kolibrios-fun/contrib/media/updf/include/bits/stl_alloc.h
right-hearted 4f7ee97ec9 uPDF with buttons
git-svn-id: svn://kolibrios.org@4680 a494cfbc-eb01-0410-851d-a64ba20cac60
2014-03-22 21:00:40 +00:00

823 lines
26 KiB
C++

/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_ALLOC_H
#define __SGI_STL_INTERNAL_ALLOC_H
// This implements some standard node allocators. These are
// NOT the same as the allocators in the C++ draft standard or in
// in the original STL. They do not encapsulate different pointer
// types; indeed we assume that there is only one pointer type.
// The allocation primitives are intended to allocate individual objects,
// not larger arenas as with the original STL allocators.
#include <bits/functexcept.h> // for __throw_bad_alloc
#include <bits/std_cstddef.h>
#include <bits/std_cstdlib.h>
#include <bits/std_cstring.h>
#include <bits/std_cassert.h>
#ifndef __RESTRICT
# define __RESTRICT
#endif
#ifdef __STL_THREADS
# include <bits/stl_threads.h>
# define __NODE_ALLOCATOR_THREADS true
# ifdef __STL_SGI_THREADS
// We test whether threads are in use before locking.
// Perhaps this should be moved into stl_threads.h, but that
// probably makes it harder to avoid the procedure call when
// it isn't needed.
extern "C" {
extern int __us_rsthread_malloc;
}
// The above is copied from malloc.h. Including <malloc.h>
// would be cleaner but fails with certain levels of standard
// conformance.
# define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \
{ _S_node_allocator_lock._M_acquire_lock(); }
# define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \
{ _S_node_allocator_lock._M_release_lock(); }
# else /* !__STL_SGI_THREADS */
# define __NODE_ALLOCATOR_LOCK \
{ if (threads) _S_node_allocator_lock._M_acquire_lock(); }
# define __NODE_ALLOCATOR_UNLOCK \
{ if (threads) _S_node_allocator_lock._M_release_lock(); }
# endif
#else
// Thread-unsafe
# define __NODE_ALLOCATOR_LOCK
# define __NODE_ALLOCATOR_UNLOCK
# define __NODE_ALLOCATOR_THREADS false
#endif
namespace std
{
// Malloc-based allocator. Typically slower than default alloc below.
// Typically thread-safe and more storage efficient.
template <int __inst>
class __malloc_alloc_template {
private:
static void* _S_oom_malloc(size_t);
static void* _S_oom_realloc(void*, size_t);
static void (* __malloc_alloc_oom_handler)();
public:
static void* allocate(size_t __n)
{
void* __result = malloc(__n);
if (0 == __result) __result = _S_oom_malloc(__n);
return __result;
}
static void deallocate(void* __p, size_t /* __n */)
{
free(__p);
}
static void* reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
{
void* __result = realloc(__p, __new_sz);
if (0 == __result) __result = _S_oom_realloc(__p, __new_sz);
return __result;
}
static void (* __set_malloc_handler(void (*__f)()))()
{
void (* __old)() = __malloc_alloc_oom_handler;
__malloc_alloc_oom_handler = __f;
return(__old);
}
};
// malloc_alloc out-of-memory handling
template <int __inst>
void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0;
template <int __inst>
void*
__malloc_alloc_template<__inst>::_S_oom_malloc(size_t __n)
{
void (* __my_malloc_handler)();
void* __result;
for (;;) {
__my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == __my_malloc_handler) { std::__throw_bad_alloc(); }
(*__my_malloc_handler)();
__result = malloc(__n);
if (__result) return(__result);
}
}
template <int __inst>
void* __malloc_alloc_template<__inst>::_S_oom_realloc(void* __p, size_t __n)
{
void (* __my_malloc_handler)();
void* __result;
for (;;) {
__my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == __my_malloc_handler) { std::__throw_bad_alloc(); }
(*__my_malloc_handler)();
__result = realloc(__p, __n);
if (__result) return(__result);
}
}
typedef __malloc_alloc_template<0> malloc_alloc;
template<class _Tp, class _Alloc>
class simple_alloc {
public:
static _Tp* allocate(size_t __n)
{ return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); }
static _Tp* allocate(void)
{ return (_Tp*) _Alloc::allocate(sizeof (_Tp)); }
static void deallocate(_Tp* __p, size_t __n)
{ if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); }
static void deallocate(_Tp* __p)
{ _Alloc::deallocate(__p, sizeof (_Tp)); }
};
// Allocator adaptor to check size arguments for debugging.
// Reports errors using assert. Checking can be disabled with
// NDEBUG, but it's far better to just use the underlying allocator
// instead when no checking is desired.
// There is some evidence that this can confuse Purify.
template <class _Alloc>
class debug_alloc {
private:
enum {_S_extra = 8}; // Size of space used to store size. Note
// that this must be large enough to preserve
// alignment.
public:
static void* allocate(size_t __n)
{
char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra);
*(size_t*)__result = __n;
return __result + (int) _S_extra;
}
static void deallocate(void* __p, size_t __n)
{
char* __real_p = (char*)__p - (int) _S_extra;
assert(*(size_t*)__real_p == __n);
_Alloc::deallocate(__real_p, __n + (int) _S_extra);
}
static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz)
{
char* __real_p = (char*)__p - (int) _S_extra;
assert(*(size_t*)__real_p == __old_sz);
char* __result = (char*)
_Alloc::reallocate(__real_p, __old_sz + (int) _S_extra,
__new_sz + (int) _S_extra);
*(size_t*)__result = __new_sz;
return __result + (int) _S_extra;
}
};
# ifdef __USE_MALLOC
typedef malloc_alloc alloc;
typedef malloc_alloc single_client_alloc;
# else
// Default node allocator.
// With a reasonable compiler, this should be roughly as fast as the
// original STL class-specific allocators, but with less fragmentation.
// Default_alloc_template parameters are experimental and MAY
// DISAPPEAR in the future. Clients should just use alloc for now.
//
// Important implementation properties:
// 1. If the client request an object of size > _MAX_BYTES, the resulting
// object will be obtained directly from malloc.
// 2. In all other cases, we allocate an object of size exactly
// _S_round_up(requested_size). Thus the client has enough size
// information that we can return the object to the proper free list
// without permanently losing part of the object.
//
// The first template parameter specifies whether more than one thread
// may use this allocator. It is safe to allocate an object from
// one instance of a default_alloc and deallocate it with another
// one. This effectively transfers its ownership to the second one.
// This may have undesirable effects on reference locality.
// The second parameter is unreferenced and serves only to allow the
// creation of multiple default_alloc instances.
// Node that containers built on different allocator instances have
// different types, limiting the utility of this approach.
template <bool threads, int inst>
class __default_alloc_template {
private:
// Really we should use static const int x = N
// instead of enum { x = N }, but few compilers accept the former.
enum {_ALIGN = 8};
enum {_MAX_BYTES = 128};
enum {_NFREELISTS = 16}; // _MAX_BYTES/_ALIGN
static size_t
_S_round_up(size_t __bytes)
{ return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); }
union _Obj {
union _Obj* _M_free_list_link;
char _M_client_data[1]; /* The client sees this. */
};
static _Obj* __STL_VOLATILE _S_free_list[];
// Specifying a size results in duplicate def for 4.1
static size_t _S_freelist_index(size_t __bytes) {
return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1);
}
// Returns an object of size __n, and optionally adds to size __n free list.
static void* _S_refill(size_t __n);
// Allocates a chunk for nobjs of size size. nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char* _S_chunk_alloc(size_t __size, int& __nobjs);
// Chunk allocation state.
static char* _S_start_free;
static char* _S_end_free;
static size_t _S_heap_size;
# ifdef __STL_THREADS
static _STL_mutex_lock _S_node_allocator_lock;
# endif
// It would be nice to use _STL_auto_lock here. But we
// don't need the NULL check. And we do need a test whether
// threads have actually been started.
class _Lock;
friend class _Lock;
class _Lock {
public:
_Lock() { __NODE_ALLOCATOR_LOCK; }
~_Lock() { __NODE_ALLOCATOR_UNLOCK; }
};
public:
/* __n must be > 0 */
static void* allocate(size_t __n)
{
void* __ret = 0;
if (__n > (size_t) _MAX_BYTES) {
__ret = malloc_alloc::allocate(__n);
}
else {
_Obj* __STL_VOLATILE* __my_free_list
= _S_free_list + _S_freelist_index(__n);
// Acquire the lock here with a constructor call.
// This ensures that it is released in exit or during stack
// unwinding.
# ifndef _NOTHREADS
/*REFERENCED*/
_Lock __lock_instance;
# endif
_Obj* __RESTRICT __result = *__my_free_list;
if (__result == 0)
__ret = _S_refill(_S_round_up(__n));
else {
*__my_free_list = __result -> _M_free_list_link;
__ret = __result;
}
}
return __ret;
};
/* __p may not be 0 */
static void deallocate(void* __p, size_t __n)
{
if (__n > (size_t) _MAX_BYTES)
malloc_alloc::deallocate(__p, __n);
else {
_Obj* __STL_VOLATILE* __my_free_list
= _S_free_list + _S_freelist_index(__n);
_Obj* __q = (_Obj*)__p;
// acquire lock
# ifndef _NOTHREADS
/*REFERENCED*/
_Lock __lock_instance;
# endif /* _NOTHREADS */
__q -> _M_free_list_link = *__my_free_list;
*__my_free_list = __q;
// lock is released here
}
}
static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz);
} ;
typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
typedef __default_alloc_template<false, 0> single_client_alloc;
template <bool __threads, int __inst>
inline bool operator==(const __default_alloc_template<__threads, __inst>&,
const __default_alloc_template<__threads, __inst>&)
{
return true;
}
template <bool __threads, int __inst>
inline bool operator!=(const __default_alloc_template<__threads, __inst>&,
const __default_alloc_template<__threads, __inst>&)
{
return false;
}
/* We allocate memory in large chunks in order to avoid fragmenting */
/* the malloc heap too much. */
/* We assume that size is properly aligned. */
/* We hold the allocation lock. */
template <bool __threads, int __inst>
char*
__default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size,
int& __nobjs)
{
char* __result;
size_t __total_bytes = __size * __nobjs;
size_t __bytes_left = _S_end_free - _S_start_free;
if (__bytes_left >= __total_bytes) {
__result = _S_start_free;
_S_start_free += __total_bytes;
return(__result);
} else if (__bytes_left >= __size) {
__nobjs = (int)(__bytes_left/__size);
__total_bytes = __size * __nobjs;
__result = _S_start_free;
_S_start_free += __total_bytes;
return(__result);
} else {
size_t __bytes_to_get =
2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
// Try to make use of the left-over piece.
if (__bytes_left > 0) {
_Obj* __STL_VOLATILE* __my_free_list =
_S_free_list + _S_freelist_index(__bytes_left);
((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
*__my_free_list = (_Obj*)_S_start_free;
}
_S_start_free = (char*)malloc(__bytes_to_get);
if (0 == _S_start_free) {
size_t __i;
_Obj* __STL_VOLATILE* __my_free_list;
_Obj* __p;
// Try to make do with what we have. That can't
// hurt. We do not try smaller requests, since that tends
// to result in disaster on multi-process machines.
for (__i = __size;
__i <= (size_t) _MAX_BYTES;
__i += (size_t) _ALIGN) {
__my_free_list = _S_free_list + _S_freelist_index(__i);
__p = *__my_free_list;
if (0 != __p) {
*__my_free_list = __p -> _M_free_list_link;
_S_start_free = (char*)__p;
_S_end_free = _S_start_free + __i;
return(_S_chunk_alloc(__size, __nobjs));
// Any leftover piece will eventually make it to the
// right free list.
}
}
_S_end_free = 0; // In case of exception.
_S_start_free = (char*)malloc_alloc::allocate(__bytes_to_get);
// This should either throw an
// exception or remedy the situation. Thus we assume it
// succeeded.
}
_S_heap_size += __bytes_to_get;
_S_end_free = _S_start_free + __bytes_to_get;
return(_S_chunk_alloc(__size, __nobjs));
}
}
/* Returns an object of size __n, and optionally adds to size __n free list.*/
/* We assume that __n is properly aligned. */
/* We hold the allocation lock. */
template <bool __threads, int __inst>
void*
__default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
{
int __nobjs = 20;
char* __chunk = _S_chunk_alloc(__n, __nobjs);
_Obj* __STL_VOLATILE* __my_free_list;
_Obj* __result;
_Obj* __current_obj;
_Obj* __next_obj;
int __i;
if (1 == __nobjs) return(__chunk);
__my_free_list = _S_free_list + _S_freelist_index(__n);
/* Build free list in chunk */
__result = (_Obj*)__chunk;
*__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
for (__i = 1; ; __i++) {
__current_obj = __next_obj;
__next_obj = (_Obj*)((char*)__next_obj + __n);
if (__nobjs - 1 == __i) {
__current_obj -> _M_free_list_link = 0;
break;
} else {
__current_obj -> _M_free_list_link = __next_obj;
}
}
return(__result);
}
template <bool threads, int inst>
void*
__default_alloc_template<threads, inst>::reallocate(void* __p,
size_t __old_sz,
size_t __new_sz)
{
void* __result;
size_t __copy_sz;
if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES) {
return(realloc(__p, __new_sz));
}
if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
__result = allocate(__new_sz);
__copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
memcpy(__result, __p, __copy_sz);
deallocate(__p, __old_sz);
return(__result);
}
#ifdef __STL_THREADS
template <bool __threads, int __inst>
_STL_mutex_lock
__default_alloc_template<__threads, __inst>::_S_node_allocator_lock
__STL_MUTEX_INITIALIZER;
#endif
template <bool __threads, int __inst>
char* __default_alloc_template<__threads, __inst>::_S_start_free = 0;
template <bool __threads, int __inst>
char* __default_alloc_template<__threads, __inst>::_S_end_free = 0;
template <bool __threads, int __inst>
size_t __default_alloc_template<__threads, __inst>::_S_heap_size = 0;
template <bool __threads, int __inst>
typename __default_alloc_template<__threads, __inst>::_Obj* __STL_VOLATILE
__default_alloc_template<__threads, __inst> ::_S_free_list[
__default_alloc_template<__threads, __inst>::_NFREELISTS
] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
// The 16 zeros are necessary to make version 4.1 of the SunPro
// compiler happy. Otherwise it appears to allocate too little
// space for the array.
#endif /* ! __USE_MALLOC */
// This implements allocators as specified in the C++ standard.
//
// Note that standard-conforming allocators use many language features
// that are not yet widely implemented. In particular, they rely on
// member templates, partial specialization, partial ordering of function
// templates, the typename keyword, and the use of the template keyword
// to refer to a template member of a dependent type.
template <class _Tp>
class allocator {
typedef alloc _Alloc; // The underlying allocator.
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template <class _Tp1> struct rebind {
typedef allocator<_Tp1> other;
};
allocator() __STL_NOTHROW {}
allocator(const allocator&) __STL_NOTHROW {}
template <class _Tp1> allocator(const allocator<_Tp1>&) __STL_NOTHROW {}
~allocator() __STL_NOTHROW {}
pointer address(reference __x) const { return &__x; }
const_pointer address(const_reference __x) const { return &__x; }
// __n is permitted to be 0. The C++ standard says nothing about what
// the return value is when __n == 0.
_Tp* allocate(size_type __n, const void* = 0) {
return __n != 0 ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)))
: 0;
}
// __p is not permitted to be a null pointer.
void deallocate(pointer __p, size_type __n)
{ _Alloc::deallocate(__p, __n * sizeof(_Tp)); }
size_type max_size() const __STL_NOTHROW
{ return size_t(-1) / sizeof(_Tp); }
void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void destroy(pointer __p) { __p->~_Tp(); }
};
template<>
class allocator<void> {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template <class _Tp1> struct rebind {
typedef allocator<_Tp1> other;
};
};
template <class _T1, class _T2>
inline bool operator==(const allocator<_T1>&, const allocator<_T2>&)
{
return true;
}
template <class _T1, class _T2>
inline bool operator!=(const allocator<_T1>&, const allocator<_T2>&)
{
return false;
}
// Allocator adaptor to turn an SGI-style allocator (e.g. alloc, malloc_alloc)
// into a standard-conforming allocator. Note that this adaptor does
// *not* assume that all objects of the underlying alloc class are
// identical, nor does it assume that all of the underlying alloc's
// member functions are static member functions. Note, also, that
// __allocator<_Tp, alloc> is essentially the same thing as allocator<_Tp>.
template <class _Tp, class _Alloc>
struct __allocator {
_Alloc __underlying_alloc;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template <class _Tp1> struct rebind {
typedef __allocator<_Tp1, _Alloc> other;
};
__allocator() __STL_NOTHROW {}
__allocator(const __allocator& __a) __STL_NOTHROW
: __underlying_alloc(__a.__underlying_alloc) {}
template <class _Tp1>
__allocator(const __allocator<_Tp1, _Alloc>& __a) __STL_NOTHROW
: __underlying_alloc(__a.__underlying_alloc) {}
~__allocator() __STL_NOTHROW {}
pointer address(reference __x) const { return &__x; }
const_pointer address(const_reference __x) const { return &__x; }
// __n is permitted to be 0.
_Tp* allocate(size_type __n, const void* = 0) {
return __n != 0
? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp)))
: 0;
}
// __p is not permitted to be a null pointer.
void deallocate(pointer __p, size_type __n)
{ __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
size_type max_size() const __STL_NOTHROW
{ return size_t(-1) / sizeof(_Tp); }
void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void destroy(pointer __p) { __p->~_Tp(); }
};
template <class _Alloc>
class __allocator<void, _Alloc> {
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template <class _Tp1> struct rebind {
typedef __allocator<_Tp1, _Alloc> other;
};
};
template <class _Tp, class _Alloc>
inline bool operator==(const __allocator<_Tp, _Alloc>& __a1,
const __allocator<_Tp, _Alloc>& __a2)
{
return __a1.__underlying_alloc == __a2.__underlying_alloc;
}
template <class _Tp, class _Alloc>
inline bool operator!=(const __allocator<_Tp, _Alloc>& __a1,
const __allocator<_Tp, _Alloc>& __a2)
{
return __a1.__underlying_alloc != __a2.__underlying_alloc;
}
// Comparison operators for all of the predifined SGI-style allocators.
// This ensures that __allocator<malloc_alloc> (for example) will
// work correctly.
template <int inst>
inline bool operator==(const __malloc_alloc_template<inst>&,
const __malloc_alloc_template<inst>&)
{
return true;
}
template <int __inst>
inline bool operator!=(const __malloc_alloc_template<__inst>&,
const __malloc_alloc_template<__inst>&)
{
return false;
}
template <class _Alloc>
inline bool operator==(const debug_alloc<_Alloc>&,
const debug_alloc<_Alloc>&) {
return true;
}
template <class _Alloc>
inline bool operator!=(const debug_alloc<_Alloc>&,
const debug_alloc<_Alloc>&) {
return false;
}
// Another allocator adaptor: _Alloc_traits. This serves two
// purposes. First, make it possible to write containers that can use
// either SGI-style allocators or standard-conforming allocator.
// Second, provide a mechanism so that containers can query whether or
// not the allocator has distinct instances. If not, the container
// can avoid wasting a word of memory to store an empty object.
// This adaptor uses partial specialization. The general case of
// _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a
// standard-conforming allocator, possibly with non-equal instances
// and non-static members. (It still behaves correctly even if _Alloc
// has static member and if all instances are equal. Refinements
// affect performance, not correctness.)
// There are always two members: allocator_type, which is a standard-
// conforming allocator type for allocating objects of type _Tp, and
// _S_instanceless, a static const member of type bool. If
// _S_instanceless is true, this means that there is no difference
// between any two instances of type allocator_type. Furthermore, if
// _S_instanceless is true, then _Alloc_traits has one additional
// member: _Alloc_type. This type encapsulates allocation and
// deallocation of objects of type _Tp through a static interface; it
// has two member functions, whose signatures are
// static _Tp* allocate(size_t)
// static void deallocate(_Tp*, size_t)
// The fully general version.
template <class _Tp, class _Allocator>
struct _Alloc_traits
{
static const bool _S_instanceless = false;
typedef typename _Allocator::template rebind<_Tp>::other allocator_type;
};
template <class _Tp, class _Allocator>
const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;
// The version for the default allocator.
template <class _Tp, class _Tp1>
struct _Alloc_traits<_Tp, allocator<_Tp1> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, alloc> _Alloc_type;
typedef allocator<_Tp> allocator_type;
};
// Versions for the predefined SGI-style allocators.
template <class _Tp, int __inst>
struct _Alloc_traits<_Tp, __malloc_alloc_template<__inst> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
};
#ifndef __USE_MALLOC
template <class _Tp, bool __threads, int __inst>
struct _Alloc_traits<_Tp, __default_alloc_template<__threads, __inst> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, __default_alloc_template<__threads, __inst> >
_Alloc_type;
typedef __allocator<_Tp, __default_alloc_template<__threads, __inst> >
allocator_type;
};
#endif
template <class _Tp, class _Alloc>
struct _Alloc_traits<_Tp, debug_alloc<_Alloc> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type;
typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type;
};
// Versions for the __allocator adaptor used with the predefined
// SGI-style allocators.
template <class _Tp, class _Tp1, int __inst>
struct _Alloc_traits<_Tp,
__allocator<_Tp1, __malloc_alloc_template<__inst> > >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
};
#ifndef __USE_MALLOC
template <class _Tp, class _Tp1, bool __thr, int __inst>
struct _Alloc_traits<_Tp,
__allocator<_Tp1,
__default_alloc_template<__thr, __inst> > >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, __default_alloc_template<__thr,__inst> >
_Alloc_type;
typedef __allocator<_Tp, __default_alloc_template<__thr,__inst> >
allocator_type;
};
#endif
template <class _Tp, class _Tp1, class _Alloc>
struct _Alloc_traits<_Tp, __allocator<_Tp1, debug_alloc<_Alloc> > >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type;
typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type;
};
} // namespace std
#endif /* __SGI_STL_INTERNAL_ALLOC_H */
// Local Variables:
// mode:C++
// End: