/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard <keithp@keithp.com> * */ #include <linux/i2c.h> #include <linux/slab.h> #include "drmP.h" #include "drm.h" #include "drm_crtc.h" #include "drm_crtc_helper.h" #include "intel_drv.h" #include "i915_drm.h" #include "i915_drv.h" #include "drm_dp_helper.h" #define DP_LINK_STATUS_SIZE 6 #define DP_LINK_CHECK_TIMEOUT (10 * 1000) #define DP_LINK_CONFIGURATION_SIZE 9 struct intel_dp { struct intel_encoder base; uint32_t output_reg; uint32_t DP; uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]; bool has_audio; int force_audio; uint32_t color_range; int dpms_mode; uint8_t link_bw; uint8_t lane_count; uint8_t dpcd[8]; struct i2c_adapter adapter; struct i2c_algo_dp_aux_data algo; bool is_pch_edp; uint8_t train_set[4]; uint8_t link_status[DP_LINK_STATUS_SIZE]; }; /** * is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. */ static bool is_edp(struct intel_dp *intel_dp) { return intel_dp->base.type == INTEL_OUTPUT_EDP; } /** * is_pch_edp - is the port on the PCH and attached to an eDP panel? * @intel_dp: DP struct * * Returns true if the given DP struct corresponds to a PCH DP port attached * to an eDP panel, false otherwise. Helpful for determining whether we * may need FDI resources for a given DP output or not. */ static bool is_pch_edp(struct intel_dp *intel_dp) { return intel_dp->is_pch_edp; } static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder) { return container_of(encoder, struct intel_dp, base.base); } static struct intel_dp *intel_attached_dp(struct drm_connector *connector) { return container_of(intel_attached_encoder(connector), struct intel_dp, base); } /** * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP? * @encoder: DRM encoder * * Return true if @encoder corresponds to a PCH attached eDP panel. Needed * by intel_display.c. */ bool intel_encoder_is_pch_edp(struct drm_encoder *encoder) { struct intel_dp *intel_dp; if (!encoder) return false; intel_dp = enc_to_intel_dp(encoder); return is_pch_edp(intel_dp); } static void intel_dp_start_link_train(struct intel_dp *intel_dp); static void intel_dp_complete_link_train(struct intel_dp *intel_dp); static void intel_dp_link_down(struct intel_dp *intel_dp); void intel_edp_link_config (struct intel_encoder *intel_encoder, int *lane_num, int *link_bw) { struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base); *lane_num = intel_dp->lane_count; if (intel_dp->link_bw == DP_LINK_BW_1_62) *link_bw = 162000; else if (intel_dp->link_bw == DP_LINK_BW_2_7) *link_bw = 270000; } static int intel_dp_max_lane_count(struct intel_dp *intel_dp) { int max_lane_count = 4; if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f; switch (max_lane_count) { case 1: case 2: case 4: break; default: max_lane_count = 4; } } return max_lane_count; } static int intel_dp_max_link_bw(struct intel_dp *intel_dp) { int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; switch (max_link_bw) { case DP_LINK_BW_1_62: case DP_LINK_BW_2_7: break; default: max_link_bw = DP_LINK_BW_1_62; break; } return max_link_bw; } static int intel_dp_link_clock(uint8_t link_bw) { if (link_bw == DP_LINK_BW_2_7) return 270000; else return 162000; } /* I think this is a fiction */ static int intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock) { struct drm_crtc *crtc = intel_dp->base.base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int bpp = 24; if (intel_crtc) bpp = intel_crtc->bpp; return (pixel_clock * bpp + 7) / 8; } static int intel_dp_max_data_rate(int max_link_clock, int max_lanes) { return (max_link_clock * max_lanes * 8) / 10; } static int intel_dp_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = dev->dev_private; int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp)); int max_lanes = intel_dp_max_lane_count(intel_dp); if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) { if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay) return MODE_PANEL; } /* only refuse the mode on non eDP since we have seen some weird eDP panels which are outside spec tolerances but somehow work by magic */ if (!is_edp(intel_dp) && (intel_dp_link_required(connector->dev, intel_dp, mode->clock) > intel_dp_max_data_rate(max_link_clock, max_lanes))) return MODE_CLOCK_HIGH; if (mode->clock < 10000) return MODE_CLOCK_LOW; return MODE_OK; } static uint32_t pack_aux(uint8_t *src, int src_bytes) { int i; uint32_t v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((uint32_t) src[i]) << ((3-i) * 8); return v; } static void unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } /* hrawclock is 1/4 the FSB frequency */ static int intel_hrawclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t clkcfg; clkcfg = I915_READ(CLKCFG); switch (clkcfg & CLKCFG_FSB_MASK) { case CLKCFG_FSB_400: return 100; case CLKCFG_FSB_533: return 133; case CLKCFG_FSB_667: return 166; case CLKCFG_FSB_800: return 200; case CLKCFG_FSB_1067: return 266; case CLKCFG_FSB_1333: return 333; /* these two are just a guess; one of them might be right */ case CLKCFG_FSB_1600: case CLKCFG_FSB_1600_ALT: return 400; default: return 133; } } static int intel_dp_aux_ch(struct intel_dp *intel_dp, uint8_t *send, int send_bytes, uint8_t *recv, int recv_size) { uint32_t output_reg = intel_dp->output_reg; struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t ch_ctl = output_reg + 0x10; uint32_t ch_data = ch_ctl + 4; int i; int recv_bytes; uint32_t status; uint32_t aux_clock_divider; int try, precharge; /* The clock divider is based off the hrawclk, * and would like to run at 2MHz. So, take the * hrawclk value and divide by 2 and use that * * Note that PCH attached eDP panels should use a 125MHz input * clock divider. */ if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) { if (IS_GEN6(dev)) aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */ else aux_clock_divider = 225; /* eDP input clock at 450Mhz */ } else if (HAS_PCH_SPLIT(dev)) aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */ else aux_clock_divider = intel_hrawclk(dev) / 2; if (IS_GEN6(dev)) precharge = 3; else precharge = 5; /* Try to wait for any previous AUX channel activity */ for (try = 0; try < 3; try++) { status = I915_READ(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; msleep(1); } if (try == 3) { WARN(1, "dp_aux_ch not started status 0x%08x\n", I915_READ(ch_ctl)); return -EBUSY; } /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) I915_WRITE(ch_data + i, pack_aux(send + i, send_bytes - i)); /* Send the command and wait for it to complete */ I915_WRITE(ch_ctl, DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_TIME_OUT_400us | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); for (;;) { status = I915_READ(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; udelay(100); } /* Clear done status and any errors */ I915_WRITE(ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); if (status & DP_AUX_CH_CTL_DONE) break; } if ((status & DP_AUX_CH_CTL_DONE) == 0) { DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); return -EBUSY; } /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); return -EIO; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); return -ETIMEDOUT; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) unpack_aux(I915_READ(ch_data + i), recv + i, recv_bytes - i); return recv_bytes; } /* Write data to the aux channel in native mode */ static int intel_dp_aux_native_write(struct intel_dp *intel_dp, uint16_t address, uint8_t *send, int send_bytes) { int ret; uint8_t msg[20]; int msg_bytes; uint8_t ack; if (send_bytes > 16) return -1; msg[0] = AUX_NATIVE_WRITE << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = send_bytes - 1; memcpy(&msg[4], send, send_bytes); msg_bytes = send_bytes + 4; for (;;) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1); if (ret < 0) return ret; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) break; else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(100); else return -EIO; } return send_bytes; } /* Write a single byte to the aux channel in native mode */ static int intel_dp_aux_native_write_1(struct intel_dp *intel_dp, uint16_t address, uint8_t byte) { return intel_dp_aux_native_write(intel_dp, address, &byte, 1); } /* read bytes from a native aux channel */ static int intel_dp_aux_native_read(struct intel_dp *intel_dp, uint16_t address, uint8_t *recv, int recv_bytes) { uint8_t msg[4]; int msg_bytes; uint8_t reply[20]; int reply_bytes; uint8_t ack; int ret; msg[0] = AUX_NATIVE_READ << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = recv_bytes - 1; msg_bytes = 4; reply_bytes = recv_bytes + 1; for (;;) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, reply, reply_bytes); if (ret == 0) return -EPROTO; if (ret < 0) return ret; ack = reply[0]; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) { memcpy(recv, reply + 1, ret - 1); return ret - 1; } else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(100); else return -EIO; } } static int intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; struct intel_dp *intel_dp = container_of(adapter, struct intel_dp, adapter); uint16_t address = algo_data->address; uint8_t msg[5]; uint8_t reply[2]; unsigned retry; int msg_bytes; int reply_bytes; int ret; /* Set up the command byte */ if (mode & MODE_I2C_READ) msg[0] = AUX_I2C_READ << 4; else msg[0] = AUX_I2C_WRITE << 4; if (!(mode & MODE_I2C_STOP)) msg[0] |= AUX_I2C_MOT << 4; msg[1] = address >> 8; msg[2] = address; switch (mode) { case MODE_I2C_WRITE: msg[3] = 0; msg[4] = write_byte; msg_bytes = 5; reply_bytes = 1; break; case MODE_I2C_READ: msg[3] = 0; msg_bytes = 4; reply_bytes = 2; break; default: msg_bytes = 3; reply_bytes = 1; break; } for (retry = 0; retry < 5; retry++) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, reply, reply_bytes); if (ret < 0) { DRM_DEBUG_KMS("aux_ch failed %d\n", ret); return ret; } switch (reply[0] & AUX_NATIVE_REPLY_MASK) { case AUX_NATIVE_REPLY_ACK: /* I2C-over-AUX Reply field is only valid * when paired with AUX ACK. */ break; case AUX_NATIVE_REPLY_NACK: DRM_DEBUG_KMS("aux_ch native nack\n"); return -EREMOTEIO; case AUX_NATIVE_REPLY_DEFER: udelay(100); continue; default: DRM_ERROR("aux_ch invalid native reply 0x%02x\n", reply[0]); return -EREMOTEIO; } switch (reply[0] & AUX_I2C_REPLY_MASK) { case AUX_I2C_REPLY_ACK: if (mode == MODE_I2C_READ) { *read_byte = reply[1]; } return reply_bytes - 1; case AUX_I2C_REPLY_NACK: DRM_DEBUG_KMS("aux_i2c nack\n"); return -EREMOTEIO; case AUX_I2C_REPLY_DEFER: DRM_DEBUG_KMS("aux_i2c defer\n"); udelay(100); break; default: DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]); return -EREMOTEIO; } } DRM_ERROR("too many retries, giving up\n"); return -EREMOTEIO; } static int intel_dp_i2c_init(struct intel_dp *intel_dp, struct intel_connector *intel_connector, const char *name) { DRM_DEBUG_KMS("i2c_init %s\n", name); intel_dp->algo.running = false; intel_dp->algo.address = 0; intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch; memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter)); // intel_dp->adapter.owner = THIS_MODULE; intel_dp->adapter.class = I2C_CLASS_DDC; strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1); intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0'; intel_dp->adapter.algo_data = &intel_dp->algo; intel_dp->adapter.dev.parent = &intel_connector->base.kdev; return i2c_dp_aux_add_bus(&intel_dp->adapter); } static bool intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); int lane_count, clock; int max_lane_count = intel_dp_max_lane_count(intel_dp); int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0; static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) { intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode); intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN, mode, adjusted_mode); /* * the mode->clock is used to calculate the Data&Link M/N * of the pipe. For the eDP the fixed clock should be used. */ mode->clock = dev_priv->panel_fixed_mode->clock; } for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { for (clock = 0; clock <= max_clock; clock++) { int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count); if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock) <= link_avail) { intel_dp->link_bw = bws[clock]; intel_dp->lane_count = lane_count; adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw); DRM_DEBUG_KMS("Display port link bw %02x lane " "count %d clock %d\n", intel_dp->link_bw, intel_dp->lane_count, adjusted_mode->clock); return true; } } } if (is_edp(intel_dp)) { /* okay we failed just pick the highest */ intel_dp->lane_count = max_lane_count; intel_dp->link_bw = bws[max_clock]; adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw); DRM_DEBUG_KMS("Force picking display port link bw %02x lane " "count %d clock %d\n", intel_dp->link_bw, intel_dp->lane_count, adjusted_mode->clock); return true; } return false; } struct intel_dp_m_n { uint32_t tu; uint32_t gmch_m; uint32_t gmch_n; uint32_t link_m; uint32_t link_n; }; static void intel_reduce_ratio(uint32_t *num, uint32_t *den) { while (*num > 0xffffff || *den > 0xffffff) { *num >>= 1; *den >>= 1; } } static void intel_dp_compute_m_n(int bpp, int nlanes, int pixel_clock, int link_clock, struct intel_dp_m_n *m_n) { m_n->tu = 64; m_n->gmch_m = (pixel_clock * bpp) >> 3; m_n->gmch_n = link_clock * nlanes; intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); m_n->link_m = pixel_clock; m_n->link_n = link_clock; intel_reduce_ratio(&m_n->link_m, &m_n->link_n); } void intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_encoder *encoder; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int lane_count = 4; struct intel_dp_m_n m_n; int pipe = intel_crtc->pipe; /* * Find the lane count in the intel_encoder private */ list_for_each_entry(encoder, &mode_config->encoder_list, head) { struct intel_dp *intel_dp; if (encoder->crtc != crtc) continue; intel_dp = enc_to_intel_dp(encoder); if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) { lane_count = intel_dp->lane_count; break; } else if (is_edp(intel_dp)) { lane_count = dev_priv->edp.lanes; break; } } /* * Compute the GMCH and Link ratios. The '3' here is * the number of bytes_per_pixel post-LUT, which we always * set up for 8-bits of R/G/B, or 3 bytes total. */ intel_dp_compute_m_n(intel_crtc->bpp, lane_count, mode->clock, adjusted_mode->clock, &m_n); if (HAS_PCH_SPLIT(dev)) { I915_WRITE(TRANSDATA_M1(pipe), ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | m_n.gmch_m); I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n); I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m); I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n); } else { I915_WRITE(PIPE_GMCH_DATA_M(pipe), ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | m_n.gmch_m); I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n); I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m); I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n); } } static void intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_crtc *crtc = intel_dp->base.base.crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; intel_dp->DP |= intel_dp->color_range; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; else intel_dp->DP |= DP_LINK_TRAIN_OFF; switch (intel_dp->lane_count) { case 1: intel_dp->DP |= DP_PORT_WIDTH_1; break; case 2: intel_dp->DP |= DP_PORT_WIDTH_2; break; case 4: intel_dp->DP |= DP_PORT_WIDTH_4; break; } if (intel_dp->has_audio) intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); intel_dp->link_configuration[0] = intel_dp->link_bw; intel_dp->link_configuration[1] = intel_dp->lane_count; intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B; /* * Check for DPCD version > 1.1 and enhanced framing support */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) { intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; intel_dp->DP |= DP_ENHANCED_FRAMING; } /* CPT DP's pipe select is decided in TRANS_DP_CTL */ if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev)) intel_dp->DP |= DP_PIPEB_SELECT; if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) { /* don't miss out required setting for eDP */ intel_dp->DP |= DP_PLL_ENABLE; if (adjusted_mode->clock < 200000) intel_dp->DP |= DP_PLL_FREQ_160MHZ; else intel_dp->DP |= DP_PLL_FREQ_270MHZ; } } static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; /* * If the panel wasn't on, make sure there's not a currently * active PP sequence before enabling AUX VDD. */ if (!(I915_READ(PCH_PP_STATUS) & PP_ON)) msleep(dev_priv->panel_t3); pp = I915_READ(PCH_PP_CONTROL); pp |= EDP_FORCE_VDD; I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); } static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; pp = I915_READ(PCH_PP_CONTROL); pp &= ~EDP_FORCE_VDD; I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); /* Make sure sequencer is idle before allowing subsequent activity */ msleep(dev_priv->panel_t12); } /* Returns true if the panel was already on when called */ static bool ironlake_edp_panel_on (struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE; if (I915_READ(PCH_PP_STATUS) & PP_ON) return true; pp = I915_READ(PCH_PP_CONTROL); /* ILK workaround: disable reset around power sequence */ pp &= ~PANEL_POWER_RESET; I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON; I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask, 5000)) DRM_ERROR("panel on wait timed out: 0x%08x\n", I915_READ(PCH_PP_STATUS)); pp |= PANEL_POWER_RESET; /* restore panel reset bit */ I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); return false; } static void ironlake_edp_panel_off (struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK; pp = I915_READ(PCH_PP_CONTROL); /* ILK workaround: disable reset around power sequence */ pp &= ~PANEL_POWER_RESET; I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); pp &= ~POWER_TARGET_ON; I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000)) DRM_ERROR("panel off wait timed out: 0x%08x\n", I915_READ(PCH_PP_STATUS)); pp |= PANEL_POWER_RESET; /* restore panel reset bit */ I915_WRITE(PCH_PP_CONTROL, pp); POSTING_READ(PCH_PP_CONTROL); } static void ironlake_edp_backlight_on (struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; DRM_DEBUG_KMS("\n"); /* * If we enable the backlight right away following a panel power * on, we may see slight flicker as the panel syncs with the eDP * link. So delay a bit to make sure the image is solid before * allowing it to appear. */ msleep(300); pp = I915_READ(PCH_PP_CONTROL); pp |= EDP_BLC_ENABLE; I915_WRITE(PCH_PP_CONTROL, pp); } static void ironlake_edp_backlight_off (struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pp; DRM_DEBUG_KMS("\n"); pp = I915_READ(PCH_PP_CONTROL); pp &= ~EDP_BLC_ENABLE; I915_WRITE(PCH_PP_CONTROL, pp); } static void ironlake_edp_pll_on(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; DRM_DEBUG_KMS("\n"); dpa_ctl = I915_READ(DP_A); dpa_ctl |= DP_PLL_ENABLE; I915_WRITE(DP_A, dpa_ctl); POSTING_READ(DP_A); udelay(200); } static void ironlake_edp_pll_off(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; dpa_ctl = I915_READ(DP_A); dpa_ctl &= ~DP_PLL_ENABLE; I915_WRITE(DP_A, dpa_ctl); POSTING_READ(DP_A); udelay(200); } /* If the sink supports it, try to set the power state appropriately */ static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) { int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DRM_MODE_DPMS_ON) { ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER, DP_SET_POWER_D3); if (ret != 1) DRM_DEBUG_DRIVER("failed to write sink power state\n"); } else { /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER, DP_SET_POWER_D0); if (ret == 1) break; msleep(1); } } } static void intel_dp_prepare(struct drm_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_device *dev = encoder->dev; /* Wake up the sink first */ intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); if (is_edp(intel_dp)) { ironlake_edp_backlight_off(dev); ironlake_edp_panel_off(dev); if (!is_pch_edp(intel_dp)) ironlake_edp_pll_on(encoder); else ironlake_edp_pll_off(encoder); } intel_dp_link_down(intel_dp); } static void intel_dp_commit(struct drm_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_device *dev = encoder->dev; if (is_edp(intel_dp)) ironlake_edp_panel_vdd_on(intel_dp); intel_dp_start_link_train(intel_dp); if (is_edp(intel_dp)) { ironlake_edp_panel_on(intel_dp); ironlake_edp_panel_vdd_off(intel_dp); } intel_dp_complete_link_train(intel_dp); if (is_edp(intel_dp)) ironlake_edp_backlight_on(dev); intel_dp->dpms_mode = DRM_MODE_DPMS_ON; } static void intel_dp_dpms(struct drm_encoder *encoder, int mode) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dp_reg = I915_READ(intel_dp->output_reg); if (mode != DRM_MODE_DPMS_ON) { if (is_edp(intel_dp)) ironlake_edp_backlight_off(dev); intel_dp_sink_dpms(intel_dp, mode); intel_dp_link_down(intel_dp); if (is_edp(intel_dp)) ironlake_edp_panel_off(dev); if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) ironlake_edp_pll_off(encoder); } else { if (is_edp(intel_dp)) ironlake_edp_panel_vdd_on(intel_dp); intel_dp_sink_dpms(intel_dp, mode); if (!(dp_reg & DP_PORT_EN)) { intel_dp_start_link_train(intel_dp); if (is_edp(intel_dp)) { ironlake_edp_panel_on(intel_dp); ironlake_edp_panel_vdd_off(intel_dp); } intel_dp_complete_link_train(intel_dp); } if (is_edp(intel_dp)) ironlake_edp_backlight_on(dev); } intel_dp->dpms_mode = mode; } /* * Native read with retry for link status and receiver capability reads for * cases where the sink may still be asleep. */ static bool intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address, uint8_t *recv, int recv_bytes) { int ret, i; /* * Sinks are *supposed* to come up within 1ms from an off state, * but we're also supposed to retry 3 times per the spec. */ for (i = 0; i < 3; i++) { ret = intel_dp_aux_native_read(intel_dp, address, recv, recv_bytes); if (ret == recv_bytes) return true; msleep(1); } return false; } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ static bool intel_dp_get_link_status(struct intel_dp *intel_dp) { return intel_dp_aux_native_read_retry(intel_dp, DP_LANE0_1_STATUS, intel_dp->link_status, DP_LINK_STATUS_SIZE); } static uint8_t intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int r) { return link_status[r - DP_LANE0_1_STATUS]; } static uint8_t intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); uint8_t l = intel_dp_link_status(link_status, i); return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } static uint8_t intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); uint8_t l = intel_dp_link_status(link_status, i); return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } #if 0 static char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; static char *link_train_names[] = { "pattern 1", "pattern 2", "idle", "off" }; #endif /* * These are source-specific values; current Intel hardware supports * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB */ #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800 static uint8_t intel_dp_pre_emphasis_max(uint8_t voltage_swing) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } static void intel_get_adjust_train(struct intel_dp *intel_dp) { uint8_t v = 0; uint8_t p = 0; int lane; for (lane = 0; lane < intel_dp->lane_count; lane++) { uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane); uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= I830_DP_VOLTAGE_MAX) v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; if (p >= intel_dp_pre_emphasis_max(v)) p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; for (lane = 0; lane < 4; lane++) intel_dp->train_set[lane] = v | p; } static uint32_t intel_dp_signal_levels(uint8_t train_set, int lane_count) { uint32_t signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_600: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_800: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_1200: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPHASIS_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPHASIS_3_5: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPHASIS_6: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPHASIS_9_5: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } /* Gen6's DP voltage swing and pre-emphasis control */ static uint32_t intel_gen6_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; } } static uint8_t intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; uint8_t l = intel_dp_link_status(link_status, i); return (l >> s) & 0xf; } /* Check for clock recovery is done on all channels */ static bool intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) { int lane; uint8_t lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = intel_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return false; } return true; } /* Check to see if channel eq is done on all channels */ #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ DP_LANE_CHANNEL_EQ_DONE|\ DP_LANE_SYMBOL_LOCKED) static bool intel_channel_eq_ok(struct intel_dp *intel_dp) { uint8_t lane_align; uint8_t lane_status; int lane; lane_align = intel_dp_link_status(intel_dp->link_status, DP_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return false; for (lane = 0; lane < intel_dp->lane_count; lane++) { lane_status = intel_get_lane_status(intel_dp->link_status, lane); if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) return false; } return true; } static bool intel_dp_set_link_train(struct intel_dp *intel_dp, uint32_t dp_reg_value, uint8_t dp_train_pat) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; I915_WRITE(intel_dp->output_reg, dp_reg_value); POSTING_READ(intel_dp->output_reg); intel_dp_aux_native_write_1(intel_dp, DP_TRAINING_PATTERN_SET, dp_train_pat); ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET, intel_dp->train_set, 4); if (ret != 4) return false; return true; } /* Enable corresponding port and start training pattern 1 */ static void intel_dp_start_link_train(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc); int i; uint8_t voltage; bool clock_recovery = false; int tries; u32 reg; uint32_t DP = intel_dp->DP; /* * On CPT we have to enable the port in training pattern 1, which * will happen below in intel_dp_set_link_train. Otherwise, enable * the port and wait for it to become active. */ if (!HAS_PCH_CPT(dev)) { I915_WRITE(intel_dp->output_reg, intel_dp->DP); POSTING_READ(intel_dp->output_reg); intel_wait_for_vblank(dev, intel_crtc->pipe); } /* Write the link configuration data */ intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, intel_dp->link_configuration, DP_LINK_CONFIGURATION_SIZE); DP |= DP_PORT_EN; if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) DP &= ~DP_LINK_TRAIN_MASK_CPT; else DP &= ~DP_LINK_TRAIN_MASK; memset(intel_dp->train_set, 0, 4); voltage = 0xff; tries = 0; clock_recovery = false; for (;;) { /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ uint32_t signal_levels; if (IS_GEN6(dev) && is_edp(intel_dp)) { signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]); DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels; } else { signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count); DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; } if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) reg = DP | DP_LINK_TRAIN_PAT_1_CPT; else reg = DP | DP_LINK_TRAIN_PAT_1; if (!intel_dp_set_link_train(intel_dp, reg, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE)) break; /* Set training pattern 1 */ udelay(100); if (!intel_dp_get_link_status(intel_dp)) break; if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { clock_recovery = true; break; } /* Check to see if we've tried the max voltage */ for (i = 0; i < intel_dp->lane_count; i++) if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; if (i == intel_dp->lane_count) break; /* Check to see if we've tried the same voltage 5 times */ if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++tries; if (tries == 5) break; } else tries = 0; voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new intel_dp->train_set as requested by target */ intel_get_adjust_train(intel_dp); } intel_dp->DP = DP; } static void intel_dp_complete_link_train(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; bool channel_eq = false; int tries, cr_tries; u32 reg; uint32_t DP = intel_dp->DP; /* channel equalization */ tries = 0; cr_tries = 0; channel_eq = false; for (;;) { /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ uint32_t signal_levels; if (cr_tries > 5) { DRM_ERROR("failed to train DP, aborting\n"); intel_dp_link_down(intel_dp); break; } if (IS_GEN6(dev) && is_edp(intel_dp)) { signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]); DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels; } else { signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count); DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; } if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) reg = DP | DP_LINK_TRAIN_PAT_2_CPT; else reg = DP | DP_LINK_TRAIN_PAT_2; /* channel eq pattern */ if (!intel_dp_set_link_train(intel_dp, reg, DP_TRAINING_PATTERN_2 | DP_LINK_SCRAMBLING_DISABLE)) break; udelay(400); if (!intel_dp_get_link_status(intel_dp)) break; /* Make sure clock is still ok */ if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { intel_dp_start_link_train(intel_dp); cr_tries++; continue; } if (intel_channel_eq_ok(intel_dp)) { channel_eq = true; break; } /* Try 5 times, then try clock recovery if that fails */ if (tries > 5) { intel_dp_link_down(intel_dp); intel_dp_start_link_train(intel_dp); tries = 0; cr_tries++; continue; } /* Compute new intel_dp->train_set as requested by target */ intel_get_adjust_train(intel_dp); ++tries; } if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) reg = DP | DP_LINK_TRAIN_OFF_CPT; else reg = DP | DP_LINK_TRAIN_OFF; I915_WRITE(intel_dp->output_reg, reg); POSTING_READ(intel_dp->output_reg); intel_dp_aux_native_write_1(intel_dp, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); } static void intel_dp_link_down(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t DP = intel_dp->DP; if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0) return; DRM_DEBUG_KMS("\n"); if (is_edp(intel_dp)) { DP &= ~DP_PLL_ENABLE; I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); udelay(100); } if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) { DP &= ~DP_LINK_TRAIN_MASK_CPT; I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT); } else { DP &= ~DP_LINK_TRAIN_MASK; I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); } POSTING_READ(intel_dp->output_reg); msleep(17); if (is_edp(intel_dp)) DP |= DP_LINK_TRAIN_OFF; if (!HAS_PCH_CPT(dev) && I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) { struct drm_crtc *crtc = intel_dp->base.base.crtc; /* Hardware workaround: leaving our transcoder select * set to transcoder B while it's off will prevent the * corresponding HDMI output on transcoder A. * * Combine this with another hardware workaround: * transcoder select bit can only be cleared while the * port is enabled. */ DP &= ~DP_PIPEB_SELECT; I915_WRITE(intel_dp->output_reg, DP); /* Changes to enable or select take place the vblank * after being written. */ if (crtc == NULL) { /* We can arrive here never having been attached * to a CRTC, for instance, due to inheriting * random state from the BIOS. * * If the pipe is not running, play safe and * wait for the clocks to stabilise before * continuing. */ POSTING_READ(intel_dp->output_reg); msleep(50); } else intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe); } I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); POSTING_READ(intel_dp->output_reg); } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp) { if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd, sizeof (intel_dp->dpcd)) && (intel_dp->dpcd[DP_DPCD_REV] != 0)) { return true; } return false; } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt */ static void intel_dp_check_link_status(struct intel_dp *intel_dp) { if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON) return; if (!intel_dp->base.base.crtc) return; /* Try to read receiver status if the link appears to be up */ if (!intel_dp_get_link_status(intel_dp)) { intel_dp_link_down(intel_dp); return; } /* Now read the DPCD to see if it's actually running */ if (!intel_dp_get_dpcd(intel_dp)) { intel_dp_link_down(intel_dp); return; } if (!intel_channel_eq_ok(intel_dp)) { DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n", drm_get_encoder_name(&intel_dp->base.base)); intel_dp_start_link_train(intel_dp); intel_dp_complete_link_train(intel_dp); } } static enum drm_connector_status intel_dp_detect_dpcd(struct intel_dp *intel_dp) { if (intel_dp_get_dpcd(intel_dp)) return connector_status_connected; return connector_status_disconnected; } static enum drm_connector_status ironlake_dp_detect(struct intel_dp *intel_dp) { enum drm_connector_status status; /* Can't disconnect eDP, but you can close the lid... */ if (is_edp(intel_dp)) { status = intel_panel_detect(intel_dp->base.base.dev); if (status == connector_status_unknown) status = connector_status_connected; return status; } return intel_dp_detect_dpcd(intel_dp); } static enum drm_connector_status g4x_dp_detect(struct intel_dp *intel_dp) { struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t temp, bit; switch (intel_dp->output_reg) { case DP_B: bit = DPB_HOTPLUG_INT_STATUS; break; case DP_C: bit = DPC_HOTPLUG_INT_STATUS; break; case DP_D: bit = DPD_HOTPLUG_INT_STATUS; break; default: return connector_status_unknown; } temp = I915_READ(PORT_HOTPLUG_STAT); if ((temp & bit) == 0) return connector_status_disconnected; return intel_dp_detect_dpcd(intel_dp); } /** * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. * * \return true if DP port is connected. * \return false if DP port is disconnected. */ static enum drm_connector_status intel_dp_detect(struct drm_connector *connector, bool force) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_device *dev = intel_dp->base.base.dev; enum drm_connector_status status; struct edid *edid = NULL; intel_dp->has_audio = false; if (HAS_PCH_SPLIT(dev)) status = ironlake_dp_detect(intel_dp); else status = g4x_dp_detect(intel_dp); DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n", intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5], intel_dp->dpcd[6], intel_dp->dpcd[7]); if (status != connector_status_connected) return status; /* if (intel_dp->force_audio) { intel_dp->has_audio = intel_dp->force_audio > 0; } else { edid = drm_get_edid(connector, &intel_dp->adapter); if (edid) { intel_dp->has_audio = drm_detect_monitor_audio(edid); connector->display_info.raw_edid = NULL; kfree(edid); } } */ return connector_status_connected; } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_device *dev = intel_dp->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; /* We should parse the EDID data and find out if it has an audio sink */ ret = intel_ddc_get_modes(connector, &intel_dp->adapter); if (ret) { if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) { struct drm_display_mode *newmode; list_for_each_entry(newmode, &connector->probed_modes, head) { if (newmode->type & DRM_MODE_TYPE_PREFERRED) { dev_priv->panel_fixed_mode = drm_mode_duplicate(dev, newmode); break; } } } return ret; } /* if eDP has no EDID, try to use fixed panel mode from VBT */ if (is_edp(intel_dp)) { if (dev_priv->panel_fixed_mode != NULL) { struct drm_display_mode *mode; mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode); drm_mode_probed_add(connector, mode); return 1; } } return 0; } static int intel_dp_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct drm_i915_private *dev_priv = connector->dev->dev_private; struct intel_dp *intel_dp = intel_attached_dp(connector); int ret; ret = drm_connector_property_set_value(connector, property, val); if (ret) return ret; #if 0 if (property == dev_priv->force_audio_property) { int i = val; bool has_audio; if (i == intel_dp->force_audio) return 0; intel_dp->force_audio = i; if (i == 0) has_audio = intel_dp_detect_audio(connector); else has_audio = i > 0; if (has_audio == intel_dp->has_audio) return 0; intel_dp->has_audio = has_audio; goto done; } if (property == dev_priv->broadcast_rgb_property) { if (val == !!intel_dp->color_range) return 0; intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0; goto done; } #endif return -EINVAL; done: if (intel_dp->base.base.crtc) { struct drm_crtc *crtc = intel_dp->base.base.crtc; drm_crtc_helper_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb); } return 0; } static void intel_dp_destroy (struct drm_connector *connector) { struct drm_device *dev = connector->dev; if (intel_dpd_is_edp(dev)) intel_panel_destroy_backlight(dev); drm_sysfs_connector_remove(connector); drm_connector_cleanup(connector); kfree(connector); } static void intel_dp_encoder_destroy(struct drm_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); // i2c_del_adapter(&intel_dp->adapter); drm_encoder_cleanup(encoder); kfree(intel_dp); } static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = { .dpms = intel_dp_dpms, .mode_fixup = intel_dp_mode_fixup, .prepare = intel_dp_prepare, .mode_set = intel_dp_mode_set, .commit = intel_dp_commit, }; static const struct drm_connector_funcs intel_dp_connector_funcs = { .dpms = drm_helper_connector_dpms, .detect = intel_dp_detect, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = intel_dp_set_property, .destroy = intel_dp_destroy, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .best_encoder = intel_best_encoder, }; static const struct drm_encoder_funcs intel_dp_enc_funcs = { .destroy = intel_dp_encoder_destroy, }; static void intel_dp_hot_plug(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base); intel_dp_check_link_status(intel_dp); } /* Return which DP Port should be selected for Transcoder DP control */ int intel_trans_dp_port_sel (struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_encoder *encoder; list_for_each_entry(encoder, &mode_config->encoder_list, head) { struct intel_dp *intel_dp; if (encoder->crtc != crtc) continue; intel_dp = enc_to_intel_dp(encoder); if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) return intel_dp->output_reg; } return -1; } /* check the VBT to see whether the eDP is on DP-D port */ bool intel_dpd_is_edp(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct child_device_config *p_child; int i; if (!dev_priv->child_dev_num) return false; for (i = 0; i < dev_priv->child_dev_num; i++) { p_child = dev_priv->child_dev + i; if (p_child->dvo_port == PORT_IDPD && p_child->device_type == DEVICE_TYPE_eDP) return true; } return false; } static void intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) { intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); } void intel_dp_init(struct drm_device *dev, int output_reg) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_connector *connector; struct intel_dp *intel_dp; struct intel_encoder *intel_encoder; struct intel_connector *intel_connector; const char *name = NULL; int type; intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL); if (!intel_dp) return; intel_dp->output_reg = output_reg; intel_dp->dpms_mode = -1; intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL); if (!intel_connector) { kfree(intel_dp); return; } intel_encoder = &intel_dp->base; if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D) if (intel_dpd_is_edp(dev)) intel_dp->is_pch_edp = true; if (output_reg == DP_A || is_pch_edp(intel_dp)) { type = DRM_MODE_CONNECTOR_eDP; intel_encoder->type = INTEL_OUTPUT_EDP; } else { type = DRM_MODE_CONNECTOR_DisplayPort; intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; } connector = &intel_connector->base; drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); connector->polled = DRM_CONNECTOR_POLL_HPD; if (output_reg == DP_B || output_reg == PCH_DP_B) intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT); else if (output_reg == DP_C || output_reg == PCH_DP_C) intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT); else if (output_reg == DP_D || output_reg == PCH_DP_D) intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT); if (is_edp(intel_dp)) intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT); intel_encoder->crtc_mask = (1 << 0) | (1 << 1); connector->interlace_allowed = true; connector->doublescan_allowed = 0; drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS); drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs); intel_connector_attach_encoder(intel_connector, intel_encoder); drm_sysfs_connector_add(connector); /* Set up the DDC bus. */ switch (output_reg) { case DP_A: name = "DPDDC-A"; break; case DP_B: case PCH_DP_B: dev_priv->hotplug_supported_mask |= HDMIB_HOTPLUG_INT_STATUS; name = "DPDDC-B"; break; case DP_C: case PCH_DP_C: dev_priv->hotplug_supported_mask |= HDMIC_HOTPLUG_INT_STATUS; name = "DPDDC-C"; break; case DP_D: case PCH_DP_D: dev_priv->hotplug_supported_mask |= HDMID_HOTPLUG_INT_STATUS; name = "DPDDC-D"; break; } intel_dp_i2c_init(intel_dp, intel_connector, name); /* Cache some DPCD data in the eDP case */ if (is_edp(intel_dp)) { bool ret; u32 pp_on, pp_div; pp_on = I915_READ(PCH_PP_ON_DELAYS); pp_div = I915_READ(PCH_PP_DIVISOR); /* Get T3 & T12 values (note: VESA not bspec terminology) */ dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16; dev_priv->panel_t3 /= 10; /* t3 in 100us units */ dev_priv->panel_t12 = pp_div & 0xf; dev_priv->panel_t12 *= 100; /* t12 in 100ms units */ ironlake_edp_panel_vdd_on(intel_dp); ret = intel_dp_get_dpcd(intel_dp); ironlake_edp_panel_vdd_off(intel_dp); if (ret) { if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_NO_AUX_HANDSHAKE_LINK_TRAINING; } else { /* if this fails, presume the device is a ghost */ DRM_INFO("failed to retrieve link info, disabling eDP\n"); intel_dp_encoder_destroy(&intel_dp->base.base); intel_dp_destroy(&intel_connector->base); return; } } intel_encoder->hot_plug = intel_dp_hot_plug; if (is_edp(intel_dp)) { /* initialize panel mode from VBT if available for eDP */ if (dev_priv->lfp_lvds_vbt_mode) { dev_priv->panel_fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); if (dev_priv->panel_fixed_mode) { dev_priv->panel_fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; } } dev_priv->int_edp_connector = connector; intel_panel_setup_backlight(dev); } intel_dp_add_properties(intel_dp, connector); /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G4X(dev) && !IS_GM45(dev)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } }