and workqueue for it. Also the process descriptor (guc_process_desc), which
* is mapped to client space. So the client can write Work Item then ring the
* doorbell.
*
* To simplify the implementation, we allocate one gem object that contains all
* pages for doorbell, process descriptor and workqueue.
*
* The Scratch registers:
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
* triggers an interrupt on the GuC via another register write (0xC4C8).
* Firmware writes a success/fail code back to the action register after
* processes the request. The kernel driver polls waiting for this update and
* then proceeds.
* See host2guc_action()
*
* Doorbells:
* Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
* mapped into process space.
*
* Work Items:
* There are several types of work items that the host may place into a
* workqueue, each with its own requirements and limitations. Currently only
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
* represents in-order queue. The kernel driver packs ring tail pointer and an
* ELSP context descriptor dword into Work Item.
* See guc_add_workqueue_item()
*
*/
/*
* Read GuC command/status register (SOFT_SCRATCH_0)
* Return true if it contains a response rather than a command
*/
static inline bool host2guc_action_response(struct drm_i915_private *dev_priv,
u32 *status)
{
u32 val = I915_READ(SOFT_SCRATCH(0));
*status = val;
return GUC2HOST_IS_RESPONSE(val);
}
static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 status;
int i;
int ret;
if (WARN_ON(len < 1 || len > 15))
return -EINVAL;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
spin_lock(&dev_priv->guc.host2guc_lock);
dev_priv->guc.action_count += 1;
dev_priv->guc.action_cmd = data[0];
for (i = 0; i < len; i++)
I915_WRITE(SOFT_SCRATCH(i), data[i]);
POSTING_READ(SOFT_SCRATCH(i - 1));
I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER);
/* No HOST2GUC command should take longer than 10ms */
ret = wait_for_atomic(host2guc_action_response(dev_priv, &status), 10);
if (status != GUC2HOST_STATUS_SUCCESS) {
/*
* Either the GuC explicitly returned an error (which
* we convert to -EIO here) or no response at all was
* received within the timeout limit (-ETIMEDOUT)
*/
if (ret != -ETIMEDOUT)
ret = -EIO;
DRM_ERROR("GUC: host2guc action 0x%X failed. ret=%d "
"status=0x%08X response=0x%08X\n",
data[0], ret, status,
I915_READ(SOFT_SCRATCH(15)));
dev_priv->guc.action_fail += 1;
dev_priv->guc.action_err = ret;
}
dev_priv->guc.action_status = status;
spin_unlock(&dev_priv->guc.host2guc_lock);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
return ret;
}
/*
* Tell the GuC to allocate or deallocate a specific doorbell
*/
static int host2guc_allocate_doorbell(struct intel_guc *guc,
struct i915_guc_client *client)
{
u32 data[2];
data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL;
data[1] = client->ctx_index;
return host2guc_action(guc, data, 2);
}
static int host2guc_release_doorbell(struct intel_guc *guc,
struct i915_guc_client *client)
{
u32 data[2];
data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL;
data[1] = client->ctx_index;
return host2guc_action(guc, data, 2);
}
static int host2guc_sample_forcewake(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct drm_device *dev = dev_priv->dev;
u32 data[2];
data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE;
/* WaRsDisableCoarsePowerGating:skl,bxt */
if (!intel_enable_rc6(dev_priv->dev) ||
(IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
(IS_SKL_GT3(dev) && (INTEL_REVID(dev) <= SKL_REVID_E0)) ||
(IS_SKL_GT4(dev) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
data[1] = 0;
else
/* bit 0 and 1 are for Render and Media domain separately */
data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
return host2guc_action(guc, data, ARRAY_SIZE(data));
}
/*
* Initialise, update, or clear doorbell data shared with the GuC
*
* These functions modify shared data and so need access to the mapped
* client object which contains the page being used for the doorbell
*/
static void guc_init_doorbell(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct guc_doorbell_info *doorbell;
void *base;
base = kmap_atomic(i915_gem_object_get_page(client->client_obj, 0));
doorbell = base + client->doorbell_offset;
doorbell->db_status = 1;
doorbell->cookie = 0;
kunmap_atomic(base);
}
static int guc_ring_doorbell(struct i915_guc_client *gc)
{
struct guc_process_desc *desc;
union guc_doorbell_qw db_cmp, db_exc, db_ret;
union guc_doorbell_qw *db;
void *base;
int attempt = 2, ret = -EAGAIN;
base = kmap_atomic(i915_gem_object_get_page(gc->client_obj, 0));
desc = base + gc->proc_desc_offset;
/* Update the tail so it is visible to GuC */
desc->tail = gc->wq_tail;
/* current cookie */
db_cmp.db_status = GUC_DOORBELL_ENABLED;
db_cmp.cookie = gc->cookie;
/* cookie to be updated */
db_exc.db_status = GUC_DOORBELL_ENABLED;
db_exc.cookie = gc->cookie + 1;
if (db_exc.cookie == 0)
db_exc.cookie = 1;
/* pointer of current doorbell cacheline */
db = base + gc->doorbell_offset;
while (attempt--) {
/* lets ring the doorbell */
db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
db_cmp.value_qw, db_exc.value_qw);
/* if the exchange was successfully executed */
if (db_ret.value_qw == db_cmp.value_qw) {
/* db was successfully rung */
gc->cookie = db_exc.cookie;
ret = 0;
break;
}
/* XXX: doorbell was lost and need to acquire it again */
if (db_ret.db_status == GUC_DOORBELL_DISABLED)
break;
DRM_ERROR("Cookie mismatch. Expected %d, returned %d\n",
db_cmp.cookie, db_ret.cookie);
/* update the cookie to newly read cookie from GuC */
db_cmp.cookie = db_ret.cookie;
db_exc.cookie = db_ret.cookie + 1;
if (db_exc.cookie == 0)
db_exc.cookie = 1;
}
kunmap_atomic(base);
return ret;
}
static void guc_disable_doorbell(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct guc_doorbell_info *doorbell;
void *base;
int drbreg = GEN8_DRBREGL(client->doorbell_id);
int value;
base = kmap_atomic(i915_gem_object_get_page(client->client_obj, 0));
doorbell = base + client->doorbell_offset;
doorbell->db_status = 0;
kunmap_atomic(base);
I915_WRITE(drbreg, I915_READ(drbreg) & ~GEN8_DRB_VALID);
value = I915_READ(drbreg);
WARN_ON((value & GEN8_DRB_VALID) != 0);
I915_WRITE(GEN8_DRBREGU(client->doorbell_id), 0);
I915_WRITE(drbreg, 0);
/* XXX: wait for any interrupts */
/* XXX: wait for workqueue to drain */
}
/*
* Select, assign and relase doorbell cachelines
*
* These functions track which doorbell cachelines are in use.
* The data they manipulate is protected by the host2guc lock.
*/
static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
{
const uint32_t cacheline_size = cache_line_size();
uint32_t offset;
spin_lock(&guc->host2guc_lock);
/* Doorbell uses a single cache line within a page */
offset = offset_in_page(guc->db_cacheline);
/* Moving to next cache line to reduce contention */
guc->db_cacheline += cacheline_size;
spin_unlock(&guc->host2guc_lock);
DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
offset, guc->db_cacheline, cacheline_size);
return offset;
}
static uint16_t assign_doorbell(struct intel_guc *guc, uint32_t priority)
{
/*
* The bitmap is split into two halves; the first half is used for
* normal priority contexts, the second half for high-priority ones.
* Note that logically higher priorities are numerically less than
* normal ones, so the test below means "is it high-priority?"
*/
const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
const uint16_t half = GUC_MAX_DOORBELLS / 2;
const uint16_t start = hi_pri ? half : 0;
const uint16_t end = start + half;
uint16_t id;
spin_lock(&guc->host2guc_lock);
id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
if (id == end)
id = GUC_INVALID_DOORBELL_ID;
else
bitmap_set(guc->doorbell_bitmap, id, 1);
spin_unlock(&guc->host2guc_lock);
DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
hi_pri ? "high" : "normal", id);
return id;
}
static void release_doorbell(struct intel_guc *guc, uint16_t id)
{
spin_lock(&guc->host2guc_lock);
bitmap_clear(guc->doorbell_bitmap, id, 1);
spin_unlock(&guc->host2guc_lock);
}
/*
* Initialise the process descriptor shared with the GuC firmware.
*/
static void guc_init_proc_desc(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct guc_process_desc *desc;
void *base;
base = kmap_atomic(i915_gem_object_get_page(client->client_obj, 0));
desc = base + client->proc_desc_offset;
memset(desc, 0, sizeof(*desc));
/*
* XXX: pDoorbell and WQVBaseAddress are pointers in process address
* space for ring3 clients (set them as in mmap_ioctl) or kernel
* space for kernel clients (map on demand instead? May make debug
* easier to have it mapped).
*/
desc->wq_base_addr = 0;
desc->db_base_addr = 0;
desc->context_id = client->ctx_index;
desc->wq_size_bytes = client->wq_size;
desc->wq_status = WQ_STATUS_ACTIVE;
desc->priority = client->priority;
kunmap_atomic(base);
}
/*
* Initialise/clear the context descriptor shared with the GuC firmware.
*
* This descriptor tells the GuC where (in GGTT space) to find the important
* data structures relating to this client (doorbell, process descriptor,
* write queue, etc).
*/
static void guc_init_ctx_desc(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct intel_context *ctx = client->owner;
struct guc_context_desc desc;
struct sg_table *sg;
int i;
memset(&desc, 0, sizeof(desc));
desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
desc.context_id = client->ctx_index;
desc.priority = client->priority;
desc.db_id = client->doorbell_id;
for (i = 0; i < I915_NUM_RINGS; i++) {
struct guc_execlist_context *lrc = &desc.lrc[i];
struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
struct intel_engine_cs *ring;
struct drm_i915_gem_object *obj;
uint64_t ctx_desc;
/* TODO: We have a design issue to be solved here. Only when we
* receive the first batch, we know which engine is used by the
* user. But here GuC expects the lrc and ring to be pinned. It
* is not an issue for default context, which is the only one
* for now who owns a GuC client. But for future owner of GuC
* client, need to make sure lrc is pinned prior to enter here.
*/
obj = ctx->engine[i].state;
if (!obj)
break; /* XXX: continue? */
ring = ringbuf->ring;
ctx_desc = intel_lr_context_descriptor(ctx, ring);
lrc->context_desc = (u32)ctx_desc;
/* The state page is after PPHWSP */
lrc->ring_lcra = i915_gem_obj_ggtt_offset(obj) +
LRC_STATE_PN * PAGE_SIZE;
lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
(ring->id << GUC_ELC_ENGINE_OFFSET);
obj = ringbuf->obj;
lrc->ring_begin = i915_gem_obj_ggtt_offset(obj);
lrc->ring_end = lrc->ring_begin + obj->base.size - 1;
lrc->ring_next_free_location = lrc->ring_begin;
lrc->ring_current_tail_pointer_value = 0;
desc.engines_used |= (1 << ring->id);
}
WARN_ON(desc.engines_used == 0);
/*
* The CPU address is only needed at certain points, so kmap_atomic on
* demand instead of storing it in the ctx descriptor.
* XXX: May make debug easier to have it mapped
*/
desc.db_trigger_cpu = 0;
desc.db_trigger_uk = client->doorbell_offset +
i915_gem_obj_ggtt_offset(client->client_obj);
desc.db_trigger_phy = client->doorbell_offset +
sg_dma_address(client->client_obj->pages->sgl);
desc.process_desc = client->proc_desc_offset +
i915_gem_obj_ggtt_offset(client->client_obj);
desc.wq_addr = client->wq_offset +
i915_gem_obj_ggtt_offset(client->client_obj);
desc.wq_size = client->wq_size;
/*
* XXX: Take LRCs from an existing intel_context if this is not an
* IsKMDCreatedContext client
*/
desc.desc_private = (uintptr_t)client;
/* Pool context is pinned already */
sg = guc->ctx_pool_obj->pages;
sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
sizeof(desc) * client->ctx_index);
}
static void guc_fini_ctx_desc(struct intel_guc *guc,
struct i915_guc_client *client)
{
struct guc_context_desc desc;
struct sg_table *sg;
memset(&desc, 0, sizeof(desc));
sg = guc->ctx_pool_obj->pages;
sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
sizeof(desc) * client->ctx_index);
}
/* Get valid workqueue item and return it back to offset */
static int guc_get_workqueue_space(struct i915_guc_client *gc, u32 *offset)
{
struct guc_process_desc *desc;
void *base;
u32 size = sizeof(struct guc_wq_item);
int ret = 0, timeout_counter = 200;
base = kmap_atomic(i915_gem_object_get_page(gc->client_obj, 0));
desc = base + gc->proc_desc_offset;
while (timeout_counter-- > 0) {
ret = wait_for_atomic(CIRC_SPACE(gc->wq_tail, desc->head,
gc->wq_size) >= size, 1);
if (!ret) {
*offset = gc->wq_tail;
/* advance the tail for next workqueue item */
gc->wq_tail += size;
gc->wq_tail &= gc->wq_size - 1;
/* this will break the loop */
timeout_counter = 0;
}
};
kunmap_atomic(base);
return ret;
}
static int guc_add_workqueue_item(struct i915_guc_client *gc,
struct drm_i915_gem_request *rq)
{
enum intel_ring_id ring_id = rq->ring->id;
struct guc_wq_item *wqi;
void *base;
u32 tail, wq_len, wq_off = 0;
int ret;
ret = guc_get_workqueue_space(gc, &wq_off);
if (ret)
return ret;
/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
* should not have the case where structure wqi is across page, neither
* wrapped to the beginning. This simplifies the implementation below.
*
* XXX: if not the case, we need save data to a temp wqi and copy it to
* workqueue buffer dw by dw.
*/
WARN_ON(sizeof(struct guc_wq_item) != 16);
WARN_ON(wq_off & 3);
/* wq starts from the page after doorbell / process_desc */
base = kmap_atomic(i915_gem_object_get_page(gc->client_obj,
(wq_off + GUC_DB_SIZE) >> PAGE_SHIFT));
wq_off &= PAGE_SIZE - 1;
wqi = (struct guc_wq_item *)((char *)base + wq_off);
/* len does not include the header */
wq_len = sizeof(struct guc_wq_item) / sizeof(u32) - 1;
wqi->header = WQ_TYPE_INORDER |
(wq_len << WQ_LEN_SHIFT) |
(ring_id << WQ_TARGET_SHIFT) |
WQ_NO_WCFLUSH_WAIT;
/* The GuC wants only the low-order word of the context descriptor */
wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, rq->ring);
/* The GuC firmware wants the tail index in QWords, not bytes */
tail = rq->ringbuf->tail >> 3;
wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
wqi->fence_id = 0; /*XXX: what fence to be here */
kunmap_atomic(base);
return 0;
}
#define CTX_RING_BUFFER_START 0x08
/* Update the ringbuffer pointer in a saved context image */
static void lr_context_update(struct drm_i915_gem_request *rq)
{
enum intel_ring_id ring_id = rq->ring->id;
struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring_id].state;
struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
struct page *page;
uint32_t *reg_state;
BUG_ON(!ctx_obj);
WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
reg_state = kmap_atomic(page);
reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
kunmap_atomic(reg_state);
}
/**
* i915_guc_submit() - Submit commands through GuC
* @client: the guc client where commands will go through
* @ctx: LRC where commands come from
* @ring: HW engine that will excute the commands
*
* Return: 0 if succeed
*/
int i915_guc_submit(struct i915_guc_client *client,
struct drm_i915_gem_request *rq)
{
struct intel_guc *guc = client->guc;
enum intel_ring_id ring_id = rq->ring->id;
unsigned long flags;
int q_ret, b_ret;
/* Need this because of the deferred pin ctx and ring */
/* Shall we move this right after ring is pinned? */
lr_context_update(rq);
spin_lock_irqsave(&client->wq_lock, flags);
q_ret = guc_add_workqueue_item(client, rq);
if (q_ret == 0)
b_ret = guc_ring_doorbell(client);
client->submissions[ring_id] += 1;
if (q_ret) {
client->q_fail += 1;
client->retcode = q_ret;
} else if (b_ret) {
client->b_fail += 1;
client->retcode = q_ret = b_ret;
} else {
client->retcode = 0;
}
spin_unlock_irqrestore(&client->wq_lock, flags);
spin_lock(&guc->host2guc_lock);
guc->submissions[ring_id] += 1;
guc->last_seqno[ring_id] = rq->seqno;
spin_unlock(&guc->host2guc_lock);
return q_ret;
}
/*
* Everything below here is concerned with setup & teardown, and is
* therefore not part of the somewhat time-critical batch-submission
* path of i915_guc_submit() above.
*/
/**
* gem_allocate_guc_obj() - Allocate gem object for GuC usage
* @dev: drm device
* @size: size of object
*
* This is a wrapper to create a gem obj. In order to use it inside GuC, the
* object needs to be pinned lifetime. Also we must pin it to gtt space other
* than [0, GUC_WOPCM_TOP) because this range is reserved inside GuC.
*
* Return: A drm_i915_gem_object if successful, otherwise NULL.
*/
static struct drm_i915_gem_object *gem_allocate_guc_obj(struct drm_device *dev,
u32 size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
obj = i915_gem_alloc_object(dev, size);
if (!obj)
return NULL;
if (i915_gem_object_get_pages(obj)) {
drm_gem_object_unreference(&obj->base);
return NULL;
}
if (i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
PIN_OFFSET_BIAS | GUC_WOPCM_TOP)) {
drm_gem_object_unreference(&obj->base);
return NULL;
}
/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
return obj;
}
/**
* gem_release_guc_obj() - Release gem object allocated for GuC usage
* @obj: gem obj to be released
*/
static void gem_release_guc_obj(struct drm_i915_gem_object *obj)
{
if (!obj)
return;
if (i915_gem_obj_is_pinned(obj))
i915_gem_object_ggtt_unpin(obj);
drm_gem_object_unreference(&obj->base);
}
static void guc_client_free(struct drm_device *dev,
struct i915_guc_client *client)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc *guc = &dev_priv->guc;
if (!client)
return;
if (client->doorbell_id != GUC_INVALID_DOORBELL_ID) {
/*
* First disable the doorbell, then tell the GuC we've
* finished with it, finally deallocate it in our bitmap
*/
guc_disable_doorbell(guc, client);
host2guc_release_doorbell(guc, client);
release_doorbell(guc, client->doorbell_id);
}
/*
* XXX: wait for any outstanding submissions before freeing memory.
* Be sure to drop any locks
*/
gem_release_guc_obj(client->client_obj);
if (client->ctx_index != GUC_INVALID_CTX_ID) {
guc_fini_ctx_desc(guc, client);
ida_simple_remove(&guc->ctx_ids, client->ctx_index);
}
kfree(client);
}
/**
* guc_client_alloc() - Allocate an i915_guc_client
* @dev: drm device
* @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
* The kernel client to replace ExecList submission is created with
* NORMAL priority. Priority of a client for scheduler can be HIGH,
* while a preemption context can use CRITICAL.
* @ctx the context to own the client (we use the default render context)
*
* Return: An i915_guc_client object if success.
*/
static struct i915_guc_client *guc_client_alloc(struct drm_device *dev,
uint32_t priority,
struct intel_context *ctx)
{
struct i915_guc_client *client;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc *guc = &dev_priv->guc;
struct drm_i915_gem_object *obj;
client = kzalloc(sizeof(*client), GFP_KERNEL);
if (!client)
return NULL;
client->doorbell_id = GUC_INVALID_DOORBELL_ID;
client->priority = priority;
client->owner = ctx;
client->guc = guc;
client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
client->ctx_index = GUC_INVALID_CTX_ID;
goto err;
}
/* The first page is doorbell/proc_desc. Two followed pages are wq. */
obj = gem_allocate_guc_obj(dev, GUC_DB_SIZE + GUC_WQ_SIZE);
if (!obj)
goto err;
client->client_obj = obj;
client->wq_offset = GUC_DB_SIZE;
client->wq_size = GUC_WQ_SIZE;
spin_lock_init(&client->wq_lock);
client->doorbell_offset = select_doorbell_cacheline(guc);
/*
* Since the doorbell only requires a single cacheline, we can save
* space by putting the application process descriptor in the same
* page. Use the half of the page that doesn't include the doorbell.
*/
if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
client->proc_desc_offset = 0;
else
client->proc_desc_offset = (GUC_DB_SIZE / 2);
client->doorbell_id = assign_doorbell(guc, client->priority);
if (client->doorbell_id == GUC_INVALID_DOORBELL_ID)
/* XXX: evict a doorbell instead */
goto err;
guc_init_proc_desc(guc, client);
guc_init_ctx_desc(guc, client);
guc_init_doorbell(guc, client);
/* XXX: Any cache flushes needed? General domain mgmt calls? */
if (host2guc_allocate_doorbell(guc, client))
goto err;
DRM_DEBUG_DRIVER("new priority %u client %p: ctx_index %u db_id %u\n",
priority, client, client->ctx_index, client->doorbell_id);
return client;
err:
DRM_ERROR("FAILED to create priority %u GuC client!\n", priority);
guc_client_free(dev, client);
return NULL;
}
static void guc_create_log(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct drm_i915_gem_object *obj;
unsigned long offset;
uint32_t size, flags;
if (i915.guc_log_level < GUC_LOG_VERBOSITY_MIN)
return;
if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;
/* The first page is to save log buffer state. Allocate one
* extra page for others in case for overlap */
size = (1 + GUC_LOG_DPC_PAGES + 1 +
GUC_LOG_ISR_PAGES + 1 +
GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;
obj = guc->log_obj;
if (!obj) {
obj = gem_allocate_guc_obj(dev_priv->dev, size);
if (!obj) {
/* logging will be off */
i915.guc_log_level = -1;
return;
}
guc->log_obj = obj;
}
/* each allocated unit is a page */
flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);
offset = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; /* in pages */
guc->log_flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
}
/*
* Set up the memory resources to be shared with the GuC. At this point,
* we require just one object that can be mapped through the GGTT.
*/
int i915_guc_submission_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
const size_t ctxsize = sizeof(struct guc_context_desc);
const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
const size_t gemsize = round_up(poolsize, PAGE_SIZE);
struct intel_guc *guc = &dev_priv->guc;
if (!i915.enable_guc_submission)
return 0; /* not enabled */
if (guc->ctx_pool_obj)
return 0; /* already allocated */
guc->ctx_pool_obj = gem_allocate_guc_obj(dev_priv->dev, gemsize);
if (!guc->ctx_pool_obj)
return -ENOMEM;
spin_lock_init(&dev_priv->guc.host2guc_lock);
ida_init(&guc->ctx_ids);
guc_create_log(guc);
return 0;
}
int i915_guc_submission_enable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc *guc = &dev_priv->guc;
struct intel_context *ctx = dev_priv->ring[RCS].default_context;
struct i915_guc_client *client;
/* client for execbuf submission */
client = guc_client_alloc(dev, GUC_CTX_PRIORITY_KMD_NORMAL, ctx);
if (!client) {
DRM_ERROR("Failed to create execbuf guc_client\n");
return -ENOMEM;
}
guc->execbuf_client = client;
host2guc_sample_forcewake(guc, client);
return 0;
}
void i915_guc_submission_disable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc *guc = &dev_priv->guc;
guc_client_free(dev, guc->execbuf_client);
guc->execbuf_client = NULL;
}
void i915_guc_submission_fini(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc *guc = &dev_priv->guc;
gem_release_guc_obj(dev_priv->guc.log_obj);
guc->log_obj = NULL;
if (guc->ctx_pool_obj)
ida_destroy(&guc->ctx_ids);
gem_release_guc_obj(guc->ctx_pool_obj);
guc->ctx_pool_obj = NULL;
}
/**
* intel_guc_suspend() - notify GuC entering suspend state
* @dev: drm device
*/
int intel_guc_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc *guc = &dev_priv->guc;
struct intel_context *ctx;
u32 data[3];
if (!i915.enable_guc_submission)
return 0;
ctx = dev_priv->ring[RCS].default_context;
data[0] = HOST2GUC_ACTION_ENTER_S_STATE;
/* any value greater than GUC_POWER_D0 */
data[1] = GUC_POWER_D1;
/* first page is shared data with GuC */
data[2] = i915_gem_obj_ggtt_offset(ctx->engine[RCS].state);
return host2guc_action(guc, data, ARRAY_SIZE(data));
}
/**
* intel_guc_resume() - notify GuC resuming from suspend state
* @dev: drm device
*/
int intel_guc_resume(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_guc *guc = &dev_priv->guc;
struct intel_context *ctx;
u32 data[3];
if (!i915.enable_guc_submission)
return 0;
ctx = dev_priv->ring[RCS].default_context;
data[0] = HOST2GUC_ACTION_EXIT_S_STATE;
data[1] = GUC_POWER_D0;
/* first page is shared data with GuC */
data[2] = i915_gem_obj_ggtt_offset(ctx->engine[RCS].state);
return host2guc_action(guc, data, ARRAY_SIZE(data));
}