kolibrios-fun/contrib/sdk/sources/pixman/pixman-combine32.h

273 lines
6.9 KiB
C
Raw Normal View History

#define COMPONENT_SIZE 8
#define MASK 0xff
#define ONE_HALF 0x80
#define A_SHIFT 8 * 3
#define R_SHIFT 8 * 2
#define G_SHIFT 8
#define A_MASK 0xff000000
#define R_MASK 0xff0000
#define G_MASK 0xff00
#define RB_MASK 0xff00ff
#define AG_MASK 0xff00ff00
#define RB_ONE_HALF 0x800080
#define RB_MASK_PLUS_ONE 0x10000100
#define ALPHA_8(x) ((x) >> A_SHIFT)
#define RED_8(x) (((x) >> R_SHIFT) & MASK)
#define GREEN_8(x) (((x) >> G_SHIFT) & MASK)
#define BLUE_8(x) ((x) & MASK)
/*
* ARMv6 has UQADD8 instruction, which implements unsigned saturated
* addition for 8-bit values packed in 32-bit registers. It is very useful
* for UN8x4_ADD_UN8x4, UN8_rb_ADD_UN8_rb and ADD_UN8 macros (which would
* otherwise need a lot of arithmetic operations to simulate this operation).
* Since most of the major ARM linux distros are built for ARMv7, we are
* much less dependent on runtime CPU detection and can get practical
* benefits from conditional compilation here for a lot of users.
*/
#if defined(USE_GCC_INLINE_ASM) && defined(__arm__) && \
!defined(__aarch64__) && (!defined(__thumb__) || defined(__thumb2__))
#if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) || \
defined(__ARM_ARCH_6M__) || defined(__ARM_ARCH_7__) || \
defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || \
defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7EM__)
static force_inline uint32_t
un8x4_add_un8x4 (uint32_t x, uint32_t y)
{
uint32_t t;
asm ("uqadd8 %0, %1, %2" : "=r" (t) : "%r" (x), "r" (y));
return t;
}
#define UN8x4_ADD_UN8x4(x, y) \
((x) = un8x4_add_un8x4 ((x), (y)))
#define UN8_rb_ADD_UN8_rb(x, y, t) \
((t) = un8x4_add_un8x4 ((x), (y)), (x) = (t))
#define ADD_UN8(x, y, t) \
((t) = (x), un8x4_add_un8x4 ((t), (y)))
#endif
#endif
/*****************************************************************************/
/*
* Helper macros.
*/
#define MUL_UN8(a, b, t) \
((t) = (a) * (uint16_t)(b) + ONE_HALF, ((((t) >> G_SHIFT ) + (t) ) >> G_SHIFT ))
#define DIV_UN8(a, b) \
(((uint16_t) (a) * MASK + ((b) / 2)) / (b))
#ifndef ADD_UN8
#define ADD_UN8(x, y, t) \
((t) = (x) + (y), \
(uint32_t) (uint8_t) ((t) | (0 - ((t) >> G_SHIFT))))
#endif
#define DIV_ONE_UN8(x) \
(((x) + ONE_HALF + (((x) + ONE_HALF) >> G_SHIFT)) >> G_SHIFT)
/*
* The methods below use some tricks to be able to do two color
* components at the same time.
*/
/*
* x_rb = (x_rb * a) / 255
*/
#define UN8_rb_MUL_UN8(x, a, t) \
do \
{ \
t = ((x) & RB_MASK) * (a); \
t += RB_ONE_HALF; \
x = (t + ((t >> G_SHIFT) & RB_MASK)) >> G_SHIFT; \
x &= RB_MASK; \
} while (0)
/*
* x_rb = min (x_rb + y_rb, 255)
*/
#ifndef UN8_rb_ADD_UN8_rb
#define UN8_rb_ADD_UN8_rb(x, y, t) \
do \
{ \
t = ((x) + (y)); \
t |= RB_MASK_PLUS_ONE - ((t >> G_SHIFT) & RB_MASK); \
x = (t & RB_MASK); \
} while (0)
#endif
/*
* x_rb = (x_rb * a_rb) / 255
*/
#define UN8_rb_MUL_UN8_rb(x, a, t) \
do \
{ \
t = (x & MASK) * (a & MASK); \
t |= (x & R_MASK) * ((a >> R_SHIFT) & MASK); \
t += RB_ONE_HALF; \
t = (t + ((t >> G_SHIFT) & RB_MASK)) >> G_SHIFT; \
x = t & RB_MASK; \
} while (0)
/*
* x_c = (x_c * a) / 255
*/
#define UN8x4_MUL_UN8(x, a) \
do \
{ \
uint32_t r1__, r2__, t__; \
\
r1__ = (x); \
UN8_rb_MUL_UN8 (r1__, (a), t__); \
\
r2__ = (x) >> G_SHIFT; \
UN8_rb_MUL_UN8 (r2__, (a), t__); \
\
(x) = r1__ | (r2__ << G_SHIFT); \
} while (0)
/*
* x_c = (x_c * a) / 255 + y_c
*/
#define UN8x4_MUL_UN8_ADD_UN8x4(x, a, y) \
do \
{ \
uint32_t r1__, r2__, r3__, t__; \
\
r1__ = (x); \
r2__ = (y) & RB_MASK; \
UN8_rb_MUL_UN8 (r1__, (a), t__); \
UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \
\
r2__ = (x) >> G_SHIFT; \
r3__ = ((y) >> G_SHIFT) & RB_MASK; \
UN8_rb_MUL_UN8 (r2__, (a), t__); \
UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \
\
(x) = r1__ | (r2__ << G_SHIFT); \
} while (0)
/*
* x_c = (x_c * a + y_c * b) / 255
*/
#define UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8(x, a, y, b) \
do \
{ \
uint32_t r1__, r2__, r3__, t__; \
\
r1__ = (x); \
r2__ = (y); \
UN8_rb_MUL_UN8 (r1__, (a), t__); \
UN8_rb_MUL_UN8 (r2__, (b), t__); \
UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \
\
r2__ = ((x) >> G_SHIFT); \
r3__ = ((y) >> G_SHIFT); \
UN8_rb_MUL_UN8 (r2__, (a), t__); \
UN8_rb_MUL_UN8 (r3__, (b), t__); \
UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \
\
(x) = r1__ | (r2__ << G_SHIFT); \
} while (0)
/*
* x_c = (x_c * a_c) / 255
*/
#define UN8x4_MUL_UN8x4(x, a) \
do \
{ \
uint32_t r1__, r2__, r3__, t__; \
\
r1__ = (x); \
r2__ = (a); \
UN8_rb_MUL_UN8_rb (r1__, r2__, t__); \
\
r2__ = (x) >> G_SHIFT; \
r3__ = (a) >> G_SHIFT; \
UN8_rb_MUL_UN8_rb (r2__, r3__, t__); \
\
(x) = r1__ | (r2__ << G_SHIFT); \
} while (0)
/*
* x_c = (x_c * a_c) / 255 + y_c
*/
#define UN8x4_MUL_UN8x4_ADD_UN8x4(x, a, y) \
do \
{ \
uint32_t r1__, r2__, r3__, t__; \
\
r1__ = (x); \
r2__ = (a); \
UN8_rb_MUL_UN8_rb (r1__, r2__, t__); \
r2__ = (y) & RB_MASK; \
UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \
\
r2__ = ((x) >> G_SHIFT); \
r3__ = ((a) >> G_SHIFT); \
UN8_rb_MUL_UN8_rb (r2__, r3__, t__); \
r3__ = ((y) >> G_SHIFT) & RB_MASK; \
UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \
\
(x) = r1__ | (r2__ << G_SHIFT); \
} while (0)
/*
* x_c = (x_c * a_c + y_c * b) / 255
*/
#define UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8(x, a, y, b) \
do \
{ \
uint32_t r1__, r2__, r3__, t__; \
\
r1__ = (x); \
r2__ = (a); \
UN8_rb_MUL_UN8_rb (r1__, r2__, t__); \
r2__ = (y); \
UN8_rb_MUL_UN8 (r2__, (b), t__); \
UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \
\
r2__ = (x) >> G_SHIFT; \
r3__ = (a) >> G_SHIFT; \
UN8_rb_MUL_UN8_rb (r2__, r3__, t__); \
r3__ = (y) >> G_SHIFT; \
UN8_rb_MUL_UN8 (r3__, (b), t__); \
UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \
\
x = r1__ | (r2__ << G_SHIFT); \
} while (0)
/*
x_c = min(x_c + y_c, 255)
*/
#ifndef UN8x4_ADD_UN8x4
#define UN8x4_ADD_UN8x4(x, y) \
do \
{ \
uint32_t r1__, r2__, r3__, t__; \
\
r1__ = (x) & RB_MASK; \
r2__ = (y) & RB_MASK; \
UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \
\
r2__ = ((x) >> G_SHIFT) & RB_MASK; \
r3__ = ((y) >> G_SHIFT) & RB_MASK; \
UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \
\
x = r1__ | (r2__ << G_SHIFT); \
} while (0)
#endif