kolibrios-fun/drivers/include/linux/slab.h
Sergey Semyonov (Serge) 9e5dea1997 ddk: 4.4
git-svn-id: svn://kolibrios.org@6082 a494cfbc-eb01-0410-851d-a64ba20cac60
2016-01-20 04:19:53 +00:00

157 lines
5.0 KiB
C

/*
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
*
* (C) SGI 2006, Christoph Lameter
* Cleaned up and restructured to ease the addition of alternative
* implementations of SLAB allocators.
* (C) Linux Foundation 2008-2013
* Unified interface for all slab allocators
*/
#ifndef _LINUX_SLAB_H
#define _LINUX_SLAB_H
#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/workqueue.h>
/*
* Flags to pass to kmem_cache_create().
* The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
*/
#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
/*
* SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
*
* This delays freeing the SLAB page by a grace period, it does _NOT_
* delay object freeing. This means that if you do kmem_cache_free()
* that memory location is free to be reused at any time. Thus it may
* be possible to see another object there in the same RCU grace period.
*
* This feature only ensures the memory location backing the object
* stays valid, the trick to using this is relying on an independent
* object validation pass. Something like:
*
* rcu_read_lock()
* again:
* obj = lockless_lookup(key);
* if (obj) {
* if (!try_get_ref(obj)) // might fail for free objects
* goto again;
*
* if (obj->key != key) { // not the object we expected
* put_ref(obj);
* goto again;
* }
* }
* rcu_read_unlock();
*
* This is useful if we need to approach a kernel structure obliquely,
* from its address obtained without the usual locking. We can lock
* the structure to stabilize it and check it's still at the given address,
* only if we can be sure that the memory has not been meanwhile reused
* for some other kind of object (which our subsystem's lock might corrupt).
*
* rcu_read_lock before reading the address, then rcu_read_unlock after
* taking the spinlock within the structure expected at that address.
*/
#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
# define SLAB_DEBUG_OBJECTS 0x00400000UL
#else
# define SLAB_DEBUG_OBJECTS 0x00000000UL
#endif
#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK
# define SLAB_NOTRACK 0x01000000UL
#else
# define SLAB_NOTRACK 0x00000000UL
#endif
#ifdef CONFIG_FAILSLAB
# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
#else
# define SLAB_FAILSLAB 0x00000000UL
#endif
/* The following flags affect the page allocator grouping pages by mobility */
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
/*
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
*
* Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
*
* ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
* Both make kfree a no-op.
*/
#define ZERO_SIZE_PTR ((void *)16)
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
(unsigned long)ZERO_SIZE_PTR)
void __init kmem_cache_init(void);
bool slab_is_available(void);
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
unsigned long,
void (*)(void *));
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
void kmem_cache_free(struct kmem_cache *, void *);
static inline void *krealloc(void *p, size_t new_size, gfp_t flags)
{
return __builtin_realloc(p, new_size);
}
static inline void kfree(void *p)
{
__builtin_free(p);
}
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
void *ret = __builtin_malloc(size);
memset(ret, 0, size);
return ret;
}
/**
* kzalloc - allocate memory. The memory is set to zero.
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
*/
static inline void *kzalloc(size_t size, gfp_t flags)
{
void *ret = __builtin_malloc(size);
memset(ret, 0, size);
return ret;
}
static inline void *kcalloc(size_t n, size_t size, uint32_t flags)
{
return (void*)kzalloc(n * size, 0);
}
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
{
// if (size != 0 && n > SIZE_MAX / size)
// return NULL;
return (void*)kmalloc(n * size, flags);
}
#endif /* _LINUX_SLAB_H */