kolibrios-fun/drivers/video/drm/radeon/radeon_vm.c
Sergey Semyonov (Serge) b4abefe936 drm: ati-3.19-rc1
git-svn-id: svn://kolibrios.org@5271 a494cfbc-eb01-0410-851d-a64ba20cac60
2014-12-27 15:58:21 +00:00

1250 lines
31 KiB
C

/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon.h"
#include "radeon_trace.h"
/*
* GPUVM
* GPUVM is similar to the legacy gart on older asics, however
* rather than there being a single global gart table
* for the entire GPU, there are multiple VM page tables active
* at any given time. The VM page tables can contain a mix
* vram pages and system memory pages and system memory pages
* can be mapped as snooped (cached system pages) or unsnooped
* (uncached system pages).
* Each VM has an ID associated with it and there is a page table
* associated with each VMID. When execting a command buffer,
* the kernel tells the the ring what VMID to use for that command
* buffer. VMIDs are allocated dynamically as commands are submitted.
* The userspace drivers maintain their own address space and the kernel
* sets up their pages tables accordingly when they submit their
* command buffers and a VMID is assigned.
* Cayman/Trinity support up to 8 active VMs at any given time;
* SI supports 16.
*/
/**
* radeon_vm_num_pde - return the number of page directory entries
*
* @rdev: radeon_device pointer
*
* Calculate the number of page directory entries (cayman+).
*/
static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
{
return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
}
/**
* radeon_vm_directory_size - returns the size of the page directory in bytes
*
* @rdev: radeon_device pointer
*
* Calculate the size of the page directory in bytes (cayman+).
*/
static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
{
return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
}
/**
* radeon_vm_manager_init - init the vm manager
*
* @rdev: radeon_device pointer
*
* Init the vm manager (cayman+).
* Returns 0 for success, error for failure.
*/
int radeon_vm_manager_init(struct radeon_device *rdev)
{
int r;
if (!rdev->vm_manager.enabled) {
r = radeon_asic_vm_init(rdev);
if (r)
return r;
rdev->vm_manager.enabled = true;
}
return 0;
}
/**
* radeon_vm_manager_fini - tear down the vm manager
*
* @rdev: radeon_device pointer
*
* Tear down the VM manager (cayman+).
*/
void radeon_vm_manager_fini(struct radeon_device *rdev)
{
int i;
if (!rdev->vm_manager.enabled)
return;
for (i = 0; i < RADEON_NUM_VM; ++i)
radeon_fence_unref(&rdev->vm_manager.active[i]);
radeon_asic_vm_fini(rdev);
rdev->vm_manager.enabled = false;
}
/**
* radeon_vm_get_bos - add the vm BOs to a validation list
*
* @vm: vm providing the BOs
* @head: head of validation list
*
* Add the page directory to the list of BOs to
* validate for command submission (cayman+).
*/
struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
struct radeon_vm *vm,
struct list_head *head)
{
struct radeon_bo_list *list;
unsigned i, idx;
list = kmalloc_array(vm->max_pde_used + 2,
sizeof(struct radeon_bo_list), GFP_KERNEL);
if (!list)
return NULL;
/* add the vm page table to the list */
list[0].robj = vm->page_directory;
list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
list[0].tv.bo = &vm->page_directory->tbo;
list[0].tv.shared = true;
list[0].tiling_flags = 0;
list_add(&list[0].tv.head, head);
for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
if (!vm->page_tables[i].bo)
continue;
list[idx].robj = vm->page_tables[i].bo;
list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
list[idx].tv.bo = &list[idx].robj->tbo;
list[idx].tv.shared = true;
list[idx].tiling_flags = 0;
list_add(&list[idx++].tv.head, head);
}
return list;
}
/**
* radeon_vm_grab_id - allocate the next free VMID
*
* @rdev: radeon_device pointer
* @vm: vm to allocate id for
* @ring: ring we want to submit job to
*
* Allocate an id for the vm (cayman+).
* Returns the fence we need to sync to (if any).
*
* Global and local mutex must be locked!
*/
struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
struct radeon_vm *vm, int ring)
{
struct radeon_fence *best[RADEON_NUM_RINGS] = {};
struct radeon_vm_id *vm_id = &vm->ids[ring];
unsigned choices[2] = {};
unsigned i;
/* check if the id is still valid */
if (vm_id->id && vm_id->last_id_use &&
vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
return NULL;
/* we definately need to flush */
vm_id->pd_gpu_addr = ~0ll;
/* skip over VMID 0, since it is the system VM */
for (i = 1; i < rdev->vm_manager.nvm; ++i) {
struct radeon_fence *fence = rdev->vm_manager.active[i];
if (fence == NULL) {
/* found a free one */
vm_id->id = i;
trace_radeon_vm_grab_id(i, ring);
return NULL;
}
if (radeon_fence_is_earlier(fence, best[fence->ring])) {
best[fence->ring] = fence;
choices[fence->ring == ring ? 0 : 1] = i;
}
}
for (i = 0; i < 2; ++i) {
if (choices[i]) {
vm_id->id = choices[i];
trace_radeon_vm_grab_id(choices[i], ring);
return rdev->vm_manager.active[choices[i]];
}
}
/* should never happen */
BUG();
return NULL;
}
/**
* radeon_vm_flush - hardware flush the vm
*
* @rdev: radeon_device pointer
* @vm: vm we want to flush
* @ring: ring to use for flush
* @updates: last vm update that is waited for
*
* Flush the vm (cayman+).
*
* Global and local mutex must be locked!
*/
void radeon_vm_flush(struct radeon_device *rdev,
struct radeon_vm *vm,
int ring, struct radeon_fence *updates)
{
uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
struct radeon_vm_id *vm_id = &vm->ids[ring];
if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
radeon_fence_unref(&vm_id->flushed_updates);
vm_id->flushed_updates = radeon_fence_ref(updates);
vm_id->pd_gpu_addr = pd_addr;
radeon_ring_vm_flush(rdev, &rdev->ring[ring],
vm_id->id, vm_id->pd_gpu_addr);
}
}
/**
* radeon_vm_fence - remember fence for vm
*
* @rdev: radeon_device pointer
* @vm: vm we want to fence
* @fence: fence to remember
*
* Fence the vm (cayman+).
* Set the fence used to protect page table and id.
*
* Global and local mutex must be locked!
*/
void radeon_vm_fence(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_fence *fence)
{
unsigned vm_id = vm->ids[fence->ring].id;
radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
}
/**
* radeon_vm_bo_find - find the bo_va for a specific vm & bo
*
* @vm: requested vm
* @bo: requested buffer object
*
* Find @bo inside the requested vm (cayman+).
* Search inside the @bos vm list for the requested vm
* Returns the found bo_va or NULL if none is found
*
* Object has to be reserved!
*/
struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
struct radeon_bo *bo)
{
struct radeon_bo_va *bo_va;
list_for_each_entry(bo_va, &bo->va, bo_list) {
if (bo_va->vm == vm) {
return bo_va;
}
}
return NULL;
}
/**
* radeon_vm_bo_add - add a bo to a specific vm
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @bo: radeon buffer object
*
* Add @bo into the requested vm (cayman+).
* Add @bo to the list of bos associated with the vm
* Returns newly added bo_va or NULL for failure
*
* Object has to be reserved!
*/
struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_bo *bo)
{
struct radeon_bo_va *bo_va;
bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
if (bo_va == NULL) {
return NULL;
}
bo_va->vm = vm;
bo_va->bo = bo;
bo_va->it.start = 0;
bo_va->it.last = 0;
bo_va->flags = 0;
bo_va->addr = 0;
bo_va->ref_count = 1;
INIT_LIST_HEAD(&bo_va->bo_list);
INIT_LIST_HEAD(&bo_va->vm_status);
mutex_lock(&vm->mutex);
list_add_tail(&bo_va->bo_list, &bo->va);
mutex_unlock(&vm->mutex);
return bo_va;
}
/**
* radeon_vm_set_pages - helper to call the right asic function
*
* @rdev: radeon_device pointer
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: hw access flags
*
* Traces the parameters and calls the right asic functions
* to setup the page table using the DMA.
*/
static void radeon_vm_set_pages(struct radeon_device *rdev,
struct radeon_ib *ib,
uint64_t pe,
uint64_t addr, unsigned count,
uint32_t incr, uint32_t flags)
{
trace_radeon_vm_set_page(pe, addr, count, incr, flags);
if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
} else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
radeon_asic_vm_write_pages(rdev, ib, pe, addr,
count, incr, flags);
} else {
radeon_asic_vm_set_pages(rdev, ib, pe, addr,
count, incr, flags);
}
}
/**
* radeon_vm_clear_bo - initially clear the page dir/table
*
* @rdev: radeon_device pointer
* @bo: bo to clear
*/
static int radeon_vm_clear_bo(struct radeon_device *rdev,
struct radeon_bo *bo)
{
struct radeon_ib ib;
unsigned entries;
uint64_t addr;
int r;
r = radeon_bo_reserve(bo, false);
if (r)
return r;
r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
if (r)
goto error_unreserve;
addr = radeon_bo_gpu_offset(bo);
entries = radeon_bo_size(bo) / 8;
r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
if (r)
goto error_unreserve;
ib.length_dw = 0;
radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
radeon_asic_vm_pad_ib(rdev, &ib);
WARN_ON(ib.length_dw > 64);
r = radeon_ib_schedule(rdev, &ib, NULL, false);
if (r)
goto error_free;
ib.fence->is_vm_update = true;
radeon_bo_fence(bo, ib.fence, false);
error_free:
radeon_ib_free(rdev, &ib);
error_unreserve:
radeon_bo_unreserve(bo);
return r;
}
/**
* radeon_vm_bo_set_addr - set bos virtual address inside a vm
*
* @rdev: radeon_device pointer
* @bo_va: bo_va to store the address
* @soffset: requested offset of the buffer in the VM address space
* @flags: attributes of pages (read/write/valid/etc.)
*
* Set offset of @bo_va (cayman+).
* Validate and set the offset requested within the vm address space.
* Returns 0 for success, error for failure.
*
* Object has to be reserved and gets unreserved by this function!
*/
int radeon_vm_bo_set_addr(struct radeon_device *rdev,
struct radeon_bo_va *bo_va,
uint64_t soffset,
uint32_t flags)
{
uint64_t size = radeon_bo_size(bo_va->bo);
struct radeon_vm *vm = bo_va->vm;
unsigned last_pfn, pt_idx;
uint64_t eoffset;
int r;
if (soffset) {
/* make sure object fit at this offset */
eoffset = soffset + size;
if (soffset >= eoffset) {
return -EINVAL;
}
last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
if (last_pfn > rdev->vm_manager.max_pfn) {
dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
last_pfn, rdev->vm_manager.max_pfn);
return -EINVAL;
}
} else {
eoffset = last_pfn = 0;
}
mutex_lock(&vm->mutex);
if (bo_va->it.start || bo_va->it.last) {
if (bo_va->addr) {
/* add a clone of the bo_va to clear the old address */
struct radeon_bo_va *tmp;
tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
if (!tmp) {
mutex_unlock(&vm->mutex);
return -ENOMEM;
}
tmp->it.start = bo_va->it.start;
tmp->it.last = bo_va->it.last;
tmp->vm = vm;
tmp->addr = bo_va->addr;
tmp->bo = radeon_bo_ref(bo_va->bo);
spin_lock(&vm->status_lock);
list_add(&tmp->vm_status, &vm->freed);
spin_unlock(&vm->status_lock);
}
interval_tree_remove(&bo_va->it, &vm->va);
bo_va->it.start = 0;
bo_va->it.last = 0;
}
soffset /= RADEON_GPU_PAGE_SIZE;
eoffset /= RADEON_GPU_PAGE_SIZE;
if (soffset || eoffset) {
struct interval_tree_node *it;
it = interval_tree_iter_first(&vm->va, soffset, eoffset - 1);
if (it) {
struct radeon_bo_va *tmp;
tmp = container_of(it, struct radeon_bo_va, it);
/* bo and tmp overlap, invalid offset */
dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
"(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
soffset, tmp->bo, tmp->it.start, tmp->it.last);
mutex_unlock(&vm->mutex);
return -EINVAL;
}
bo_va->it.start = soffset;
bo_va->it.last = eoffset - 1;
interval_tree_insert(&bo_va->it, &vm->va);
}
bo_va->flags = flags;
bo_va->addr = 0;
soffset >>= radeon_vm_block_size;
eoffset >>= radeon_vm_block_size;
BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
if (eoffset > vm->max_pde_used)
vm->max_pde_used = eoffset;
radeon_bo_unreserve(bo_va->bo);
/* walk over the address space and allocate the page tables */
for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
struct radeon_bo *pt;
if (vm->page_tables[pt_idx].bo)
continue;
/* drop mutex to allocate and clear page table */
mutex_unlock(&vm->mutex);
r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
RADEON_GPU_PAGE_SIZE, true,
RADEON_GEM_DOMAIN_VRAM, 0,
NULL, NULL, &pt);
if (r)
return r;
r = radeon_vm_clear_bo(rdev, pt);
if (r) {
radeon_bo_unref(&pt);
radeon_bo_reserve(bo_va->bo, false);
return r;
}
/* aquire mutex again */
mutex_lock(&vm->mutex);
if (vm->page_tables[pt_idx].bo) {
/* someone else allocated the pt in the meantime */
mutex_unlock(&vm->mutex);
radeon_bo_unref(&pt);
mutex_lock(&vm->mutex);
continue;
}
vm->page_tables[pt_idx].addr = 0;
vm->page_tables[pt_idx].bo = pt;
}
mutex_unlock(&vm->mutex);
return 0;
}
/**
* radeon_vm_map_gart - get the physical address of a gart page
*
* @rdev: radeon_device pointer
* @addr: the unmapped addr
*
* Look up the physical address of the page that the pte resolves
* to (cayman+).
* Returns the physical address of the page.
*/
uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
{
uint64_t result;
/* page table offset */
result = rdev->gart.pages_addr[addr >> PAGE_SHIFT];
/* in case cpu page size != gpu page size*/
result |= addr & (~PAGE_MASK);
return result;
}
/**
* radeon_vm_page_flags - translate page flags to what the hw uses
*
* @flags: flags comming from userspace
*
* Translate the flags the userspace ABI uses to hw flags.
*/
static uint32_t radeon_vm_page_flags(uint32_t flags)
{
uint32_t hw_flags = 0;
hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
if (flags & RADEON_VM_PAGE_SYSTEM) {
hw_flags |= R600_PTE_SYSTEM;
hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
}
return hw_flags;
}
/**
* radeon_vm_update_pdes - make sure that page directory is valid
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @start: start of GPU address range
* @end: end of GPU address range
*
* Allocates new page tables if necessary
* and updates the page directory (cayman+).
* Returns 0 for success, error for failure.
*
* Global and local mutex must be locked!
*/
int radeon_vm_update_page_directory(struct radeon_device *rdev,
struct radeon_vm *vm)
{
struct radeon_bo *pd = vm->page_directory;
uint64_t pd_addr = radeon_bo_gpu_offset(pd);
uint32_t incr = RADEON_VM_PTE_COUNT * 8;
uint64_t last_pde = ~0, last_pt = ~0;
unsigned count = 0, pt_idx, ndw;
struct radeon_ib ib;
int r;
/* padding, etc. */
ndw = 64;
/* assume the worst case */
ndw += vm->max_pde_used * 6;
/* update too big for an IB */
if (ndw > 0xfffff)
return -ENOMEM;
r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
if (r)
return r;
ib.length_dw = 0;
/* walk over the address space and update the page directory */
for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
uint64_t pde, pt;
if (bo == NULL)
continue;
pt = radeon_bo_gpu_offset(bo);
if (vm->page_tables[pt_idx].addr == pt)
continue;
vm->page_tables[pt_idx].addr = pt;
pde = pd_addr + pt_idx * 8;
if (((last_pde + 8 * count) != pde) ||
((last_pt + incr * count) != pt)) {
if (count) {
radeon_vm_set_pages(rdev, &ib, last_pde,
last_pt, count, incr,
R600_PTE_VALID);
}
count = 1;
last_pde = pde;
last_pt = pt;
} else {
++count;
}
}
if (count)
radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
incr, R600_PTE_VALID);
if (ib.length_dw != 0) {
radeon_asic_vm_pad_ib(rdev, &ib);
radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true);
WARN_ON(ib.length_dw > ndw);
r = radeon_ib_schedule(rdev, &ib, NULL, false);
if (r) {
radeon_ib_free(rdev, &ib);
return r;
}
ib.fence->is_vm_update = true;
radeon_bo_fence(pd, ib.fence, false);
}
radeon_ib_free(rdev, &ib);
return 0;
}
/**
* radeon_vm_frag_ptes - add fragment information to PTEs
*
* @rdev: radeon_device pointer
* @ib: IB for the update
* @pe_start: first PTE to handle
* @pe_end: last PTE to handle
* @addr: addr those PTEs should point to
* @flags: hw mapping flags
*
* Global and local mutex must be locked!
*/
static void radeon_vm_frag_ptes(struct radeon_device *rdev,
struct radeon_ib *ib,
uint64_t pe_start, uint64_t pe_end,
uint64_t addr, uint32_t flags)
{
/**
* The MC L1 TLB supports variable sized pages, based on a fragment
* field in the PTE. When this field is set to a non-zero value, page
* granularity is increased from 4KB to (1 << (12 + frag)). The PTE
* flags are considered valid for all PTEs within the fragment range
* and corresponding mappings are assumed to be physically contiguous.
*
* The L1 TLB can store a single PTE for the whole fragment,
* significantly increasing the space available for translation
* caching. This leads to large improvements in throughput when the
* TLB is under pressure.
*
* The L2 TLB distributes small and large fragments into two
* asymmetric partitions. The large fragment cache is significantly
* larger. Thus, we try to use large fragments wherever possible.
* Userspace can support this by aligning virtual base address and
* allocation size to the fragment size.
*/
/* NI is optimized for 256KB fragments, SI and newer for 64KB */
uint64_t frag_flags = rdev->family == CHIP_CAYMAN ?
R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
uint64_t frag_align = rdev->family == CHIP_CAYMAN ? 0x200 : 0x80;
uint64_t frag_start = ALIGN(pe_start, frag_align);
uint64_t frag_end = pe_end & ~(frag_align - 1);
unsigned count;
/* system pages are non continuously */
if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
(frag_start >= frag_end)) {
count = (pe_end - pe_start) / 8;
radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
RADEON_GPU_PAGE_SIZE, flags);
return;
}
/* handle the 4K area at the beginning */
if (pe_start != frag_start) {
count = (frag_start - pe_start) / 8;
radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
RADEON_GPU_PAGE_SIZE, flags);
addr += RADEON_GPU_PAGE_SIZE * count;
}
/* handle the area in the middle */
count = (frag_end - frag_start) / 8;
radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
RADEON_GPU_PAGE_SIZE, flags | frag_flags);
/* handle the 4K area at the end */
if (frag_end != pe_end) {
addr += RADEON_GPU_PAGE_SIZE * count;
count = (pe_end - frag_end) / 8;
radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
RADEON_GPU_PAGE_SIZE, flags);
}
}
/**
* radeon_vm_update_ptes - make sure that page tables are valid
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @start: start of GPU address range
* @end: end of GPU address range
* @dst: destination address to map to
* @flags: mapping flags
*
* Update the page tables in the range @start - @end (cayman+).
*
* Global and local mutex must be locked!
*/
static int radeon_vm_update_ptes(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_ib *ib,
uint64_t start, uint64_t end,
uint64_t dst, uint32_t flags)
{
uint64_t mask = RADEON_VM_PTE_COUNT - 1;
uint64_t last_pte = ~0, last_dst = ~0;
unsigned count = 0;
uint64_t addr;
/* walk over the address space and update the page tables */
for (addr = start; addr < end; ) {
uint64_t pt_idx = addr >> radeon_vm_block_size;
struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
unsigned nptes;
uint64_t pte;
int r;
radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true);
r = reservation_object_reserve_shared(pt->tbo.resv);
if (r)
return r;
if ((addr & ~mask) == (end & ~mask))
nptes = end - addr;
else
nptes = RADEON_VM_PTE_COUNT - (addr & mask);
pte = radeon_bo_gpu_offset(pt);
pte += (addr & mask) * 8;
if ((last_pte + 8 * count) != pte) {
if (count) {
radeon_vm_frag_ptes(rdev, ib, last_pte,
last_pte + 8 * count,
last_dst, flags);
}
count = nptes;
last_pte = pte;
last_dst = dst;
} else {
count += nptes;
}
addr += nptes;
dst += nptes * RADEON_GPU_PAGE_SIZE;
}
if (count) {
radeon_vm_frag_ptes(rdev, ib, last_pte,
last_pte + 8 * count,
last_dst, flags);
}
return 0;
}
/**
* radeon_vm_fence_pts - fence page tables after an update
*
* @vm: requested vm
* @start: start of GPU address range
* @end: end of GPU address range
* @fence: fence to use
*
* Fence the page tables in the range @start - @end (cayman+).
*
* Global and local mutex must be locked!
*/
static void radeon_vm_fence_pts(struct radeon_vm *vm,
uint64_t start, uint64_t end,
struct radeon_fence *fence)
{
unsigned i;
start >>= radeon_vm_block_size;
end >>= radeon_vm_block_size;
for (i = start; i <= end; ++i)
radeon_bo_fence(vm->page_tables[i].bo, fence, true);
}
/**
* radeon_vm_bo_update - map a bo into the vm page table
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @bo: radeon buffer object
* @mem: ttm mem
*
* Fill in the page table entries for @bo (cayman+).
* Returns 0 for success, -EINVAL for failure.
*
* Object have to be reserved and mutex must be locked!
*/
int radeon_vm_bo_update(struct radeon_device *rdev,
struct radeon_bo_va *bo_va,
struct ttm_mem_reg *mem)
{
struct radeon_vm *vm = bo_va->vm;
struct radeon_ib ib;
unsigned nptes, ncmds, ndw;
uint64_t addr;
uint32_t flags;
int r;
if (!bo_va->it.start) {
dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
bo_va->bo, vm);
return -EINVAL;
}
spin_lock(&vm->status_lock);
list_del_init(&bo_va->vm_status);
spin_unlock(&vm->status_lock);
bo_va->flags &= ~RADEON_VM_PAGE_VALID;
bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
// if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm))
// bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
if (mem) {
addr = mem->start << PAGE_SHIFT;
if (mem->mem_type != TTM_PL_SYSTEM) {
bo_va->flags |= RADEON_VM_PAGE_VALID;
}
if (mem->mem_type == TTM_PL_TT) {
bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
} else {
addr += rdev->vm_manager.vram_base_offset;
}
} else {
addr = 0;
}
if (addr == bo_va->addr)
return 0;
bo_va->addr = addr;
trace_radeon_vm_bo_update(bo_va);
nptes = bo_va->it.last - bo_va->it.start + 1;
/* reserve space for one command every (1 << BLOCK_SIZE) entries
or 2k dwords (whatever is smaller) */
ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
/* padding, etc. */
ndw = 64;
flags = radeon_vm_page_flags(bo_va->flags);
if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
/* only copy commands needed */
ndw += ncmds * 7;
} else if (flags & R600_PTE_SYSTEM) {
/* header for write data commands */
ndw += ncmds * 4;
/* body of write data command */
ndw += nptes * 2;
} else {
/* set page commands needed */
ndw += ncmds * 10;
/* two extra commands for begin/end of fragment */
ndw += 2 * 10;
}
/* update too big for an IB */
if (ndw > 0xfffff)
return -ENOMEM;
r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
if (r)
return r;
ib.length_dw = 0;
if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
unsigned i;
for (i = 0; i < RADEON_NUM_RINGS; ++i)
radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
}
r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
bo_va->it.last + 1, addr,
radeon_vm_page_flags(bo_va->flags));
if (r) {
radeon_ib_free(rdev, &ib);
return r;
}
radeon_asic_vm_pad_ib(rdev, &ib);
WARN_ON(ib.length_dw > ndw);
r = radeon_ib_schedule(rdev, &ib, NULL, false);
if (r) {
radeon_ib_free(rdev, &ib);
return r;
}
ib.fence->is_vm_update = true;
radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
radeon_fence_unref(&bo_va->last_pt_update);
bo_va->last_pt_update = radeon_fence_ref(ib.fence);
radeon_ib_free(rdev, &ib);
return 0;
}
/**
* radeon_vm_clear_freed - clear freed BOs in the PT
*
* @rdev: radeon_device pointer
* @vm: requested vm
*
* Make sure all freed BOs are cleared in the PT.
* Returns 0 for success.
*
* PTs have to be reserved and mutex must be locked!
*/
int radeon_vm_clear_freed(struct radeon_device *rdev,
struct radeon_vm *vm)
{
struct radeon_bo_va *bo_va;
int r;
spin_lock(&vm->status_lock);
while (!list_empty(&vm->freed)) {
bo_va = list_first_entry(&vm->freed,
struct radeon_bo_va, vm_status);
spin_unlock(&vm->status_lock);
r = radeon_vm_bo_update(rdev, bo_va, NULL);
radeon_bo_unref(&bo_va->bo);
radeon_fence_unref(&bo_va->last_pt_update);
kfree(bo_va);
if (r)
return r;
spin_lock(&vm->status_lock);
}
spin_unlock(&vm->status_lock);
return 0;
}
/**
* radeon_vm_clear_invalids - clear invalidated BOs in the PT
*
* @rdev: radeon_device pointer
* @vm: requested vm
*
* Make sure all invalidated BOs are cleared in the PT.
* Returns 0 for success.
*
* PTs have to be reserved and mutex must be locked!
*/
int radeon_vm_clear_invalids(struct radeon_device *rdev,
struct radeon_vm *vm)
{
struct radeon_bo_va *bo_va;
int r;
spin_lock(&vm->status_lock);
while (!list_empty(&vm->invalidated)) {
bo_va = list_first_entry(&vm->invalidated,
struct radeon_bo_va, vm_status);
spin_unlock(&vm->status_lock);
r = radeon_vm_bo_update(rdev, bo_va, NULL);
if (r)
return r;
spin_lock(&vm->status_lock);
}
spin_unlock(&vm->status_lock);
return 0;
}
/**
* radeon_vm_bo_rmv - remove a bo to a specific vm
*
* @rdev: radeon_device pointer
* @bo_va: requested bo_va
*
* Remove @bo_va->bo from the requested vm (cayman+).
*
* Object have to be reserved!
*/
void radeon_vm_bo_rmv(struct radeon_device *rdev,
struct radeon_bo_va *bo_va)
{
struct radeon_vm *vm = bo_va->vm;
list_del(&bo_va->bo_list);
mutex_lock(&vm->mutex);
interval_tree_remove(&bo_va->it, &vm->va);
spin_lock(&vm->status_lock);
list_del(&bo_va->vm_status);
if (bo_va->addr) {
bo_va->bo = radeon_bo_ref(bo_va->bo);
list_add(&bo_va->vm_status, &vm->freed);
} else {
radeon_fence_unref(&bo_va->last_pt_update);
kfree(bo_va);
}
spin_unlock(&vm->status_lock);
mutex_unlock(&vm->mutex);
}
/**
* radeon_vm_bo_invalidate - mark the bo as invalid
*
* @rdev: radeon_device pointer
* @vm: requested vm
* @bo: radeon buffer object
*
* Mark @bo as invalid (cayman+).
*/
void radeon_vm_bo_invalidate(struct radeon_device *rdev,
struct radeon_bo *bo)
{
struct radeon_bo_va *bo_va;
list_for_each_entry(bo_va, &bo->va, bo_list) {
if (bo_va->addr) {
spin_lock(&bo_va->vm->status_lock);
list_del(&bo_va->vm_status);
list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
spin_unlock(&bo_va->vm->status_lock);
}
}
}
/**
* radeon_vm_init - initialize a vm instance
*
* @rdev: radeon_device pointer
* @vm: requested vm
*
* Init @vm fields (cayman+).
*/
int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
{
const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
RADEON_VM_PTE_COUNT * 8);
unsigned pd_size, pd_entries, pts_size;
int i, r;
vm->ib_bo_va = NULL;
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
vm->ids[i].id = 0;
vm->ids[i].flushed_updates = NULL;
vm->ids[i].last_id_use = NULL;
}
mutex_init(&vm->mutex);
vm->va = RB_ROOT;
spin_lock_init(&vm->status_lock);
INIT_LIST_HEAD(&vm->invalidated);
INIT_LIST_HEAD(&vm->freed);
pd_size = radeon_vm_directory_size(rdev);
pd_entries = radeon_vm_num_pdes(rdev);
/* allocate page table array */
pts_size = pd_entries * sizeof(struct radeon_vm_pt);
vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
if (vm->page_tables == NULL) {
DRM_ERROR("Cannot allocate memory for page table array\n");
return -ENOMEM;
}
r = radeon_bo_create(rdev, pd_size, align, true,
RADEON_GEM_DOMAIN_VRAM, 0, NULL,
NULL, &vm->page_directory);
if (r)
return r;
r = radeon_vm_clear_bo(rdev, vm->page_directory);
if (r) {
radeon_bo_unref(&vm->page_directory);
vm->page_directory = NULL;
return r;
}
return 0;
}
/**
* radeon_vm_fini - tear down a vm instance
*
* @rdev: radeon_device pointer
* @vm: requested vm
*
* Tear down @vm (cayman+).
* Unbind the VM and remove all bos from the vm bo list
*/
void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
{
struct radeon_bo_va *bo_va, *tmp;
int i, r;
if (!RB_EMPTY_ROOT(&vm->va)) {
dev_err(rdev->dev, "still active bo inside vm\n");
}
rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) {
interval_tree_remove(&bo_va->it, &vm->va);
r = radeon_bo_reserve(bo_va->bo, false);
if (!r) {
list_del_init(&bo_va->bo_list);
radeon_bo_unreserve(bo_va->bo);
radeon_fence_unref(&bo_va->last_pt_update);
kfree(bo_va);
}
}
list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
radeon_bo_unref(&bo_va->bo);
radeon_fence_unref(&bo_va->last_pt_update);
kfree(bo_va);
}
for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
radeon_bo_unref(&vm->page_tables[i].bo);
kfree(vm->page_tables);
radeon_bo_unref(&vm->page_directory);
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
radeon_fence_unref(&vm->ids[i].flushed_updates);
radeon_fence_unref(&vm->ids[i].last_id_use);
}
mutex_destroy(&vm->mutex);
}