forked from KolibriOS/kolibrios
87ba1ae914
git-svn-id: svn://kolibrios.org@6084 a494cfbc-eb01-0410-851d-a64ba20cac60
850 lines
22 KiB
C
850 lines
22 KiB
C
#include <ddk.h>
|
|
#include <linux/mm.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "intel_drv.h"
|
|
#include <linux/hdmi.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/fence.h>
|
|
|
|
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
|
|
{
|
|
struct file *filep;
|
|
int count;
|
|
|
|
filep = __builtin_malloc(sizeof(*filep));
|
|
|
|
if(unlikely(filep == NULL))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
count = size / PAGE_SIZE;
|
|
|
|
filep->pages = kzalloc(sizeof(struct page *) * count, 0);
|
|
if(unlikely(filep->pages == NULL))
|
|
{
|
|
kfree(filep);
|
|
return ERR_PTR(-ENOMEM);
|
|
};
|
|
|
|
filep->count = count;
|
|
filep->allocated = 0;
|
|
filep->vma = NULL;
|
|
|
|
// printf("%s file %p pages %p count %d\n",
|
|
// __FUNCTION__,filep, filep->pages, count);
|
|
|
|
return filep;
|
|
}
|
|
|
|
struct page *shmem_read_mapping_page_gfp(struct file *filep,
|
|
pgoff_t index, gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
if(unlikely(index >= filep->count))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
page = filep->pages[index];
|
|
|
|
if(unlikely(page == NULL))
|
|
{
|
|
page = (struct page *)AllocPage();
|
|
|
|
if(unlikely(page == NULL))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
filep->pages[index] = page;
|
|
// printf("file %p index %d page %x\n", filep, index, page);
|
|
// delay(1);
|
|
|
|
};
|
|
|
|
return page;
|
|
};
|
|
|
|
unsigned long vm_mmap(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot,
|
|
unsigned long flag, unsigned long offset)
|
|
{
|
|
char *mem, *ptr;
|
|
int i;
|
|
|
|
if (unlikely(offset + PAGE_ALIGN(len) < offset))
|
|
return -EINVAL;
|
|
if (unlikely(offset & ~PAGE_MASK))
|
|
return -EINVAL;
|
|
|
|
mem = UserAlloc(len);
|
|
if(unlikely(mem == NULL))
|
|
return -ENOMEM;
|
|
|
|
for(i = offset, ptr = mem; i < offset+len; i+= 4096, ptr+= 4096)
|
|
{
|
|
struct page *page;
|
|
|
|
page = shmem_read_mapping_page_gfp(file, i/PAGE_SIZE,0);
|
|
|
|
if (unlikely(IS_ERR(page)))
|
|
goto err;
|
|
|
|
MapPage(ptr, (addr_t)page, PG_SHARED|PG_UW);
|
|
}
|
|
|
|
return (unsigned long)mem;
|
|
err:
|
|
UserFree(mem);
|
|
return -ENOMEM;
|
|
};
|
|
|
|
void shmem_file_delete(struct file *filep)
|
|
{
|
|
// printf("%s file %p pages %p count %d\n",
|
|
// __FUNCTION__, filep, filep->pages, filep->count);
|
|
|
|
if(filep->pages)
|
|
kfree(filep->pages);
|
|
}
|
|
|
|
|
|
|
|
static void *check_bytes8(const u8 *start, u8 value, unsigned int bytes)
|
|
{
|
|
while (bytes) {
|
|
if (*start != value)
|
|
return (void *)start;
|
|
start++;
|
|
bytes--;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* memchr_inv - Find an unmatching character in an area of memory.
|
|
* @start: The memory area
|
|
* @c: Find a character other than c
|
|
* @bytes: The size of the area.
|
|
*
|
|
* returns the address of the first character other than @c, or %NULL
|
|
* if the whole buffer contains just @c.
|
|
*/
|
|
void *memchr_inv(const void *start, int c, size_t bytes)
|
|
{
|
|
u8 value = c;
|
|
u64 value64;
|
|
unsigned int words, prefix;
|
|
|
|
if (bytes <= 16)
|
|
return check_bytes8(start, value, bytes);
|
|
|
|
value64 = value;
|
|
#if defined(ARCH_HAS_FAST_MULTIPLIER) && BITS_PER_LONG == 64
|
|
value64 *= 0x0101010101010101;
|
|
#elif defined(ARCH_HAS_FAST_MULTIPLIER)
|
|
value64 *= 0x01010101;
|
|
value64 |= value64 << 32;
|
|
#else
|
|
value64 |= value64 << 8;
|
|
value64 |= value64 << 16;
|
|
value64 |= value64 << 32;
|
|
#endif
|
|
|
|
prefix = (unsigned long)start % 8;
|
|
if (prefix) {
|
|
u8 *r;
|
|
|
|
prefix = 8 - prefix;
|
|
r = check_bytes8(start, value, prefix);
|
|
if (r)
|
|
return r;
|
|
start += prefix;
|
|
bytes -= prefix;
|
|
}
|
|
|
|
words = bytes / 8;
|
|
|
|
while (words) {
|
|
if (*(u64 *)start != value64)
|
|
return check_bytes8(start, value, 8);
|
|
start += 8;
|
|
words--;
|
|
}
|
|
|
|
return check_bytes8(start, value, bytes % 8);
|
|
}
|
|
|
|
|
|
|
|
int dma_map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, int dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sglist, s, nelems, i) {
|
|
s->dma_address = (dma_addr_t)sg_phys(s);
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
s->dma_length = s->length;
|
|
#endif
|
|
}
|
|
|
|
return nelems;
|
|
}
|
|
|
|
|
|
|
|
#define _U 0x01 /* upper */
|
|
#define _L 0x02 /* lower */
|
|
#define _D 0x04 /* digit */
|
|
#define _C 0x08 /* cntrl */
|
|
#define _P 0x10 /* punct */
|
|
#define _S 0x20 /* white space (space/lf/tab) */
|
|
#define _X 0x40 /* hex digit */
|
|
#define _SP 0x80 /* hard space (0x20) */
|
|
|
|
extern const unsigned char _ctype[];
|
|
|
|
#define __ismask(x) (_ctype[(int)(unsigned char)(x)])
|
|
|
|
#define isalnum(c) ((__ismask(c)&(_U|_L|_D)) != 0)
|
|
#define isalpha(c) ((__ismask(c)&(_U|_L)) != 0)
|
|
#define iscntrl(c) ((__ismask(c)&(_C)) != 0)
|
|
#define isdigit(c) ((__ismask(c)&(_D)) != 0)
|
|
#define isgraph(c) ((__ismask(c)&(_P|_U|_L|_D)) != 0)
|
|
#define islower(c) ((__ismask(c)&(_L)) != 0)
|
|
#define isprint(c) ((__ismask(c)&(_P|_U|_L|_D|_SP)) != 0)
|
|
#define ispunct(c) ((__ismask(c)&(_P)) != 0)
|
|
/* Note: isspace() must return false for %NUL-terminator */
|
|
#define isspace(c) ((__ismask(c)&(_S)) != 0)
|
|
#define isupper(c) ((__ismask(c)&(_U)) != 0)
|
|
#define isxdigit(c) ((__ismask(c)&(_D|_X)) != 0)
|
|
|
|
#define isascii(c) (((unsigned char)(c))<=0x7f)
|
|
#define toascii(c) (((unsigned char)(c))&0x7f)
|
|
|
|
static inline unsigned char __tolower(unsigned char c)
|
|
{
|
|
if (isupper(c))
|
|
c -= 'A'-'a';
|
|
return c;
|
|
}
|
|
|
|
static inline unsigned char __toupper(unsigned char c)
|
|
{
|
|
if (islower(c))
|
|
c -= 'a'-'A';
|
|
return c;
|
|
}
|
|
|
|
#define tolower(c) __tolower(c)
|
|
#define toupper(c) __toupper(c)
|
|
|
|
/*
|
|
* Fast implementation of tolower() for internal usage. Do not use in your
|
|
* code.
|
|
*/
|
|
static inline char _tolower(const char c)
|
|
{
|
|
return c | 0x20;
|
|
}
|
|
|
|
|
|
//const char hex_asc[] = "0123456789abcdef";
|
|
|
|
/**
|
|
* hex_to_bin - convert a hex digit to its real value
|
|
* @ch: ascii character represents hex digit
|
|
*
|
|
* hex_to_bin() converts one hex digit to its actual value or -1 in case of bad
|
|
* input.
|
|
*/
|
|
int hex_to_bin(char ch)
|
|
{
|
|
if ((ch >= '0') && (ch <= '9'))
|
|
return ch - '0';
|
|
ch = tolower(ch);
|
|
if ((ch >= 'a') && (ch <= 'f'))
|
|
return ch - 'a' + 10;
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL(hex_to_bin);
|
|
|
|
/**
|
|
* hex2bin - convert an ascii hexadecimal string to its binary representation
|
|
* @dst: binary result
|
|
* @src: ascii hexadecimal string
|
|
* @count: result length
|
|
*
|
|
* Return 0 on success, -1 in case of bad input.
|
|
*/
|
|
int hex2bin(u8 *dst, const char *src, size_t count)
|
|
{
|
|
while (count--) {
|
|
int hi = hex_to_bin(*src++);
|
|
int lo = hex_to_bin(*src++);
|
|
|
|
if ((hi < 0) || (lo < 0))
|
|
return -1;
|
|
|
|
*dst++ = (hi << 4) | lo;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(hex2bin);
|
|
|
|
/**
|
|
* hex_dump_to_buffer - convert a blob of data to "hex ASCII" in memory
|
|
* @buf: data blob to dump
|
|
* @len: number of bytes in the @buf
|
|
* @rowsize: number of bytes to print per line; must be 16 or 32
|
|
* @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1)
|
|
* @linebuf: where to put the converted data
|
|
* @linebuflen: total size of @linebuf, including space for terminating NUL
|
|
* @ascii: include ASCII after the hex output
|
|
*
|
|
* hex_dump_to_buffer() works on one "line" of output at a time, i.e.,
|
|
* 16 or 32 bytes of input data converted to hex + ASCII output.
|
|
*
|
|
* Given a buffer of u8 data, hex_dump_to_buffer() converts the input data
|
|
* to a hex + ASCII dump at the supplied memory location.
|
|
* The converted output is always NUL-terminated.
|
|
*
|
|
* E.g.:
|
|
* hex_dump_to_buffer(frame->data, frame->len, 16, 1,
|
|
* linebuf, sizeof(linebuf), true);
|
|
*
|
|
* example output buffer:
|
|
* 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
|
|
*/
|
|
int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize,
|
|
char *linebuf, size_t linebuflen, bool ascii)
|
|
{
|
|
const u8 *ptr = buf;
|
|
int ngroups;
|
|
u8 ch;
|
|
int j, lx = 0;
|
|
int ascii_column;
|
|
int ret;
|
|
|
|
if (rowsize != 16 && rowsize != 32)
|
|
rowsize = 16;
|
|
|
|
if (len > rowsize) /* limit to one line at a time */
|
|
len = rowsize;
|
|
if (!is_power_of_2(groupsize) || groupsize > 8)
|
|
groupsize = 1;
|
|
if ((len % groupsize) != 0) /* no mixed size output */
|
|
groupsize = 1;
|
|
|
|
ngroups = len / groupsize;
|
|
ascii_column = rowsize * 2 + rowsize / groupsize + 1;
|
|
|
|
if (!linebuflen)
|
|
goto overflow1;
|
|
|
|
if (!len)
|
|
goto nil;
|
|
|
|
if (groupsize == 8) {
|
|
const u64 *ptr8 = buf;
|
|
|
|
for (j = 0; j < ngroups; j++) {
|
|
ret = snprintf(linebuf + lx, linebuflen - lx,
|
|
"%s%16.16llx", j ? " " : "",
|
|
(unsigned long long)*(ptr8 + j));
|
|
if (ret >= linebuflen - lx)
|
|
goto overflow1;
|
|
lx += ret;
|
|
}
|
|
} else if (groupsize == 4) {
|
|
const u32 *ptr4 = buf;
|
|
|
|
for (j = 0; j < ngroups; j++) {
|
|
ret = snprintf(linebuf + lx, linebuflen - lx,
|
|
"%s%8.8x", j ? " " : "",
|
|
*(ptr4 + j));
|
|
if (ret >= linebuflen - lx)
|
|
goto overflow1;
|
|
lx += ret;
|
|
}
|
|
} else if (groupsize == 2) {
|
|
const u16 *ptr2 = buf;
|
|
|
|
for (j = 0; j < ngroups; j++) {
|
|
ret = snprintf(linebuf + lx, linebuflen - lx,
|
|
"%s%4.4x", j ? " " : "",
|
|
*(ptr2 + j));
|
|
if (ret >= linebuflen - lx)
|
|
goto overflow1;
|
|
lx += ret;
|
|
}
|
|
} else {
|
|
for (j = 0; j < len; j++) {
|
|
if (linebuflen < lx + 3)
|
|
goto overflow2;
|
|
ch = ptr[j];
|
|
linebuf[lx++] = hex_asc_hi(ch);
|
|
linebuf[lx++] = hex_asc_lo(ch);
|
|
linebuf[lx++] = ' ';
|
|
}
|
|
if (j)
|
|
lx--;
|
|
}
|
|
if (!ascii)
|
|
goto nil;
|
|
|
|
while (lx < ascii_column) {
|
|
if (linebuflen < lx + 2)
|
|
goto overflow2;
|
|
linebuf[lx++] = ' ';
|
|
}
|
|
for (j = 0; j < len; j++) {
|
|
if (linebuflen < lx + 2)
|
|
goto overflow2;
|
|
ch = ptr[j];
|
|
linebuf[lx++] = (isascii(ch) && isprint(ch)) ? ch : '.';
|
|
}
|
|
nil:
|
|
linebuf[lx] = '\0';
|
|
return lx;
|
|
overflow2:
|
|
linebuf[lx++] = '\0';
|
|
overflow1:
|
|
return ascii ? ascii_column + len : (groupsize * 2 + 1) * ngroups - 1;
|
|
}
|
|
/**
|
|
* print_hex_dump - print a text hex dump to syslog for a binary blob of data
|
|
* @level: kernel log level (e.g. KERN_DEBUG)
|
|
* @prefix_str: string to prefix each line with;
|
|
* caller supplies trailing spaces for alignment if desired
|
|
* @prefix_type: controls whether prefix of an offset, address, or none
|
|
* is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE)
|
|
* @rowsize: number of bytes to print per line; must be 16 or 32
|
|
* @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1)
|
|
* @buf: data blob to dump
|
|
* @len: number of bytes in the @buf
|
|
* @ascii: include ASCII after the hex output
|
|
*
|
|
* Given a buffer of u8 data, print_hex_dump() prints a hex + ASCII dump
|
|
* to the kernel log at the specified kernel log level, with an optional
|
|
* leading prefix.
|
|
*
|
|
* print_hex_dump() works on one "line" of output at a time, i.e.,
|
|
* 16 or 32 bytes of input data converted to hex + ASCII output.
|
|
* print_hex_dump() iterates over the entire input @buf, breaking it into
|
|
* "line size" chunks to format and print.
|
|
*
|
|
* E.g.:
|
|
* print_hex_dump(KERN_DEBUG, "raw data: ", DUMP_PREFIX_ADDRESS,
|
|
* 16, 1, frame->data, frame->len, true);
|
|
*
|
|
* Example output using %DUMP_PREFIX_OFFSET and 1-byte mode:
|
|
* 0009ab42: 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
|
|
* Example output using %DUMP_PREFIX_ADDRESS and 4-byte mode:
|
|
* ffffffff88089af0: 73727170 77767574 7b7a7978 7f7e7d7c pqrstuvwxyz{|}~.
|
|
*/
|
|
void print_hex_dump(const char *level, const char *prefix_str, int prefix_type,
|
|
int rowsize, int groupsize,
|
|
const void *buf, size_t len, bool ascii)
|
|
{
|
|
const u8 *ptr = buf;
|
|
int i, linelen, remaining = len;
|
|
unsigned char linebuf[32 * 3 + 2 + 32 + 1];
|
|
|
|
if (rowsize != 16 && rowsize != 32)
|
|
rowsize = 16;
|
|
|
|
for (i = 0; i < len; i += rowsize) {
|
|
linelen = min(remaining, rowsize);
|
|
remaining -= rowsize;
|
|
|
|
hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize,
|
|
linebuf, sizeof(linebuf), ascii);
|
|
|
|
switch (prefix_type) {
|
|
case DUMP_PREFIX_ADDRESS:
|
|
printk("%s%s%p: %s\n",
|
|
level, prefix_str, ptr + i, linebuf);
|
|
break;
|
|
case DUMP_PREFIX_OFFSET:
|
|
printk("%s%s%.8x: %s\n", level, prefix_str, i, linebuf);
|
|
break;
|
|
default:
|
|
printk("%s%s%s\n", level, prefix_str, linebuf);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void print_hex_dump_bytes(const char *prefix_str, int prefix_type,
|
|
const void *buf, size_t len)
|
|
{
|
|
print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, 16, 1,
|
|
buf, len, true);
|
|
}
|
|
|
|
void *kmemdup(const void *src, size_t len, gfp_t gfp)
|
|
{
|
|
void *p;
|
|
|
|
p = kmalloc(len, gfp);
|
|
if (p)
|
|
memcpy(p, src, len);
|
|
return p;
|
|
}
|
|
|
|
|
|
#define KMAP_MAX 256
|
|
|
|
static struct mutex kmap_mutex;
|
|
static struct page* kmap_table[KMAP_MAX];
|
|
static int kmap_av;
|
|
static int kmap_first;
|
|
static void* kmap_base;
|
|
|
|
|
|
int kmap_init()
|
|
{
|
|
kmap_base = AllocKernelSpace(KMAP_MAX*4096);
|
|
if(kmap_base == NULL)
|
|
return -1;
|
|
|
|
kmap_av = KMAP_MAX;
|
|
MutexInit(&kmap_mutex);
|
|
return 0;
|
|
};
|
|
|
|
void *kmap(struct page *page)
|
|
{
|
|
void *vaddr = NULL;
|
|
int i;
|
|
|
|
do
|
|
{
|
|
MutexLock(&kmap_mutex);
|
|
if(kmap_av != 0)
|
|
{
|
|
for(i = kmap_first; i < KMAP_MAX; i++)
|
|
{
|
|
if(kmap_table[i] == NULL)
|
|
{
|
|
kmap_av--;
|
|
kmap_first = i;
|
|
kmap_table[i] = page;
|
|
vaddr = kmap_base + (i<<12);
|
|
MapPage(vaddr,(addr_t)page,3);
|
|
break;
|
|
};
|
|
};
|
|
};
|
|
MutexUnlock(&kmap_mutex);
|
|
}while(vaddr == NULL);
|
|
|
|
return vaddr;
|
|
};
|
|
|
|
void *kmap_atomic(struct page *page) __attribute__ ((alias ("kmap")));
|
|
|
|
void kunmap(struct page *page)
|
|
{
|
|
void *vaddr;
|
|
int i;
|
|
|
|
MutexLock(&kmap_mutex);
|
|
|
|
for(i = 0; i < KMAP_MAX; i++)
|
|
{
|
|
if(kmap_table[i] == page)
|
|
{
|
|
kmap_av++;
|
|
if(i < kmap_first)
|
|
kmap_first = i;
|
|
kmap_table[i] = NULL;
|
|
vaddr = kmap_base + (i<<12);
|
|
MapPage(vaddr,0,0);
|
|
break;
|
|
};
|
|
};
|
|
|
|
MutexUnlock(&kmap_mutex);
|
|
};
|
|
|
|
void kunmap_atomic(void *vaddr)
|
|
{
|
|
int i;
|
|
|
|
MapPage(vaddr,0,0);
|
|
|
|
i = (vaddr - kmap_base) >> 12;
|
|
|
|
MutexLock(&kmap_mutex);
|
|
|
|
kmap_av++;
|
|
if(i < kmap_first)
|
|
kmap_first = i;
|
|
kmap_table[i] = NULL;
|
|
|
|
MutexUnlock(&kmap_mutex);
|
|
}
|
|
|
|
size_t strlcat(char *dest, const char *src, size_t count)
|
|
{
|
|
size_t dsize = strlen(dest);
|
|
size_t len = strlen(src);
|
|
size_t res = dsize + len;
|
|
|
|
/* This would be a bug */
|
|
BUG_ON(dsize >= count);
|
|
|
|
dest += dsize;
|
|
count -= dsize;
|
|
if (len >= count)
|
|
len = count-1;
|
|
memcpy(dest, src, len);
|
|
dest[len] = 0;
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(strlcat);
|
|
|
|
void msleep(unsigned int msecs)
|
|
{
|
|
msecs /= 10;
|
|
if(!msecs) msecs = 1;
|
|
|
|
__asm__ __volatile__ (
|
|
"call *__imp__Delay"
|
|
::"b" (msecs));
|
|
__asm__ __volatile__ (
|
|
"":::"ebx");
|
|
|
|
};
|
|
|
|
|
|
/* simple loop based delay: */
|
|
static void delay_loop(unsigned long loops)
|
|
{
|
|
asm volatile(
|
|
" test %0,%0 \n"
|
|
" jz 3f \n"
|
|
" jmp 1f \n"
|
|
|
|
".align 16 \n"
|
|
"1: jmp 2f \n"
|
|
|
|
".align 16 \n"
|
|
"2: dec %0 \n"
|
|
" jnz 2b \n"
|
|
"3: dec %0 \n"
|
|
|
|
: /* we don't need output */
|
|
:"a" (loops)
|
|
);
|
|
}
|
|
|
|
|
|
static void (*delay_fn)(unsigned long) = delay_loop;
|
|
|
|
void __delay(unsigned long loops)
|
|
{
|
|
delay_fn(loops);
|
|
}
|
|
|
|
|
|
inline void __const_udelay(unsigned long xloops)
|
|
{
|
|
int d0;
|
|
|
|
xloops *= 4;
|
|
asm("mull %%edx"
|
|
: "=d" (xloops), "=&a" (d0)
|
|
: "1" (xloops), ""
|
|
(loops_per_jiffy * (HZ/4)));
|
|
|
|
__delay(++xloops);
|
|
}
|
|
|
|
void __udelay(unsigned long usecs)
|
|
{
|
|
__const_udelay(usecs * 0x000010c7); /* 2**32 / 1000000 (rounded up) */
|
|
}
|
|
|
|
unsigned int _sw_hweight32(unsigned int w)
|
|
{
|
|
#ifdef CONFIG_ARCH_HAS_FAST_MULTIPLIER
|
|
w -= (w >> 1) & 0x55555555;
|
|
w = (w & 0x33333333) + ((w >> 2) & 0x33333333);
|
|
w = (w + (w >> 4)) & 0x0f0f0f0f;
|
|
return (w * 0x01010101) >> 24;
|
|
#else
|
|
unsigned int res = w - ((w >> 1) & 0x55555555);
|
|
res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
|
|
res = (res + (res >> 4)) & 0x0F0F0F0F;
|
|
res = res + (res >> 8);
|
|
return (res + (res >> 16)) & 0x000000FF;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(_sw_hweight32);
|
|
|
|
|
|
void usleep_range(unsigned long min, unsigned long max)
|
|
{
|
|
udelay(max);
|
|
}
|
|
EXPORT_SYMBOL(usleep_range);
|
|
|
|
|
|
static unsigned long round_jiffies_common(unsigned long j, int cpu,
|
|
bool force_up)
|
|
{
|
|
int rem;
|
|
unsigned long original = j;
|
|
|
|
/*
|
|
* We don't want all cpus firing their timers at once hitting the
|
|
* same lock or cachelines, so we skew each extra cpu with an extra
|
|
* 3 jiffies. This 3 jiffies came originally from the mm/ code which
|
|
* already did this.
|
|
* The skew is done by adding 3*cpunr, then round, then subtract this
|
|
* extra offset again.
|
|
*/
|
|
j += cpu * 3;
|
|
|
|
rem = j % HZ;
|
|
|
|
/*
|
|
* If the target jiffie is just after a whole second (which can happen
|
|
* due to delays of the timer irq, long irq off times etc etc) then
|
|
* we should round down to the whole second, not up. Use 1/4th second
|
|
* as cutoff for this rounding as an extreme upper bound for this.
|
|
* But never round down if @force_up is set.
|
|
*/
|
|
if (rem < HZ/4 && !force_up) /* round down */
|
|
j = j - rem;
|
|
else /* round up */
|
|
j = j - rem + HZ;
|
|
|
|
/* now that we have rounded, subtract the extra skew again */
|
|
j -= cpu * 3;
|
|
|
|
/*
|
|
* Make sure j is still in the future. Otherwise return the
|
|
* unmodified value.
|
|
*/
|
|
return time_is_after_jiffies(j) ? j : original;
|
|
}
|
|
|
|
|
|
unsigned long round_jiffies_up_relative(unsigned long j, int cpu)
|
|
{
|
|
unsigned long j0 = jiffies;
|
|
|
|
/* Use j0 because jiffies might change while we run */
|
|
return round_jiffies_common(j + j0, 0, true) - j0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
|
|
|
|
|
|
#include <linux/rcupdate.h>
|
|
|
|
struct rcu_ctrlblk {
|
|
struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
|
|
struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
|
|
struct rcu_head **curtail; /* ->next pointer of last CB. */
|
|
// RCU_TRACE(long qlen); /* Number of pending CBs. */
|
|
// RCU_TRACE(unsigned long gp_start); /* Start time for stalls. */
|
|
// RCU_TRACE(unsigned long ticks_this_gp); /* Statistic for stalls. */
|
|
// RCU_TRACE(unsigned long jiffies_stall); /* Jiffies at next stall. */
|
|
// RCU_TRACE(const char *name); /* Name of RCU type. */
|
|
};
|
|
|
|
/* Definition for rcupdate control block. */
|
|
static struct rcu_ctrlblk rcu_sched_ctrlblk = {
|
|
.donetail = &rcu_sched_ctrlblk.rcucblist,
|
|
.curtail = &rcu_sched_ctrlblk.rcucblist,
|
|
// RCU_TRACE(.name = "rcu_sched")
|
|
};
|
|
|
|
static void __call_rcu(struct rcu_head *head,
|
|
void (*func)(struct rcu_head *rcu),
|
|
struct rcu_ctrlblk *rcp)
|
|
{
|
|
unsigned long flags;
|
|
|
|
// debug_rcu_head_queue(head);
|
|
head->func = func;
|
|
head->next = NULL;
|
|
|
|
local_irq_save(flags);
|
|
*rcp->curtail = head;
|
|
rcp->curtail = &head->next;
|
|
// RCU_TRACE(rcp->qlen++);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Post an RCU callback to be invoked after the end of an RCU-sched grace
|
|
* period. But since we have but one CPU, that would be after any
|
|
* quiescent state.
|
|
*/
|
|
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
{
|
|
__call_rcu(head, func, &rcu_sched_ctrlblk);
|
|
}
|
|
|
|
int seq_puts(struct seq_file *m, const char *s)
|
|
{
|
|
return 0;
|
|
};
|
|
|
|
__printf(2, 3) int seq_printf(struct seq_file *m, const char *f, ...)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
signed long
|
|
fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
|
|
{
|
|
signed long ret;
|
|
|
|
if (WARN_ON(timeout < 0))
|
|
return -EINVAL;
|
|
|
|
// trace_fence_wait_start(fence);
|
|
ret = fence->ops->wait(fence, intr, timeout);
|
|
// trace_fence_wait_end(fence);
|
|
return ret;
|
|
}
|
|
|
|
void fence_release(struct kref *kref)
|
|
{
|
|
struct fence *fence =
|
|
container_of(kref, struct fence, refcount);
|
|
|
|
// trace_fence_destroy(fence);
|
|
|
|
BUG_ON(!list_empty(&fence->cb_list));
|
|
|
|
if (fence->ops->release)
|
|
fence->ops->release(fence);
|
|
else
|
|
fence_free(fence);
|
|
}
|
|
|
|
void fence_free(struct fence *fence)
|
|
{
|
|
kfree_rcu(fence, rcu);
|
|
}
|
|
EXPORT_SYMBOL(fence_free);
|
|
|
|
|
|
ktime_t ktime_get(void)
|
|
{
|
|
ktime_t t;
|
|
|
|
t.tv64 = GetClockNs();
|
|
|
|
return t;
|
|
}
|
|
|