kolibrios-fun/drivers/old/radeonhd/rhd_pll.c
Sergey Semyonov (Serge) 7c0a5de1e7 move old ddx driver
git-svn-id: svn://kolibrios.org@1407 a494cfbc-eb01-0410-851d-a64ba20cac60
2010-02-12 17:43:39 +00:00

1548 lines
39 KiB
C

/*
* Copyright 2007 Luc Verhaegen <lverhaegen@novell.com>
* Copyright 2007 Matthias Hopf <mhopf@novell.com>
* Copyright 2007 Egbert Eich <eich@novell.com>
* Copyright 2007 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "xf86.h"
/* for usleep */
#if HAVE_XF86_ANSIC_H
# include "xf86_ansic.h"
#else
# include <unistd.h>
#endif
#include "rhd.h"
#include "rhd_crtc.h"
#include "rhd_pll.h"
#include "rhd_regs.h"
#include "rhd_atombios.h"
#define PLL_CALIBRATE_WAIT 0x100000
/*
* Get gain, charge pump, loop filter and current bias.
* For R500, this is done in atombios by ASIC_RegistersInit
* Some data table in atom should've provided this information.
*/
struct PLL_Control {
CARD16 FeedbackDivider; /* 0xFFFF/-1 is the endmarker here */
CARD32 Control;
};
/* From hardcoded values. */
static struct PLL_Control RV610PLLControl[] =
{
{ 0x0049, 0x159F8704 },
{ 0x006C, 0x159B8704 },
{ 0xFFFF, 0x159EC704 }
};
/* Some tables are provided by atombios,
* it's just that they are hidden away deliberately and not exposed */
static struct PLL_Control RV670PLLControl[] =
{
{ 0x004A, 0x159FC704 },
{ 0x0067, 0x159BC704 },
{ 0x00C4, 0x159EC704 },
{ 0x00F4, 0x1593A704 },
{ 0x0136, 0x1595A704 },
{ 0x01A4, 0x1596A704 },
{ 0x022C, 0x159CE504 },
{ 0xFFFF, 0x1591E404 }
};
/*
* Used by PLLElectrical() for r5xx+ and by rv620/35 code.
*/
static CARD32
PLLControlTableRetrieve(struct PLL_Control *Table, CARD16 FeedbackDivider)
{
int i;
for (i = 0; Table[i].FeedbackDivider < 0xFFFF ; i++)
if (Table[i].FeedbackDivider >= FeedbackDivider)
break;
return Table[i].Control;
}
/*
* Not used by rv620/35 code.
*/
static CARD32
PLLElectrical(RHDPtr rhdPtr, CARD16 FeedbackDivider)
{
switch (rhdPtr->ChipSet) {
case RHD_RV515:
if (rhdPtr->PciDeviceID == 0x7146)
return 0x00120704;
else
return 0;
case RHD_RV535:
if (rhdPtr->PciDeviceID == 0x71C1)
return 0x00230704;
else
return 0;
case RHD_RS600:
case RHD_RS690:
case RHD_RS740:
/* depending on MiscInfo also 0x00120004 */
return 0x00120704;
case RHD_R600:
return 0x01130704;
case RHD_RV610:
case RHD_RV630:
case RHD_M72:
case RHD_M74:
case RHD_M76:
return PLLControlTableRetrieve(RV610PLLControl, FeedbackDivider);
case RHD_RV670:
case RHD_R680:
return PLLControlTableRetrieve(RV670PLLControl, FeedbackDivider);
default:
return 0;
}
}
/*
* All R500s, RS6x0, R600, RV610 and RV630.
*/
/*
*
*/
static void
PLL1Calibrate(struct rhdPLL *PLL)
{
int i;
RHDFUNC(PLL);
RHDRegMask(PLL, P1PLL_CNTL, 1, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x01); /* Set */
for (i = 0; i < PLL_CALIBRATE_WAIT; i++)
if (((RHDRegRead(PLL, P1PLL_CNTL) >> 20) & 0x03) == 0x03)
break;
if (i == PLL_CALIBRATE_WAIT) {
if (RHDRegRead(PLL, P1PLL_CNTL) & 0x00100000) /* Calibration done? */
xf86DrvMsg(PLL->scrnIndex, X_ERROR,
"%s: Calibration failed.\n", __func__);
if (RHDRegRead(PLL, P1PLL_CNTL) & 0x00200000) /* PLL locked? */
xf86DrvMsg(PLL->scrnIndex, X_ERROR,
"%s: Locking failed.\n", __func__);
} else
RHDDebug(PLL->scrnIndex, "%s: lock in %d loops\n", __func__, i);
}
/*
*
*/
static void
PLL2Calibrate(struct rhdPLL *PLL)
{
int i;
RHDFUNC(PLL);
RHDRegMask(PLL, P2PLL_CNTL, 1, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x01); /* Set */
for (i = 0; i < PLL_CALIBRATE_WAIT; i++)
if (((RHDRegRead(PLL, P2PLL_CNTL) >> 20) & 0x03) == 0x03)
break;
if (i == PLL_CALIBRATE_WAIT) {
if (RHDRegRead(PLL, P2PLL_CNTL) & 0x00100000) /* Calibration done? */
xf86DrvMsg(PLL->scrnIndex, X_ERROR,
"%s: Calibration failed.\n", __func__);
if (RHDRegRead(PLL, P2PLL_CNTL) & 0x00200000) /* PLL locked? */
xf86DrvMsg(PLL->scrnIndex, X_ERROR,
"%s: Locking failed.\n", __func__);
} else
RHDDebug(PLL->scrnIndex, "%s: lock in %d loops\n", __func__, i);
}
/*
*
*/
static void
R500PLL1Power(struct rhdPLL *PLL, int Power)
{
RHDFUNC(PLL);
switch (Power) {
case RHD_POWER_ON:
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
PLL1Calibrate(PLL);
return;
case RHD_POWER_RESET:
RHDRegMask(PLL, P1PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
return;
case RHD_POWER_SHUTDOWN:
default:
RHDRegMask(PLL, P1PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P1PLL_CNTL, 0x02, 0x02); /* Power down */
usleep(200);
return;
}
}
/*
*
*/
static void
R500PLL2Power(struct rhdPLL *PLL, int Power)
{
RHDFUNC(PLL);
switch (Power) {
case RHD_POWER_ON:
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
PLL2Calibrate(PLL);
return;
case RHD_POWER_RESET:
RHDRegMask(PLL, P2PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
return;
case RHD_POWER_SHUTDOWN:
default:
RHDRegMask(PLL, P2PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P2PLL_CNTL, 0x02, 0x02); /* Power down */
usleep(200);
return;
}
}
/*
*
*/
static void
R500PLL1SetLow(struct rhdPLL *PLL, CARD32 RefDiv, CARD32 FBDiv, CARD32 PostDiv,
CARD32 Control)
{
RHDFUNC(PLL);
RHDRegWrite(PLL, EXT1_PPLL_REF_DIV_SRC, 0x01); /* XTAL */
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV_SRC, 0x00); /* source = reference */
RHDRegWrite(PLL, EXT1_PPLL_UPDATE_LOCK, 0x01); /* lock */
RHDRegWrite(PLL, EXT1_PPLL_REF_DIV, RefDiv);
RHDRegWrite(PLL, EXT1_PPLL_FB_DIV, FBDiv);
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV, PostDiv);
RHDRegWrite(PLL, EXT1_PPLL_CNTL, Control);
RHDRegMask(PLL, EXT1_PPLL_UPDATE_CNTL, 0x00010000, 0x00010000); /* no autoreset */
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x04); /* don't bypass calibration */
/* We need to reset the anti glitch logic */
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x00000002); /* power up */
/* reset anti glitch logic */
RHDRegMask(PLL, P1PLL_CNTL, 0x00002000, 0x00002000);
usleep(2);
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x00002000);
/* powerdown and reset */
RHDRegMask(PLL, P1PLL_CNTL, 0x00000003, 0x00000003);
usleep(2);
RHDRegWrite(PLL, EXT1_PPLL_UPDATE_LOCK, 0); /* unlock */
RHDRegMask(PLL, EXT1_PPLL_UPDATE_CNTL, 0, 0x01); /* we're done updating! */
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
PLL1Calibrate(PLL);
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV_SRC, 0x01); /* source is PLL itself */
}
/*
*
*/
static void
R500PLL2SetLow(struct rhdPLL *PLL, CARD32 RefDiv, CARD32 FBDiv, CARD32 PostDiv,
CARD32 Control)
{
RHDRegWrite(PLL, EXT2_PPLL_REF_DIV_SRC, 0x01); /* XTAL */
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV_SRC, 0x00); /* source = reference */
RHDRegWrite(PLL, EXT2_PPLL_UPDATE_LOCK, 0x01); /* lock */
RHDRegWrite(PLL, EXT2_PPLL_REF_DIV, RefDiv);
RHDRegWrite(PLL, EXT2_PPLL_FB_DIV, FBDiv);
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV, PostDiv);
RHDRegWrite(PLL, EXT2_PPLL_CNTL, Control);
RHDRegMask(PLL, EXT2_PPLL_UPDATE_CNTL, 0x00010000, 0x00010000); /* no autoreset */
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x04); /* don't bypass calibration */
/* We need to reset the anti glitch logic */
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x00000002); /* power up */
/* reset anti glitch logic */
RHDRegMask(PLL, P2PLL_CNTL, 0x00002000, 0x00002000);
usleep(2);
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x00002000);
/* powerdown and reset */
RHDRegMask(PLL, P2PLL_CNTL, 0x00000003, 0x00000003);
usleep(2);
RHDRegWrite(PLL, EXT2_PPLL_UPDATE_LOCK, 0); /* unlock */
RHDRegMask(PLL, EXT2_PPLL_UPDATE_CNTL, 0, 0x01); /* we're done updating! */
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
PLL2Calibrate(PLL);
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV_SRC, 0x01); /* source is PLL itself */
}
/*
* The CRTC ownership of each PLL is multiplexed on the PLL blocks, and the
* ownership can only be switched when the currently referenced PLL is active.
* This makes handling a slight bit more complex.
*/
static void
R500PLLCRTCGrab(struct rhdPLL *PLL, Bool Crtc2)
{
CARD32 Stored;
Bool PLL2IsCurrent;
if (!Crtc2) {
PLL2IsCurrent = RHDRegRead(PLL, PCLK_CRTC1_CNTL) & 0x00010000;
if (PLL->Id == PLL_ID_PLL1)
RHDRegMask(PLL, PCLK_CRTC1_CNTL, 0, 0x00010000);
else
RHDRegMask(PLL, PCLK_CRTC1_CNTL, 0x00010000, 0x00010000);
} else {
PLL2IsCurrent = RHDRegRead(PLL, PCLK_CRTC2_CNTL) & 0x00010000;
if (PLL->Id == PLL_ID_PLL1)
RHDRegMask(PLL, PCLK_CRTC2_CNTL, 0, 0x00010000);
else
RHDRegMask(PLL, PCLK_CRTC2_CNTL, 0x00010000, 0x00010000);
}
/* if the current pll is not active, then poke it just enough to flip
* owners */
if (!PLL2IsCurrent) {
Stored = RHDRegRead(PLL, P1PLL_CNTL);
if (Stored & 0x03) {
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x03);
usleep(10);
RHDRegMask(PLL, P1PLL_CNTL, Stored, 0x03);
}
} else {
Stored = RHDRegRead(PLL, P2PLL_CNTL);
if (Stored & 0x03) {
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x03);
usleep(10);
RHDRegMask(PLL, P2PLL_CNTL, Stored, 0x03);
}
}
}
/*
*
*/
static void
R500PLL1Set(struct rhdPLL *PLL, int PixelClock, CARD16 ReferenceDivider,
CARD16 FeedbackDivider, CARD8 PostDivider)
{
RHDPtr rhdPtr = RHDPTRI(PLL);
CARD32 RefDiv, FBDiv, PostDiv, Control;
RHDFUNC(PLL);
RefDiv = ReferenceDivider;
FBDiv = FeedbackDivider << 16;
if (rhdPtr->ChipSet > RHD_R600) { /* set up Feedbackdivider slip */
if (FeedbackDivider <= 0x24)
FBDiv |= 0x00000030;
else if (FeedbackDivider <= 0x3F)
FBDiv |= 0x00000020;
} else if (rhdPtr->ChipSet >= RHD_RS600) /* RS600, RS690, R600 */
FBDiv |= 0x00000030;
else
FBDiv |= RHDRegRead(PLL, EXT1_PPLL_FB_DIV) & 0x00000030;
PostDiv = RHDRegRead(PLL, EXT1_PPLL_POST_DIV) & ~0x0000007F;
PostDiv |= PostDivider & 0x0000007F;
Control = PLLElectrical(rhdPtr, FeedbackDivider);
if (!Control)
Control = RHDRegRead(PLL, EXT1_PPLL_CNTL);
/* Disable Spread Spectrum */
RHDRegMask(PLL, P1PLL_INT_SS_CNTL, 0, 0x00000001);
R500PLL1SetLow(PLL, RefDiv, FBDiv, PostDiv, Control);
if (rhdPtr->Crtc[0]->PLL == PLL)
R500PLLCRTCGrab(PLL, FALSE);
if (rhdPtr->Crtc[1]->PLL == PLL)
R500PLLCRTCGrab(PLL, TRUE);
}
/*
*
*/
static void
R500PLL2Set(struct rhdPLL *PLL, int PixelClock, CARD16 ReferenceDivider,
CARD16 FeedbackDivider, CARD8 PostDivider)
{
RHDPtr rhdPtr = RHDPTRI(PLL);
CARD32 RefDiv, FBDiv, PostDiv, Control;
RHDFUNC(PLL);
RefDiv = ReferenceDivider;
FBDiv = FeedbackDivider << 16;
if (rhdPtr->ChipSet > RHD_R600) { /* set up Feedbackdivider slip */
if (FeedbackDivider <= 0x24)
FBDiv |= 0x00000030;
else if (FeedbackDivider <= 0x3F)
FBDiv |= 0x00000020;
} else if (rhdPtr->ChipSet >= RHD_RS600) /* RS600, RS690, R600 */
FBDiv |= 0x00000030;
else
FBDiv |= RHDRegRead(PLL, EXT2_PPLL_FB_DIV) & 0x00000030;
PostDiv = RHDRegRead(PLL, EXT2_PPLL_POST_DIV) & ~0x0000007F;
PostDiv |= PostDivider & 0x0000007F;
Control = PLLElectrical(rhdPtr, FeedbackDivider);
if (!Control)
Control = RHDRegRead(PLL, EXT2_PPLL_CNTL);
/* Disable Spread Spectrum */
RHDRegMask(PLL, P2PLL_INT_SS_CNTL, 0, 0x00000001);
R500PLL2SetLow(PLL, RefDiv, FBDiv, PostDiv, Control);
if (rhdPtr->Crtc[0]->PLL == PLL)
R500PLLCRTCGrab(PLL, FALSE);
if (rhdPtr->Crtc[1]->PLL == PLL)
R500PLLCRTCGrab(PLL, TRUE);
}
/*
*
*/
static void
R500PLL1Save(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
PLL->StoreActive = !(RHDRegRead(PLL, P1PLL_CNTL) & 0x03);
PLL->StoreRefDiv = RHDRegRead(PLL, EXT1_PPLL_REF_DIV);
PLL->StoreFBDiv = RHDRegRead(PLL, EXT1_PPLL_FB_DIV);
PLL->StorePostDiv = RHDRegRead(PLL, EXT1_PPLL_POST_DIV);
PLL->StoreControl = RHDRegRead(PLL, EXT1_PPLL_CNTL);
PLL->StoreSpreadSpectrum = RHDRegRead(PLL, P1PLL_INT_SS_CNTL);
PLL->StoreCrtc1Owner = !(RHDRegRead(PLL, PCLK_CRTC1_CNTL) & 0x00010000);
PLL->StoreCrtc2Owner = !(RHDRegRead(PLL, PCLK_CRTC2_CNTL) & 0x00010000);
PLL->Stored = TRUE;
}
/*
*
*/
static void
R500PLL2Save(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
PLL->StoreActive = !(RHDRegRead(PLL, P2PLL_CNTL) & 0x03);
PLL->StoreRefDiv = RHDRegRead(PLL, EXT2_PPLL_REF_DIV);
PLL->StoreFBDiv = RHDRegRead(PLL, EXT2_PPLL_FB_DIV);
PLL->StorePostDiv = RHDRegRead(PLL, EXT2_PPLL_POST_DIV);
PLL->StoreControl = RHDRegRead(PLL, EXT2_PPLL_CNTL);
PLL->StoreSpreadSpectrum = RHDRegRead(PLL, P2PLL_INT_SS_CNTL);
PLL->StoreCrtc1Owner = RHDRegRead(PLL, PCLK_CRTC1_CNTL) & 0x00010000;
PLL->StoreCrtc2Owner = RHDRegRead(PLL, PCLK_CRTC2_CNTL) & 0x00010000;
PLL->Stored = TRUE;
}
/*
*
*/
static void
R500PLL1Restore(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
if (!PLL->Stored) {
xf86DrvMsg(PLL->scrnIndex, X_ERROR, "%s: %s: trying to restore "
"uninitialized values.\n", __func__, PLL->Name);
return;
}
if (PLL->StoreActive) {
R500PLL1SetLow(PLL, PLL->StoreRefDiv, PLL->StoreFBDiv,
PLL->StorePostDiv, PLL->StoreControl);
/* HotFix: always keep spread spectrum disabled on restore */
if (0 && RHDPTRI(PLL)->ChipSet != RHD_M54)
RHDRegMask(PLL, P1PLL_INT_SS_CNTL,
PLL->StoreSpreadSpectrum, 0x00000001);
} else {
PLL->Power(PLL, RHD_POWER_SHUTDOWN);
/* lame attempt at at least restoring the old values */
RHDRegWrite(PLL, EXT1_PPLL_REF_DIV, PLL->StoreRefDiv);
RHDRegWrite(PLL, EXT1_PPLL_FB_DIV, PLL->StoreFBDiv);
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV, PLL->StorePostDiv);
RHDRegWrite(PLL, EXT1_PPLL_CNTL, PLL->StoreControl);
RHDRegWrite(PLL, P1PLL_INT_SS_CNTL, PLL->StoreSpreadSpectrum);
}
if (PLL->StoreCrtc1Owner)
R500PLLCRTCGrab(PLL, FALSE);
if (PLL->StoreCrtc2Owner)
R500PLLCRTCGrab(PLL, TRUE);
}
/*
*
*/
static void
R500PLL2Restore(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
if (!PLL->Stored) {
xf86DrvMsg(PLL->scrnIndex, X_ERROR, "%s: %s: trying to restore "
"uninitialized values.\n", __func__, PLL->Name);
return;
}
if (PLL->StoreActive) {
R500PLL2SetLow(PLL, PLL->StoreRefDiv, PLL->StoreFBDiv,
PLL->StorePostDiv, PLL->StoreControl);
if (RHDPTRI(PLL)->ChipSet != RHD_M54)
RHDRegMask(PLL, P2PLL_INT_SS_CNTL,
PLL->StoreSpreadSpectrum, 0x00000001);
} else {
PLL->Power(PLL, RHD_POWER_SHUTDOWN);
/* lame attempt at at least restoring the old values */
RHDRegWrite(PLL, EXT2_PPLL_REF_DIV, PLL->StoreRefDiv);
RHDRegWrite(PLL, EXT2_PPLL_FB_DIV, PLL->StoreFBDiv);
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV, PLL->StorePostDiv);
RHDRegWrite(PLL, EXT2_PPLL_CNTL, PLL->StoreControl);
RHDRegWrite(PLL, P2PLL_INT_SS_CNTL, PLL->StoreSpreadSpectrum);
}
if (PLL->StoreCrtc1Owner)
R500PLLCRTCGrab(PLL, FALSE);
if (PLL->StoreCrtc2Owner)
R500PLLCRTCGrab(PLL, TRUE);
}
/*
* RV620 and up
*/
/*
*
*/
#define RV620_DCCGCLK_RESET 0
#define RV620_DCCGCLK_GRAB 1
#define RV620_DCCGCLK_RELEASE 2
/*
* I still have no idea what DCCG stands for and why it needs to hook off some
* pixelclock...
*/
static void
RV620DCCGCLKSet(struct rhdPLL *PLL, int set)
{
CARD32 tmp;
RHDFUNC(PLL);
switch(set) {
case RV620_DCCGCLK_GRAB:
if (PLL->Id == PLL_ID_PLL1)
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 0, 0x00000003);
else if (PLL->Id == PLL_ID_PLL2)
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 1, 0x00000003);
else
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 3, 0x00000003);
break;
case RV620_DCCGCLK_RELEASE:
tmp = RHDRegRead(PLL, DCCG_DISP_CLK_SRCSEL) & 0x03;
if ((PLL->Id == PLL_ID_PLL1) && (tmp == 0)) {
/* set to other PLL or external */
tmp = RHDRegRead(PLL, P2PLL_CNTL);
if (!(tmp & 0x03) && /* powered and not in reset */
((tmp & 0x00300000) == 0x00300000)) /* calibrated and locked */
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 1, 0x00000003);
else
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 3, 0x00000003);
} else if ((PLL->Id == PLL_ID_PLL2) && (tmp == 1)) {
/* set to other PLL or external */
tmp = RHDRegRead(PLL, P1PLL_CNTL);
if (!(tmp & 0x03) && /* powered and not in reset */
((tmp & 0x00300000) == 0x00300000)) /* calibrated and locked */
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 0, 0x00000003);
else
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 3, 0x00000003);
} /* no other action needs to be taken */
break;
case RV620_DCCGCLK_RESET:
tmp = RHDRegRead(PLL, DCCG_DISP_CLK_SRCSEL) & 0x03;
if (((PLL->Id == PLL_ID_PLL1) && (tmp == 0)) ||
((PLL->Id == PLL_ID_PLL2) && (tmp == 1)))
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 3, 0x00000003);
break;
default:
break;
}
}
/*
*
*/
static Bool
RV620DCCGCLKAvailable(struct rhdPLL *PLL)
{
CARD32 Dccg = RHDRegRead(PLL, DCCG_DISP_CLK_SRCSEL) & 0x03;
RHDFUNC(PLL);
if (Dccg & 0x02)
return TRUE;
if ((PLL->Id == PLL_ID_PLL1) && (Dccg == 0))
return TRUE;
if ((PLL->Id == PLL_ID_PLL2) && (Dccg == 1))
return TRUE;
return FALSE;
}
/*
*
*/
static void
RV620PLL1Power(struct rhdPLL *PLL, int Power)
{
RHDFUNC(PLL);
switch (Power) {
case RHD_POWER_ON:
{
Bool HasDccg = RV620DCCGCLKAvailable(PLL);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RESET);
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
PLL1Calibrate(PLL);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_GRAB);
return;
}
case RHD_POWER_RESET:
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RELEASE);
RHDRegMask(PLL, P1PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
return;
case RHD_POWER_SHUTDOWN:
default:
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RELEASE);
RHDRegMask(PLL, P1PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P1PLL_CNTL, 0x02, 0x02); /* Power down */
usleep(200);
return;
}
}
/*
*
*/
static void
RV620PLL2Power(struct rhdPLL *PLL, int Power)
{
RHDFUNC(PLL);
switch (Power) {
case RHD_POWER_ON:
{
Bool HasDccg = RV620DCCGCLKAvailable(PLL);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RESET);
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
PLL2Calibrate(PLL);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_GRAB);
return;
}
case RHD_POWER_RESET:
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RELEASE);
RHDRegMask(PLL, P2PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x02); /* Powah */
usleep(2);
return;
case RHD_POWER_SHUTDOWN:
default:
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RELEASE);
RHDRegMask(PLL, P2PLL_CNTL, 0x01, 0x01); /* Reset */
usleep(2);
RHDRegMask(PLL, P2PLL_CNTL, 0x02, 0x02); /* Power down */
usleep(200);
return;
}
}
/*
*
*/
static void
RV620PLL1SetLow(struct rhdPLL *PLL, CARD32 RefDiv, CARD32 FBDiv, CARD32 PostDiv,
CARD8 ScalerDiv, CARD8 SymPostDiv, CARD32 Control)
{
RHDFUNC(PLL);
/* switch to external */
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV_SRC, 0);
RHDRegMask(PLL, P1PLL_DISP_CLK_CNTL, 0x00000200, 0x00000300);
RHDRegMask(PLL, EXT1_SYM_PPLL_POST_DIV, 0, 0x00000100);
RHDRegMask(PLL, P1PLL_CNTL, 0x00000001, 0x00000001); /* reset */
usleep(2);
RHDRegMask(PLL, P1PLL_CNTL, 0x00000002, 0x00000002); /* power down */
usleep(10);
RHDRegMask(PLL, P1PLL_CNTL, 0x00002000, 0x00002000); /* reset anti-glitch */
RHDRegWrite(PLL, EXT1_PPLL_CNTL, Control);
RHDRegMask(PLL, P1PLL_DISP_CLK_CNTL, ScalerDiv, 0x0000003F);
RHDRegWrite(PLL, EXT1_PPLL_UPDATE_LOCK, 1); /* lock */
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV_SRC, 0x00000001);
RHDRegWrite(PLL, EXT1_PPLL_REF_DIV, RefDiv);
RHDRegWrite(PLL, EXT1_PPLL_FB_DIV, FBDiv);
RHDRegMask(PLL, EXT1_PPLL_POST_DIV, PostDiv, 0x0000007F);
RHDRegMask(PLL, EXT1_SYM_PPLL_POST_DIV, SymPostDiv, 0x0000007F);
usleep(10);
RHDRegWrite(PLL, EXT1_PPLL_UPDATE_LOCK, 0); /* unlock */
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x00000002); /* power up */
usleep(10);
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x00002000); /* undo reset anti-glitch */
PLL1Calibrate(PLL);
/* switch back to the pll */
RHDRegMask(PLL, P1PLL_DISP_CLK_CNTL, 0, 0x00000300);
RHDRegMask(PLL, EXT1_SYM_PPLL_POST_DIV, 0x00000100, 0x00000100);
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV_SRC, 0x00000001);
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x80000000); /* new and undocumented */
}
/*
*
*/
static void
RV620PLL2SetLow(struct rhdPLL *PLL, CARD32 RefDiv, CARD32 FBDiv, CARD32 PostDiv,
CARD8 ScalerDiv, CARD8 SymPostDiv, CARD32 Control)
{
RHDFUNC(PLL);
/* switch to external */
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV_SRC, 0);
RHDRegMask(PLL, P2PLL_DISP_CLK_CNTL, 0x00000200, 0x00000300);
RHDRegMask(PLL, EXT2_SYM_PPLL_POST_DIV, 0, 0x00000100);
RHDRegMask(PLL, P2PLL_CNTL, 0x00000001, 0x00000001); /* reset */
usleep(2);
RHDRegMask(PLL, P2PLL_CNTL, 0x00000002, 0x00000002); /* power down */
usleep(10);
RHDRegMask(PLL, P2PLL_CNTL, 0x00002000, 0x00002000); /* reset anti-glitch */
RHDRegWrite(PLL, EXT2_PPLL_CNTL, Control);
RHDRegMask(PLL, P2PLL_DISP_CLK_CNTL, ScalerDiv, 0x0000003F);
RHDRegWrite(PLL, EXT2_PPLL_UPDATE_LOCK, 1); /* lock */
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV_SRC, 0x00000001);
RHDRegWrite(PLL, EXT2_PPLL_REF_DIV, RefDiv);
RHDRegWrite(PLL, EXT2_PPLL_FB_DIV, FBDiv);
RHDRegMask(PLL, EXT2_PPLL_POST_DIV, PostDiv, 0x0000007F);
RHDRegMask(PLL, EXT2_SYM_PPLL_POST_DIV, SymPostDiv, 0x0000007F);
usleep(10);
RHDRegWrite(PLL, EXT2_PPLL_UPDATE_LOCK, 0); /* unlock */
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x00000002); /* power up */
usleep(10);
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x00002000); /* undo reset anti-glitch */
PLL2Calibrate(PLL);
/* switch back to the pll */
RHDRegMask(PLL, P2PLL_DISP_CLK_CNTL, 0, 0x00000300);
RHDRegMask(PLL, EXT2_SYM_PPLL_POST_DIV, 0x00000100, 0x00000100);
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV_SRC, 0x00000001);
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x80000000); /* new and undocumented */
}
/*
*
*/
static void
RV620PLL1Set(struct rhdPLL *PLL, int PixelClock, CARD16 ReferenceDivider,
CARD16 FeedbackDivider, CARD8 PostDivider)
{
RHDPtr rhdPtr = RHDPTRI(PLL);
Bool HasDccg = RV620DCCGCLKAvailable(PLL);
CARD32 RefDiv, FBDiv, PostDiv, Control;
CARD8 ScalerDiv, SymPostDiv;
RHDFUNC(PLL);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RESET);
/* Disable Spread Spectrum */
RHDRegMask(PLL, P1PLL_INT_SS_CNTL, 0, 0x00000001);
RefDiv = ReferenceDivider;
FBDiv = RHDRegRead(PLL, EXT1_PPLL_FB_DIV) & ~0x07FF003F;
FBDiv |= ((FeedbackDivider << 16) | 0x0030) & 0x07FF003F;
PostDiv = RHDRegRead(PLL, EXT1_PPLL_POST_DIV) & ~0x0000007F;
PostDiv |= PostDivider & 0x0000007F;
/* introduce flags for this, like on unichrome */
ScalerDiv = 2; /* scaler post divider, 4 for UPDP */
SymPostDiv = PostDivider & 0x0000007F;
Control = PLLControlTableRetrieve(RV670PLLControl, FeedbackDivider);
RV620PLL1SetLow(PLL, RefDiv, FBDiv, PostDiv, ScalerDiv, SymPostDiv,
Control);
if (rhdPtr->Crtc[0]->PLL == PLL)
R500PLLCRTCGrab(PLL, FALSE);
if (rhdPtr->Crtc[1]->PLL == PLL)
R500PLLCRTCGrab(PLL, TRUE);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_GRAB);
}
/*
*
*/
static void
RV620PLL2Set(struct rhdPLL *PLL, int PixelClock, CARD16 ReferenceDivider,
CARD16 FeedbackDivider, CARD8 PostDivider)
{
RHDPtr rhdPtr = RHDPTRI(PLL);
Bool HasDccg = RV620DCCGCLKAvailable(PLL);
CARD32 RefDiv, FBDiv, PostDiv, Control;
CARD8 ScalerDiv, SymPostDiv;
RHDFUNC(PLL);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_RESET);
/* Disable Spread Spectrum */
RHDRegMask(PLL, P2PLL_INT_SS_CNTL, 0, 0x00000001);
RefDiv = ReferenceDivider;
FBDiv = RHDRegRead(PLL, EXT2_PPLL_FB_DIV) & ~0x07FF003F;
FBDiv |= ((FeedbackDivider << 16) | 0x0030) & 0x07FF003F;
PostDiv = RHDRegRead(PLL, EXT2_PPLL_POST_DIV) & ~0x0000007F;
PostDiv |= PostDivider & 0x0000007F;
/* introduce flags for this, like on unichrome */
ScalerDiv = 2; /* scaler post divider, 4 for UPDP */
SymPostDiv = PostDivider & 0x0000007F;
Control = PLLControlTableRetrieve(RV670PLLControl, FeedbackDivider);
RV620PLL2SetLow(PLL, RefDiv, FBDiv, PostDiv, ScalerDiv, SymPostDiv,
Control);
if (rhdPtr->Crtc[0]->PLL == PLL)
R500PLLCRTCGrab(PLL, FALSE);
if (rhdPtr->Crtc[1]->PLL == PLL)
R500PLLCRTCGrab(PLL, TRUE);
if (HasDccg)
RV620DCCGCLKSet(PLL, RV620_DCCGCLK_GRAB);
}
/*
*
*/
static void
RV620PLL1Save(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
PLL->StoreActive = !(RHDRegRead(PLL, P1PLL_CNTL) & 0x03);
PLL->StoreRefDiv = RHDRegRead(PLL, EXT1_PPLL_REF_DIV);
PLL->StoreFBDiv = RHDRegRead(PLL, EXT1_PPLL_FB_DIV);
PLL->StorePostDiv = RHDRegRead(PLL, EXT1_PPLL_POST_DIV);
PLL->StorePostDivSrc = RHDRegRead(PLL, EXT1_PPLL_POST_DIV_SRC);
PLL->StoreControl = RHDRegRead(PLL, EXT1_PPLL_CNTL);
PLL->StoreSpreadSpectrum = RHDRegRead(PLL, P1PLL_INT_SS_CNTL);
PLL->StoreGlitchReset = RHDRegRead(PLL, P1PLL_CNTL) & 0x00002000;
PLL->StoreScalerPostDiv = RHDRegRead(PLL, P1PLL_DISP_CLK_CNTL) & 0x003F;
PLL->StoreSymPostDiv = RHDRegRead(PLL, EXT1_SYM_PPLL_POST_DIV) & 0x007F;
PLL->StoreCrtc1Owner = !(RHDRegRead(PLL, PCLK_CRTC1_CNTL) & 0x00010000);
PLL->StoreCrtc2Owner = !(RHDRegRead(PLL, PCLK_CRTC2_CNTL) & 0x00010000);
PLL->StoreDCCGCLKOwner = RV620DCCGCLKAvailable(PLL);
if (PLL->StoreDCCGCLKOwner)
PLL->StoreDCCGCLK = RHDRegRead(PLL, DCCG_DISP_CLK_SRCSEL);
else
PLL->StoreDCCGCLK = 0;
PLL->Stored = TRUE;
}
/*
*
*/
static void
RV620PLL2Save(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
PLL->StoreActive = !(RHDRegRead(PLL, P2PLL_CNTL) & 0x03);
PLL->StoreRefDiv = RHDRegRead(PLL, EXT2_PPLL_REF_DIV);
PLL->StoreFBDiv = RHDRegRead(PLL, EXT2_PPLL_FB_DIV);
PLL->StorePostDiv = RHDRegRead(PLL, EXT2_PPLL_POST_DIV);
PLL->StorePostDivSrc = RHDRegRead(PLL, EXT2_PPLL_POST_DIV_SRC);
PLL->StoreControl = RHDRegRead(PLL, EXT2_PPLL_CNTL);
PLL->StoreSpreadSpectrum = RHDRegRead(PLL, P2PLL_INT_SS_CNTL);
PLL->StoreGlitchReset = RHDRegRead(PLL, P2PLL_CNTL) & 0x00002000;
PLL->StoreScalerPostDiv = RHDRegRead(PLL, P2PLL_DISP_CLK_CNTL) & 0x003F;
PLL->StoreSymPostDiv = RHDRegRead(PLL, EXT2_SYM_PPLL_POST_DIV) & 0x007F;
PLL->StoreCrtc1Owner = RHDRegRead(PLL, PCLK_CRTC1_CNTL) & 0x00010000;
PLL->StoreCrtc2Owner = RHDRegRead(PLL, PCLK_CRTC2_CNTL) & 0x00010000;
PLL->StoreDCCGCLKOwner = RV620DCCGCLKAvailable(PLL);
if (PLL->StoreDCCGCLKOwner)
PLL->StoreDCCGCLK = RHDRegRead(PLL, DCCG_DISP_CLK_SRCSEL);
else
PLL->StoreDCCGCLK = 0;
PLL->Stored = TRUE;
}
/*
* Notice how we handle the DCCG ownership here. There is a difference between
* currently holding the DCCG and what was held when in the VT. With the
* solution here we no longer hardlock, but we do have the danger of keeping
* the DCCG in external mode for too long a time, if both PLL restores are
* too far apart. This is currently not an issue as VT restoration goes over
* the whole device in one go anyway; no partial restoration going on
*/
static void
RV620PLL1Restore(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
if (RV620DCCGCLKAvailable(PLL))
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 0x03, 0x00000003);
if (PLL->StoreActive) {
RV620PLL1SetLow(PLL, PLL->StoreRefDiv, PLL->StoreFBDiv,
PLL->StorePostDiv, PLL->StoreScalerPostDiv,
PLL->StoreSymPostDiv, PLL->StoreControl);
RHDRegMask(PLL, P1PLL_INT_SS_CNTL,
PLL->StoreSpreadSpectrum, 0x00000001);
if (PLL->StoreDCCGCLKOwner)
RHDRegWrite(PLL, DCCG_DISP_CLK_SRCSEL, PLL->StoreDCCGCLK);
} else {
PLL->Power(PLL, RHD_POWER_SHUTDOWN);
/* lame attempt at at least restoring the old values */
RHDRegWrite(PLL, EXT1_PPLL_REF_DIV, PLL->StoreRefDiv);
RHDRegWrite(PLL, EXT1_PPLL_FB_DIV, PLL->StoreFBDiv);
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV, PLL->StorePostDiv);
RHDRegWrite(PLL, EXT1_PPLL_POST_DIV_SRC, PLL->StorePostDivSrc);
RHDRegWrite(PLL, EXT1_PPLL_CNTL, PLL->StoreControl);
RHDRegMask(PLL, P1PLL_DISP_CLK_CNTL, PLL->StoreScalerPostDiv, 0x003F);
RHDRegMask(PLL, EXT1_SYM_PPLL_POST_DIV, PLL->StoreSymPostDiv, 0x007F);
RHDRegWrite(PLL, P1PLL_INT_SS_CNTL, PLL->StoreSpreadSpectrum);
if (PLL->StoreGlitchReset)
RHDRegMask(PLL, P1PLL_CNTL, 0x00002000, 0x00002000);
else
RHDRegMask(PLL, P1PLL_CNTL, 0, 0x00002000);
}
if (PLL->StoreCrtc1Owner)
R500PLLCRTCGrab(PLL, FALSE);
if (PLL->StoreCrtc2Owner)
R500PLLCRTCGrab(PLL, TRUE);
if (PLL->StoreDCCGCLKOwner)
RHDRegWrite(PLL, DCCG_DISP_CLK_SRCSEL, PLL->StoreDCCGCLK);
}
/*
*
*/
static void
RV620PLL2Restore(struct rhdPLL *PLL)
{
RHDFUNC(PLL);
if (RV620DCCGCLKAvailable(PLL))
RHDRegMask(PLL, DCCG_DISP_CLK_SRCSEL, 0x03, 0x00000003);
if (PLL->StoreActive) {
RV620PLL2SetLow(PLL, PLL->StoreRefDiv, PLL->StoreFBDiv,
PLL->StorePostDiv, PLL->StoreScalerPostDiv,
PLL->StoreSymPostDiv, PLL->StoreControl);
RHDRegMask(PLL, P2PLL_INT_SS_CNTL,
PLL->StoreSpreadSpectrum, 0x00000001);
} else {
PLL->Power(PLL, RHD_POWER_SHUTDOWN);
/* lame attempt at at least restoring the old values */
RHDRegWrite(PLL, EXT2_PPLL_REF_DIV, PLL->StoreRefDiv);
RHDRegWrite(PLL, EXT2_PPLL_FB_DIV, PLL->StoreFBDiv);
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV, PLL->StorePostDiv);
RHDRegWrite(PLL, EXT2_PPLL_POST_DIV_SRC, PLL->StorePostDivSrc);
RHDRegWrite(PLL, EXT2_PPLL_CNTL, PLL->StoreControl);
RHDRegMask(PLL, P2PLL_DISP_CLK_CNTL, PLL->StoreScalerPostDiv, 0x003F);
RHDRegMask(PLL, EXT2_SYM_PPLL_POST_DIV, PLL->StoreSymPostDiv, 0x007F);
RHDRegWrite(PLL, P2PLL_INT_SS_CNTL, PLL->StoreSpreadSpectrum);
if (PLL->StoreGlitchReset)
RHDRegMask(PLL, P2PLL_CNTL, 0x00002000, 0x00002000);
else
RHDRegMask(PLL, P2PLL_CNTL, 0, 0x00002000);
}
if (PLL->StoreCrtc1Owner)
R500PLLCRTCGrab(PLL, FALSE);
if (PLL->StoreCrtc2Owner)
R500PLLCRTCGrab(PLL, TRUE);
if (PLL->StoreDCCGCLKOwner)
RHDRegWrite(PLL, DCCG_DISP_CLK_SRCSEL, PLL->StoreDCCGCLK);
}
/* Some defaults for when we don't have this info */
/* XTAL is visible on the cards */
#define RHD_PLL_REFERENCE_DEFAULT 27000
/* these required quite some testing */
#define RHD_R500_PLL_INTERNAL_MIN_DEFAULT 648000
#define RHD_RV620_PLL_INTERNAL_MIN_DEFAULT 702000
/* Lowest value seen so far */
#define RHD_PLL_INTERNAL_MAX_DEFAULT 1100000
#define RHD_PLL_MIN_DEFAULT 16000 /* guess */
#define RHD_PLL_MAX_DEFAULT 400000 /* 400Mhz modes... hrm */
enum pllComp {
PLL_NONE,
PLL_MIN,
PLL_MAX
};
/*
*
*/
#ifdef ATOM_BIOS
static Bool
getPLLValuesFromAtomBIOS(RHDPtr rhdPtr,
AtomBiosRequestID func, char *msg, CARD32 *val, enum pllComp comp)
{
AtomBiosArgRec arg;
AtomBiosResult ret;
if (rhdPtr->atomBIOS) {
ret = RHDAtomBiosFunc(rhdPtr->scrnIndex, rhdPtr->atomBIOS,
func, &arg);
if (ret == ATOM_SUCCESS) {
if (arg.val) {
switch (comp) {
case PLL_MAX:
if (arg.val < *val)
xf86DrvMsg(rhdPtr->scrnIndex, X_WARNING,
"Lower %s detected than the default: %lu %lu.\n"
"Please contact the authors ASAP.\n", msg,
(unsigned long)*val, (unsigned long)arg.val * 10);
break;
case PLL_MIN:
if (arg.val > *val)
xf86DrvMsg(rhdPtr->scrnIndex, X_WARNING,
"Higher %s detected than the default: %lu %lu.\n"
"Please contact the authors ASAP.\n", msg,
(unsigned long)*val, (unsigned long)arg.val * 10);
break;
default:
break;
}
*val = arg.val;
}
}
return TRUE;
} else
xf86DrvMsg(rhdPtr->scrnIndex, X_ERROR, "Failed to retrieve the %s"
" clock from ATOM.\n",msg);
return FALSE;
}
#endif
/*
*
*/
void
RHDSetupLimits(RHDPtr rhdPtr, CARD32 *RefClock,
CARD32 *IntMin, CARD32 *IntMax,
CARD32 *PixMin, CARD32 *PixMax)
{
/* Retrieve the internal PLL frequency limits*/
*RefClock = RHD_PLL_REFERENCE_DEFAULT;
if (rhdPtr->ChipSet < RHD_RV620)
*IntMin = RHD_R500_PLL_INTERNAL_MIN_DEFAULT;
else
*IntMin = RHD_RV620_PLL_INTERNAL_MIN_DEFAULT;
*IntMax = RHD_PLL_INTERNAL_MAX_DEFAULT;
/* keep the defaults */
*PixMin = RHD_PLL_MIN_DEFAULT;
*PixMax = RHD_PLL_MAX_DEFAULT;
#ifdef ATOM_BIOS
getPLLValuesFromAtomBIOS(rhdPtr, GET_MIN_PIXEL_CLOCK_PLL_OUTPUT, "minimum PLL output",
IntMin, PLL_MIN);
getPLLValuesFromAtomBIOS(rhdPtr, GET_MAX_PIXEL_CLOCK_PLL_OUTPUT, "maximum PLL output",
IntMax, PLL_MAX);
getPLLValuesFromAtomBIOS(rhdPtr, GET_MAX_PIXEL_CLK, "Pixel Clock",
PixMax, PLL_MAX);
getPLLValuesFromAtomBIOS(rhdPtr, GET_REF_CLOCK, "reference clock",
RefClock, PLL_NONE);
if (*IntMax == 0) {
if (rhdPtr->ChipSet < RHD_RV620)
*IntMax = RHD_R500_PLL_INTERNAL_MIN_DEFAULT;
else
*IntMax = RHD_RV620_PLL_INTERNAL_MIN_DEFAULT;
xf86DrvMsg(rhdPtr->scrnIndex, X_WARNING, "AtomBIOS reports maximum VCO freq 0. "
"Using %lu instead\n",(unsigned long)*IntMax);
}
#endif
}
/*
*
*/
Bool
RHDPLLsInit(RHDPtr rhdPtr)
{
struct rhdPLL *PLL;
CARD32 RefClock, IntMin, IntMax, PixMin, PixMax;
RHDFUNC(rhdPtr);
if (RHDUseAtom(rhdPtr, NULL, atomUsagePLL))
return FALSE;
RHDSetupLimits(rhdPtr, &RefClock, &IntMin, &IntMax, &PixMin, &PixMax);
/* PLL1 */
PLL = (struct rhdPLL *) xnfcalloc(sizeof(struct rhdPLL), 1);
PLL->scrnIndex = rhdPtr->scrnIndex;
PLL->Name = PLL_NAME_PLL1;
PLL->Id = PLL_ID_PLL1;
PLL->RefClock = RefClock;
PLL->IntMin = IntMin;
PLL->IntMax = IntMax;
PLL->PixMin = PixMin;
PLL->PixMax = PixMax;
PLL->Valid = NULL;
if (rhdPtr->ChipSet < RHD_RV620) {
PLL->Set = R500PLL1Set;
PLL->Power = R500PLL1Power;
PLL->Save = R500PLL1Save;
PLL->Restore = R500PLL1Restore;
} else {
PLL->Set = RV620PLL1Set;
PLL->Power = RV620PLL1Power;
PLL->Save = RV620PLL1Save;
PLL->Restore = RV620PLL1Restore;
}
rhdPtr->PLLs[0] = PLL;
/* PLL2 */
PLL = (struct rhdPLL *) xnfcalloc(sizeof(struct rhdPLL), 1);
PLL->scrnIndex = rhdPtr->scrnIndex;
PLL->Name = PLL_NAME_PLL2;
PLL->Id = PLL_ID_PLL2;
PLL->RefClock = RefClock;
PLL->IntMin = IntMin;
PLL->IntMax = IntMax;
PLL->PixMin = PixMin;
PLL->PixMax = PixMax;
PLL->Valid = NULL;
if (rhdPtr->ChipSet < RHD_RV620) {
PLL->Set = R500PLL2Set;
PLL->Power = R500PLL2Power;
PLL->Save = R500PLL2Save;
PLL->Restore = R500PLL2Restore;
} else {
PLL->Set = RV620PLL2Set;
PLL->Power = RV620PLL2Power;
PLL->Save = RV620PLL2Save;
PLL->Restore = RV620PLL2Restore;
}
rhdPtr->PLLs[1] = PLL;
return TRUE;
}
/*
*
*/
ModeStatus
RHDPLLValid(struct rhdPLL *PLL, CARD32 Clock)
{
RHDFUNC(PLL);
if (Clock < PLL->PixMin)
return MODE_CLOCK_LOW;
if (Clock > PLL->PixMax)
return MODE_CLOCK_HIGH;
if (PLL->Valid)
return PLL->Valid(PLL, Clock);
else
return MODE_OK;
}
/*
* Calculate the PLL parameters for a given dotclock.
*
* This calculation uses a linear approximation of an experimentally found
* curve that delimits reference versus feedback dividers on rv610. This curve
* can be shifted towards higher feedback divider through increasing the gain
* control, but the effect of this is rather limited.
*
* Since this upper limit still provides a wide enough range with enough
* granularity, we use it for all r5xx and r6xx devices.
*/
static Bool
PLLCalculate(struct rhdPLL *PLL, CARD32 PixelClock,
CARD16 *RefDivider, CARD16 *FBDivider, CARD8 *PostDivider)
{
/* limited by the number of bits available */
#define FB_DIV_LIMIT 2048
#define REF_DIV_LIMIT 1024
#define POST_DIV_LIMIT 128
CARD32 FBDiv, RefDiv, PostDiv, BestDiff = 0xFFFFFFFF;
float Ratio;
Ratio = ((float) PixelClock) / ((float) PLL->RefClock);
for (PostDiv = 2; PostDiv < POST_DIV_LIMIT; PostDiv++) {
CARD32 VCOOut = PixelClock * PostDiv;
/* we are conservative and avoid the limits */
if (VCOOut <= PLL->IntMin)
continue;
if (VCOOut >= PLL->IntMax)
break;
for (RefDiv = 1; RefDiv <= REF_DIV_LIMIT; RefDiv++) {
CARD32 Diff;
FBDiv = (CARD32) ((Ratio * PostDiv * RefDiv) + 0.5);
if (FBDiv >= FB_DIV_LIMIT)
break;
if (FBDiv > (500 + (13 * RefDiv))) /* rv6x0 limit */
break;
Diff = abs( PixelClock - (FBDiv * PLL->RefClock) / (PostDiv * RefDiv) );
if (Diff < BestDiff) {
*FBDivider = FBDiv;
*RefDivider = RefDiv;
*PostDivider = PostDiv;
BestDiff = Diff;
}
if (BestDiff == 0)
break;
}
if (BestDiff == 0)
break;
}
if (BestDiff != 0xFFFFFFFF) {
RHDDebug(PLL->scrnIndex, "PLL Calculation: %dkHz = "
"(((%i / 0x%X) * 0x%X) / 0x%X) (%dkHz off)\n",
(int) PixelClock, (unsigned int) PLL->RefClock, *RefDivider,
*FBDivider, *PostDivider, (int) BestDiff);
return TRUE;
} else { /* Should never happen */
xf86DrvMsg(PLL->scrnIndex, X_ERROR,
"%s: Failed to get a valid PLL setting for %dkHz\n",
__func__, (int) PixelClock);
return FALSE;
}
}
/*
*
*/
void
RHDPLLSet(struct rhdPLL *PLL, CARD32 Clock)
{
CARD16 RefDivider = 0, FBDivider = 0;
CARD8 PostDivider = 0;
RHDDebug(PLL->scrnIndex, "%s: Setting %s to %dkHz\n", __func__,
PLL->Name, Clock);
if (PLLCalculate(PLL, Clock, &RefDivider, &FBDivider, &PostDivider)) {
PLL->Set(PLL, Clock, RefDivider, FBDivider, PostDivider);
PLL->CurrentClock = Clock;
PLL->Active = TRUE;
} else
xf86DrvMsg(PLL->scrnIndex, X_WARNING,
"%s: Not altering any settings.\n", __func__);
}
/*
*
*/
void
RHDPLLPower(struct rhdPLL *PLL, int Power)
{
RHDFUNC(PLL);
if (PLL->Power)
PLL->Power(PLL, Power);
}
/*
*
*/
void
RHDPLLsPowerAll(RHDPtr rhdPtr, int Power)
{
struct rhdPLL *PLL;
RHDFUNC(rhdPtr);
PLL = rhdPtr->PLLs[0];
if (PLL->Power)
PLL->Power(PLL, Power);
PLL = rhdPtr->PLLs[1];
if (PLL->Power)
PLL->Power(PLL, Power);
}
/*
*
*/
void
RHDPLLsShutdownInactive(RHDPtr rhdPtr)
{
struct rhdPLL *PLL;
RHDFUNC(rhdPtr);
PLL = rhdPtr->PLLs[0];
if (PLL->Power && !PLL->Active)
PLL->Power(PLL, RHD_POWER_SHUTDOWN);
PLL = rhdPtr->PLLs[1];
if (PLL->Power && !PLL->Active)
PLL->Power(PLL, RHD_POWER_SHUTDOWN);
}
/*
*
*/
void
RHDPLLsSave(RHDPtr rhdPtr)
{
struct rhdPLL *PLL;
RHDFUNC(rhdPtr);
PLL = rhdPtr->PLLs[0];
if (PLL->Save)
PLL->Save(PLL);
PLL = rhdPtr->PLLs[1];
if (PLL->Save)
PLL->Save(PLL);
}
/*
*
*/
void
RHDPLLsRestore(RHDPtr rhdPtr)
{
struct rhdPLL *PLL;
RHDFUNC(rhdPtr);
PLL = rhdPtr->PLLs[0];
if (PLL->Restore)
PLL->Restore(PLL);
PLL = rhdPtr->PLLs[1];
if (PLL->Restore)
PLL->Restore(PLL);
}
/*
*
*/
void
RHDPLLsDestroy(RHDPtr rhdPtr)
{
RHDFUNC(rhdPtr);
if (rhdPtr->PLLs[0] && rhdPtr->PLLs[0]->Private)
xfree(rhdPtr->PLLs[0]->Private);
xfree(rhdPtr->PLLs[0]);
if (rhdPtr->PLLs[1] && rhdPtr->PLLs[1]->Private)
xfree(rhdPtr->PLLs[1]->Private);
xfree(rhdPtr->PLLs[1]);
}