kolibrios-fun/contrib/sdk/sources/ffmpeg/ffmpeg-2.8/libavcodec/resample2.c
Sergey Semyonov (Serge) a4b787f4b8 ffmpeg-2.8.5
git-svn-id: svn://kolibrios.org@6147 a494cfbc-eb01-0410-851d-a64ba20cac60
2016-02-05 22:08:02 +00:00

320 lines
10 KiB
C

/*
* audio resampling
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio resampling
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/avassert.h"
#include "avcodec.h"
#include "libavutil/common.h"
#if FF_API_AVCODEC_RESAMPLE
#ifndef CONFIG_RESAMPLE_HP
#define FILTER_SHIFT 15
#define FELEM int16_t
#define FELEM2 int32_t
#define FELEML int64_t
#define FELEM_MAX INT16_MAX
#define FELEM_MIN INT16_MIN
#define WINDOW_TYPE 9
#elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
#define FILTER_SHIFT 30
#define FELEM int32_t
#define FELEM2 int64_t
#define FELEML int64_t
#define FELEM_MAX INT32_MAX
#define FELEM_MIN INT32_MIN
#define WINDOW_TYPE 12
#else
#define FILTER_SHIFT 0
#define FELEM double
#define FELEM2 double
#define FELEML double
#define WINDOW_TYPE 24
#endif
typedef struct AVResampleContext{
const AVClass *av_class;
FELEM *filter_bank;
int filter_length;
int ideal_dst_incr;
int dst_incr;
int index;
int frac;
int src_incr;
int compensation_distance;
int phase_shift;
int phase_mask;
int linear;
}AVResampleContext;
/**
* 0th order modified bessel function of the first kind.
*/
static double bessel(double x){
double v=1;
double lastv=0;
double t=1;
int i;
x= x*x/4;
for(i=1; v != lastv; i++){
lastv=v;
t *= x/(i*i);
v += t;
}
return v;
}
/**
* Build a polyphase filterbank.
* @param factor resampling factor
* @param scale wanted sum of coefficients for each filter
* @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
* @return 0 on success, negative on error
*/
static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
int ph, i;
double x, y, w;
double *tab = av_malloc_array(tap_count, sizeof(*tab));
const int center= (tap_count-1)/2;
if (!tab)
return AVERROR(ENOMEM);
/* if upsampling, only need to interpolate, no filter */
if (factor > 1.0)
factor = 1.0;
for(ph=0;ph<phase_count;ph++) {
double norm = 0;
for(i=0;i<tap_count;i++) {
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
if (x == 0) y = 1.0;
else y = sin(x) / x;
switch(type){
case 0:{
const float d= -0.5; //first order derivative = -0.5
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
break;}
case 1:
w = 2.0*x / (factor*tap_count) + M_PI;
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
break;
default:
w = 2.0*x / (factor*tap_count*M_PI);
y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
break;
}
tab[i] = y;
norm += y;
}
/* normalize so that an uniform color remains the same */
for(i=0;i<tap_count;i++) {
#ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
filter[ph * tap_count + i] = tab[i] / norm;
#else
filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
#endif
}
}
#if 0
{
#define LEN 1024
int j,k;
double sine[LEN + tap_count];
double filtered[LEN];
double maxff=-2, minff=2, maxsf=-2, minsf=2;
for(i=0; i<LEN; i++){
double ss=0, sf=0, ff=0;
for(j=0; j<LEN+tap_count; j++)
sine[j]= cos(i*j*M_PI/LEN);
for(j=0; j<LEN; j++){
double sum=0;
ph=0;
for(k=0; k<tap_count; k++)
sum += filter[ph * tap_count + k] * sine[k+j];
filtered[j]= sum / (1<<FILTER_SHIFT);
ss+= sine[j + center] * sine[j + center];
ff+= filtered[j] * filtered[j];
sf+= sine[j + center] * filtered[j];
}
ss= sqrt(2*ss/LEN);
ff= sqrt(2*ff/LEN);
sf= 2*sf/LEN;
maxff= FFMAX(maxff, ff);
minff= FFMIN(minff, ff);
maxsf= FFMAX(maxsf, sf);
minsf= FFMIN(minsf, sf);
if(i%11==0){
av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
minff=minsf= 2;
maxff=maxsf= -2;
}
}
}
#endif
av_free(tab);
return 0;
}
AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
int phase_count= 1<<phase_shift;
if (!c)
return NULL;
c->phase_shift= phase_shift;
c->phase_mask= phase_count-1;
c->linear= linear;
c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
c->filter_bank= av_mallocz_array(c->filter_length, (phase_count+1)*sizeof(FELEM));
if (!c->filter_bank)
goto error;
if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE))
goto error;
memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
goto error;
c->ideal_dst_incr= c->dst_incr;
c->index= -phase_count*((c->filter_length-1)/2);
return c;
error:
av_free(c->filter_bank);
av_free(c);
return NULL;
}
void av_resample_close(AVResampleContext *c){
av_freep(&c->filter_bank);
av_freep(&c);
}
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
// sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
c->compensation_distance= compensation_distance;
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
}
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
int dst_index, i;
int index= c->index;
int frac= c->frac;
int dst_incr_frac= c->dst_incr % c->src_incr;
int dst_incr= c->dst_incr / c->src_incr;
int compensation_distance= c->compensation_distance;
if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
int64_t index2= ((int64_t)index)<<32;
int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
for(dst_index=0; dst_index < dst_size; dst_index++){
dst[dst_index] = src[index2>>32];
index2 += incr;
}
index += dst_index * dst_incr;
index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
}else{
for(dst_index=0; dst_index < dst_size; dst_index++){
FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
int sample_index= index >> c->phase_shift;
FELEM2 val=0;
if(sample_index < 0){
for(i=0; i<c->filter_length; i++)
val += src[FFABS(sample_index + i) % src_size] * filter[i];
}else if(sample_index + c->filter_length > src_size){
break;
}else if(c->linear){
FELEM2 v2=0;
for(i=0; i<c->filter_length; i++){
val += src[sample_index + i] * (FELEM2)filter[i];
v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
}
val+=(v2-val)*(FELEML)frac / c->src_incr;
}else{
for(i=0; i<c->filter_length; i++){
val += src[sample_index + i] * (FELEM2)filter[i];
}
}
#ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
dst[dst_index] = av_clip_int16(lrintf(val));
#else
val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
#endif
frac += dst_incr_frac;
index += dst_incr;
if(frac >= c->src_incr){
frac -= c->src_incr;
index++;
}
if(dst_index + 1 == compensation_distance){
compensation_distance= 0;
dst_incr_frac= c->ideal_dst_incr % c->src_incr;
dst_incr= c->ideal_dst_incr / c->src_incr;
}
}
}
*consumed= FFMAX(index, 0) >> c->phase_shift;
if(index>=0) index &= c->phase_mask;
if(compensation_distance){
compensation_distance -= dst_index;
av_assert2(compensation_distance > 0);
}
if(update_ctx){
c->frac= frac;
c->index= index;
c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
c->compensation_distance= compensation_distance;
}
return dst_index;
}
#endif