kolibrios-fun/drivers/video/drm/i915/intel_dp.c
Sergey Semyonov (Serge) b7275f8e12 i915-4.4.78
git-svn-id: svn://kolibrios.org@6935 a494cfbc-eb01-0410-851d-a64ba20cac60
2017-07-27 12:14:33 +00:00

6227 lines
179 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
/* Compliance test status bits */
#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
struct dp_link_dpll {
int clock;
struct dpll dpll;
};
static const struct dp_link_dpll gen4_dpll[] = {
{ 162000,
{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
{ 270000,
{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};
static const struct dp_link_dpll pch_dpll[] = {
{ 162000,
{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
{ 270000,
{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};
static const struct dp_link_dpll vlv_dpll[] = {
{ 162000,
{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
{ 270000,
{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};
/*
* CHV supports eDP 1.4 that have more link rates.
* Below only provides the fixed rate but exclude variable rate.
*/
static const struct dp_link_dpll chv_dpll[] = {
/*
* CHV requires to program fractional division for m2.
* m2 is stored in fixed point format using formula below
* (m2_int << 22) | m2_fraction
*/
{ 162000, /* m2_int = 32, m2_fraction = 1677722 */
{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
{ 270000, /* m2_int = 27, m2_fraction = 0 */
{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
{ 540000, /* m2_int = 27, m2_fraction = 0 */
{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
};
static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
324000, 432000, 540000 };
static const int skl_rates[] = { 162000, 216000, 270000,
324000, 432000, 540000 };
static const int default_rates[] = { 162000, 270000, 540000 };
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
static bool is_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
}
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.base.dev;
}
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
}
static void intel_dp_link_down(struct intel_dp *intel_dp);
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
static void vlv_steal_power_sequencer(struct drm_device *dev,
enum pipe pipe);
static unsigned int intel_dp_unused_lane_mask(int lane_count)
{
return ~((1 << lane_count) - 1) & 0xf;
}
static int
intel_dp_max_link_bw(struct intel_dp *intel_dp)
{
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
case DP_LINK_BW_5_4:
break;
default:
WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
max_link_bw);
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
u8 source_max, sink_max;
source_max = 4;
if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
(intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
source_max = 2;
sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
return min(source_max, sink_max);
}
/*
* The units on the numbers in the next two are... bizarre. Examples will
* make it clearer; this one parallels an example in the eDP spec.
*
* intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
*
* 270000 * 1 * 8 / 10 == 216000
*
* The actual data capacity of that configuration is 2.16Gbit/s, so the
* units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
* or equivalently, kilopixels per second - so for 1680x1050R it'd be
* 119000. At 18bpp that's 2142000 kilobits per second.
*
* Thus the strange-looking division by 10 in intel_dp_link_required, to
* get the result in decakilobits instead of kilobits.
*/
static int
intel_dp_link_required(int pixel_clock, int bpp)
{
return (pixel_clock * bpp + 9) / 10;
}
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
return (max_link_clock * max_lanes * 8) / 10;
}
static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
int target_clock = mode->clock;
int max_rate, mode_rate, max_lanes, max_link_clock;
if (is_edp(intel_dp) && fixed_mode) {
if (mode->hdisplay > fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > fixed_mode->vdisplay)
return MODE_PANEL;
target_clock = fixed_mode->clock;
}
max_link_clock = intel_dp_max_link_rate(intel_dp);
max_lanes = intel_dp_max_lane_count(intel_dp);
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
mode_rate = intel_dp_link_required(target_clock, 18);
if (mode_rate > max_rate)
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_H_ILLEGAL;
return MODE_OK;
}
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
struct intel_dp *intel_dp);
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
struct intel_dp *intel_dp);
static void pps_lock(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
/*
* See vlv_power_sequencer_reset() why we need
* a power domain reference here.
*/
power_domain = intel_display_port_aux_power_domain(encoder);
intel_display_power_get(dev_priv, power_domain);
mutex_lock(&dev_priv->pps_mutex);
}
static void pps_unlock(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
mutex_unlock(&dev_priv->pps_mutex);
power_domain = intel_display_port_aux_power_domain(encoder);
intel_display_power_put(dev_priv, power_domain);
}
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = intel_dp->pps_pipe;
bool pll_enabled, release_cl_override = false;
enum dpio_phy phy = DPIO_PHY(pipe);
enum dpio_channel ch = vlv_pipe_to_channel(pipe);
uint32_t DP;
if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
"skipping pipe %c power seqeuncer kick due to port %c being active\n",
pipe_name(pipe), port_name(intel_dig_port->port)))
return;
DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
pipe_name(pipe), port_name(intel_dig_port->port));
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
DP |= DP_PORT_WIDTH(1);
DP |= DP_LINK_TRAIN_PAT_1;
if (IS_CHERRYVIEW(dev))
DP |= DP_PIPE_SELECT_CHV(pipe);
else if (pipe == PIPE_B)
DP |= DP_PIPEB_SELECT;
pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
/*
* The DPLL for the pipe must be enabled for this to work.
* So enable temporarily it if it's not already enabled.
*/
if (!pll_enabled) {
release_cl_override = IS_CHERRYVIEW(dev) &&
!chv_phy_powergate_ch(dev_priv, phy, ch, true);
vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
&chv_dpll[0].dpll : &vlv_dpll[0].dpll);
}
/*
* Similar magic as in intel_dp_enable_port().
* We _must_ do this port enable + disable trick
* to make this power seqeuencer lock onto the port.
* Otherwise even VDD force bit won't work.
*/
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
if (!pll_enabled) {
vlv_force_pll_off(dev, pipe);
if (release_cl_override)
chv_phy_powergate_ch(dev_priv, phy, ch, false);
}
}
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
enum pipe pipe;
lockdep_assert_held(&dev_priv->pps_mutex);
/* We should never land here with regular DP ports */
WARN_ON(!is_edp(intel_dp));
if (intel_dp->pps_pipe != INVALID_PIPE)
return intel_dp->pps_pipe;
/*
* We don't have power sequencer currently.
* Pick one that's not used by other ports.
*/
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
struct intel_dp *tmp;
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
tmp = enc_to_intel_dp(&encoder->base);
if (tmp->pps_pipe != INVALID_PIPE)
pipes &= ~(1 << tmp->pps_pipe);
}
/*
* Didn't find one. This should not happen since there
* are two power sequencers and up to two eDP ports.
*/
if (WARN_ON(pipes == 0))
pipe = PIPE_A;
else
pipe = ffs(pipes) - 1;
vlv_steal_power_sequencer(dev, pipe);
intel_dp->pps_pipe = pipe;
DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
pipe_name(intel_dp->pps_pipe),
port_name(intel_dig_port->port));
/* init power sequencer on this pipe and port */
intel_dp_init_panel_power_sequencer(dev, intel_dp);
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
/*
* Even vdd force doesn't work until we've made
* the power sequencer lock in on the port.
*/
vlv_power_sequencer_kick(intel_dp);
return intel_dp->pps_pipe;
}
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
enum pipe pipe);
static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
}
static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
}
static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return true;
}
static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
enum port port,
vlv_pipe_check pipe_check)
{
enum pipe pipe;
for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
PANEL_PORT_SELECT_MASK;
if (port_sel != PANEL_PORT_SELECT_VLV(port))
continue;
if (!pipe_check(dev_priv, pipe))
continue;
return pipe;
}
return INVALID_PIPE;
}
static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
lockdep_assert_held(&dev_priv->pps_mutex);
/* try to find a pipe with this port selected */
/* first pick one where the panel is on */
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_has_pp_on);
/* didn't find one? pick one where vdd is on */
if (intel_dp->pps_pipe == INVALID_PIPE)
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_has_vdd_on);
/* didn't find one? pick one with just the correct port */
if (intel_dp->pps_pipe == INVALID_PIPE)
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_any);
/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
if (intel_dp->pps_pipe == INVALID_PIPE) {
DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
port_name(port));
return;
}
DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
port_name(port), pipe_name(intel_dp->pps_pipe));
intel_dp_init_panel_power_sequencer(dev, intel_dp);
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
}
void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct intel_encoder *encoder;
if (WARN_ON(!IS_VALLEYVIEW(dev)))
return;
/*
* We can't grab pps_mutex here due to deadlock with power_domain
* mutex when power_domain functions are called while holding pps_mutex.
* That also means that in order to use pps_pipe the code needs to
* hold both a power domain reference and pps_mutex, and the power domain
* reference get/put must be done while _not_ holding pps_mutex.
* pps_{lock,unlock}() do these steps in the correct order, so one
* should use them always.
*/
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
struct intel_dp *intel_dp;
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
intel_dp->pps_pipe = INVALID_PIPE;
}
}
static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (IS_BROXTON(dev))
return BXT_PP_CONTROL(0);
else if (HAS_PCH_SPLIT(dev))
return PCH_PP_CONTROL;
else
return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
}
static u32 _pp_stat_reg(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (IS_BROXTON(dev))
return BXT_PP_STATUS(0);
else if (HAS_PCH_SPLIT(dev))
return PCH_PP_STATUS;
else
return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
}
#if 0
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
void *unused)
{
struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
edp_notifier);
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
if (!is_edp(intel_dp) || code != SYS_RESTART)
return 0;
pps_lock(intel_dp);
if (IS_VALLEYVIEW(dev)) {
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
u32 pp_ctrl_reg, pp_div_reg;
u32 pp_div;
pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
pp_div = I915_READ(pp_div_reg);
pp_div &= PP_REFERENCE_DIVIDER_MASK;
/* 0x1F write to PP_DIV_REG sets max cycle delay */
I915_WRITE(pp_div_reg, pp_div | 0x1F);
I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
msleep(intel_dp->panel_power_cycle_delay);
}
pps_unlock(intel_dp);
return 0;
}
#endif
static bool edp_have_panel_power(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
lockdep_assert_held(&dev_priv->pps_mutex);
if (IS_VALLEYVIEW(dev) &&
intel_dp->pps_pipe == INVALID_PIPE)
return false;
return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
}
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
lockdep_assert_held(&dev_priv->pps_mutex);
if (IS_VALLEYVIEW(dev) &&
intel_dp->pps_pipe == INVALID_PIPE)
return false;
return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
}
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
if (!is_edp(intel_dp))
return;
if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
WARN(1, "eDP powered off while attempting aux channel communication.\n");
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
I915_READ(_pp_stat_reg(intel_dp)),
I915_READ(_pp_ctrl_reg(intel_dp)));
}
}
static uint32_t
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
uint32_t status;
bool done;
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
if (has_aux_irq)
done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
msecs_to_jiffies_timeout(10));
else
done = wait_for_atomic(C, 10) == 0;
if (!done)
DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
has_aux_irq);
#undef C
return status;
}
static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
/*
* The clock divider is based off the hrawclk, and would like to run at
* 2MHz. So, take the hrawclk value and divide by 2 and use that
*/
return index ? 0 : intel_hrawclk(dev) / 2;
}
static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (index)
return 0;
if (intel_dig_port->port == PORT_A) {
return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
} else {
return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
}
}
static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (intel_dig_port->port == PORT_A) {
if (index)
return 0;
return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
/* Workaround for non-ULT HSW */
switch (index) {
case 0: return 63;
case 1: return 72;
default: return 0;
}
} else {
return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
}
}
static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
return index ? 0 : 100;
}
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
/*
* SKL doesn't need us to program the AUX clock divider (Hardware will
* derive the clock from CDCLK automatically). We still implement the
* get_aux_clock_divider vfunc to plug-in into the existing code.
*/
return index ? 0 : 1;
}
static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
bool has_aux_irq,
int send_bytes,
uint32_t aux_clock_divider)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
uint32_t precharge, timeout;
if (IS_GEN6(dev))
precharge = 3;
else
precharge = 5;
if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
else
timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
return DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
timeout |
DP_AUX_CH_CTL_RECEIVE_ERROR |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
}
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
bool has_aux_irq,
int send_bytes,
uint32_t unused)
{
return DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_TIME_OUT_1600us |
DP_AUX_CH_CTL_RECEIVE_ERROR |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
}
static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
const uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
uint32_t ch_data = ch_ctl + 4;
uint32_t aux_clock_divider;
int i, ret, recv_bytes;
uint32_t status;
int try, clock = 0;
bool has_aux_irq = HAS_AUX_IRQ(dev);
bool vdd;
pps_lock(intel_dp);
/*
* We will be called with VDD already enabled for dpcd/edid/oui reads.
* In such cases we want to leave VDD enabled and it's up to upper layers
* to turn it off. But for eg. i2c-dev access we need to turn it on/off
* ourselves.
*/
vdd = edp_panel_vdd_on(intel_dp);
/* dp aux is extremely sensitive to irq latency, hence request the
* lowest possible wakeup latency and so prevent the cpu from going into
* deep sleep states.
*/
intel_dp_check_edp(intel_dp);
/* Try to wait for any previous AUX channel activity */
for (try = 0; try < 3; try++) {
status = I915_READ_NOTRACE(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
msleep(1);
}
if (try == 3) {
static u32 last_status = -1;
const u32 status = I915_READ(ch_ctl);
if (status != last_status) {
WARN(1, "dp_aux_ch not started status 0x%08x\n",
status);
last_status = status;
}
ret = -EBUSY;
goto out;
}
/* Only 5 data registers! */
if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
ret = -E2BIG;
goto out;
}
while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
has_aux_irq,
send_bytes,
aux_clock_divider);
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
I915_WRITE(ch_data + i,
intel_dp_pack_aux(send + i,
send_bytes - i));
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl, send_ctl);
status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
/* Clear done status and any errors */
I915_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
continue;
/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
* 400us delay required for errors and timeouts
* Timeout errors from the HW already meet this
* requirement so skip to next iteration
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
usleep_range(400, 500);
continue;
}
if (status & DP_AUX_CH_CTL_DONE)
goto done;
}
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
ret = -EBUSY;
goto out;
}
done:
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
ret = -EIO;
goto out;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
ret = -ETIMEDOUT;
goto out;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
intel_dp_unpack_aux(I915_READ(ch_data + i),
recv + i, recv_bytes - i);
ret = recv_bytes;
out:
if (vdd)
edp_panel_vdd_off(intel_dp, false);
pps_unlock(intel_dp);
return ret;
}
#define BARE_ADDRESS_SIZE 3
#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
{
struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
uint8_t txbuf[20], rxbuf[20];
size_t txsize, rxsize;
int ret;
txbuf[0] = (msg->request << 4) |
((msg->address >> 16) & 0xf);
txbuf[1] = (msg->address >> 8) & 0xff;
txbuf[2] = msg->address & 0xff;
txbuf[3] = msg->size - 1;
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_WRITE_STATUS_UPDATE:
txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
rxsize = 2; /* 0 or 1 data bytes */
if (WARN_ON(txsize > 20))
return -E2BIG;
memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
if (ret > 1) {
/* Number of bytes written in a short write. */
ret = clamp_t(int, rxbuf[1], 0, msg->size);
} else {
/* Return payload size. */
ret = msg->size;
}
}
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
rxsize = msg->size + 1;
if (WARN_ON(rxsize > 20))
return -E2BIG;
ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
/*
* Assume happy day, and copy the data. The caller is
* expected to check msg->reply before touching it.
*
* Return payload size.
*/
ret--;
memcpy(msg->buffer, rxbuf + 1, ret);
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static void
intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->port;
struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
const char *name = NULL;
uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
int ret;
/* On SKL we don't have Aux for port E so we rely on VBT to set
* a proper alternate aux channel.
*/
if (IS_SKYLAKE(dev) && port == PORT_E) {
switch (info->alternate_aux_channel) {
case DP_AUX_B:
porte_aux_ctl_reg = DPB_AUX_CH_CTL;
break;
case DP_AUX_C:
porte_aux_ctl_reg = DPC_AUX_CH_CTL;
break;
case DP_AUX_D:
porte_aux_ctl_reg = DPD_AUX_CH_CTL;
break;
case DP_AUX_A:
default:
porte_aux_ctl_reg = DPA_AUX_CH_CTL;
}
}
switch (port) {
case PORT_A:
intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
name = "DPDDC-A";
break;
case PORT_B:
intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
name = "DPDDC-B";
break;
case PORT_C:
intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
name = "DPDDC-C";
break;
case PORT_D:
intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
name = "DPDDC-D";
break;
case PORT_E:
intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
name = "DPDDC-E";
break;
default:
BUG();
}
/*
* The AUX_CTL register is usually DP_CTL + 0x10.
*
* On Haswell and Broadwell though:
* - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
* - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
*
* Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
*/
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
intel_dp->aux.name = name;
intel_dp->aux.dev = dev->dev;
intel_dp->aux.transfer = intel_dp_aux_transfer;
DRM_DEBUG_KMS("registering %s bus for %s\n", name,
"");
ret = drm_dp_aux_register(&intel_dp->aux);
if (ret < 0) {
DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
name, ret);
return;
}
ret = sysfs_create_link(&connector->base.kdev->kobj,
&intel_dp->aux.ddc.dev.kobj,
intel_dp->aux.ddc.dev.kobj.name);
if (ret < 0) {
DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
drm_dp_aux_unregister(&intel_dp->aux);
}
}
static void
intel_dp_connector_unregister(struct intel_connector *intel_connector)
{
struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
if (!intel_connector->mst_port)
sysfs_remove_link(&intel_connector->base.kdev->kobj,
intel_dp->aux.ddc.dev.kobj.name);
intel_connector_unregister(intel_connector);
}
static void
skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
{
u32 ctrl1;
memset(&pipe_config->dpll_hw_state, 0,
sizeof(pipe_config->dpll_hw_state));
pipe_config->ddi_pll_sel = SKL_DPLL0;
pipe_config->dpll_hw_state.cfgcr1 = 0;
pipe_config->dpll_hw_state.cfgcr2 = 0;
ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
switch (pipe_config->port_clock / 2) {
case 81000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
SKL_DPLL0);
break;
case 135000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
SKL_DPLL0);
break;
case 270000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
SKL_DPLL0);
break;
case 162000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
SKL_DPLL0);
break;
/* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
results in CDCLK change. Need to handle the change of CDCLK by
disabling pipes and re-enabling them */
case 108000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
SKL_DPLL0);
break;
case 216000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
SKL_DPLL0);
break;
}
pipe_config->dpll_hw_state.ctrl1 = ctrl1;
}
void
hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
{
memset(&pipe_config->dpll_hw_state, 0,
sizeof(pipe_config->dpll_hw_state));
switch (pipe_config->port_clock / 2) {
case 81000:
pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
break;
case 135000:
pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
break;
case 270000:
pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
break;
}
}
static int
intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
{
if (intel_dp->num_sink_rates) {
*sink_rates = intel_dp->sink_rates;
return intel_dp->num_sink_rates;
}
*sink_rates = default_rates;
return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
}
static bool intel_dp_source_supports_hbr2(struct drm_device *dev)
{
/* WaDisableHBR2:skl */
if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
return false;
if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
(INTEL_INFO(dev)->gen >= 9))
return true;
else
return false;
}
static int
intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
{
int size;
if (IS_BROXTON(dev)) {
*source_rates = bxt_rates;
size = ARRAY_SIZE(bxt_rates);
} else if (IS_SKYLAKE(dev)) {
*source_rates = skl_rates;
size = ARRAY_SIZE(skl_rates);
} else {
*source_rates = default_rates;
size = ARRAY_SIZE(default_rates);
}
/* This depends on the fact that 5.4 is last value in the array */
if (!intel_dp_source_supports_hbr2(dev))
size--;
return size;
}
static void
intel_dp_set_clock(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
const struct dp_link_dpll *divisor = NULL;
int i, count = 0;
if (IS_G4X(dev)) {
divisor = gen4_dpll;
count = ARRAY_SIZE(gen4_dpll);
} else if (HAS_PCH_SPLIT(dev)) {
divisor = pch_dpll;
count = ARRAY_SIZE(pch_dpll);
} else if (IS_CHERRYVIEW(dev)) {
divisor = chv_dpll;
count = ARRAY_SIZE(chv_dpll);
} else if (IS_VALLEYVIEW(dev)) {
divisor = vlv_dpll;
count = ARRAY_SIZE(vlv_dpll);
}
if (divisor && count) {
for (i = 0; i < count; i++) {
if (pipe_config->port_clock == divisor[i].clock) {
pipe_config->dpll = divisor[i].dpll;
pipe_config->clock_set = true;
break;
}
}
}
}
static int intersect_rates(const int *source_rates, int source_len,
const int *sink_rates, int sink_len,
int *common_rates)
{
int i = 0, j = 0, k = 0;
while (i < source_len && j < sink_len) {
if (source_rates[i] == sink_rates[j]) {
if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
return k;
common_rates[k] = source_rates[i];
++k;
++i;
++j;
} else if (source_rates[i] < sink_rates[j]) {
++i;
} else {
++j;
}
}
return k;
}
static int intel_dp_common_rates(struct intel_dp *intel_dp,
int *common_rates)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
const int *source_rates, *sink_rates;
int source_len, sink_len;
sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
source_len = intel_dp_source_rates(dev, &source_rates);
return intersect_rates(source_rates, source_len,
sink_rates, sink_len,
common_rates);
}
static void snprintf_int_array(char *str, size_t len,
const int *array, int nelem)
{
int i;
str[0] = '\0';
for (i = 0; i < nelem; i++) {
int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
if (r >= len)
return;
str += r;
len -= r;
}
}
static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
const int *source_rates, *sink_rates;
int source_len, sink_len, common_len;
int common_rates[DP_MAX_SUPPORTED_RATES];
char str[128]; /* FIXME: too big for stack? */
if ((drm_debug & DRM_UT_KMS) == 0)
return;
source_len = intel_dp_source_rates(dev, &source_rates);
snprintf_int_array(str, sizeof(str), source_rates, source_len);
DRM_DEBUG_KMS("source rates: %s\n", str);
sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
DRM_DEBUG_KMS("sink rates: %s\n", str);
common_len = intel_dp_common_rates(intel_dp, common_rates);
snprintf_int_array(str, sizeof(str), common_rates, common_len);
DRM_DEBUG_KMS("common rates: %s\n", str);
}
static int rate_to_index(int find, const int *rates)
{
int i = 0;
for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
if (find == rates[i])
break;
return i;
}
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
int rates[DP_MAX_SUPPORTED_RATES] = {};
int len;
len = intel_dp_common_rates(intel_dp, rates);
if (WARN_ON(len <= 0))
return 162000;
return rates[rate_to_index(0, rates) - 1];
}
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
return rate_to_index(rate, intel_dp->sink_rates);
}
static void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
uint8_t *link_bw, uint8_t *rate_select)
{
if (intel_dp->num_sink_rates) {
*link_bw = 0;
*rate_select =
intel_dp_rate_select(intel_dp, port_clock);
} else {
*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
*rate_select = 0;
}
}
bool
intel_dp_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
struct intel_connector *intel_connector = intel_dp->attached_connector;
int lane_count, clock;
int min_lane_count = 1;
int max_lane_count = intel_dp_max_lane_count(intel_dp);
/* Conveniently, the link BW constants become indices with a shift...*/
int min_clock = 0;
int max_clock;
int bpp, mode_rate;
int link_avail, link_clock;
int common_rates[DP_MAX_SUPPORTED_RATES] = {};
int common_len;
uint8_t link_bw, rate_select;
common_len = intel_dp_common_rates(intel_dp, common_rates);
/* No common link rates between source and sink */
WARN_ON(common_len <= 0);
max_clock = common_len - 1;
if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
pipe_config->has_pch_encoder = true;
pipe_config->has_dp_encoder = true;
pipe_config->has_drrs = false;
pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
adjusted_mode);
if (INTEL_INFO(dev)->gen >= 9) {
int ret;
ret = skl_update_scaler_crtc(pipe_config);
if (ret)
return ret;
}
if (!HAS_PCH_SPLIT(dev))
intel_gmch_panel_fitting(intel_crtc, pipe_config,
intel_connector->panel.fitting_mode);
else
intel_pch_panel_fitting(intel_crtc, pipe_config,
intel_connector->panel.fitting_mode);
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
return false;
DRM_DEBUG_KMS("DP link computation with max lane count %i "
"max bw %d pixel clock %iKHz\n",
max_lane_count, common_rates[max_clock],
adjusted_mode->crtc_clock);
/* Walk through all bpp values. Luckily they're all nicely spaced with 2
* bpc in between. */
bpp = pipe_config->pipe_bpp;
if (is_edp(intel_dp)) {
/* Get bpp from vbt only for panels that dont have bpp in edid */
if (intel_connector->base.display_info.bpc == 0 &&
(dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
dev_priv->vbt.edp_bpp);
bpp = dev_priv->vbt.edp_bpp;
}
/*
* Use the maximum clock and number of lanes the eDP panel
* advertizes being capable of. The panels are generally
* designed to support only a single clock and lane
* configuration, and typically these values correspond to the
* native resolution of the panel.
*/
min_lane_count = max_lane_count;
min_clock = max_clock;
}
for (; bpp >= 6*3; bpp -= 2*3) {
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
bpp);
for (clock = min_clock; clock <= max_clock; clock++) {
for (lane_count = min_lane_count;
lane_count <= max_lane_count;
lane_count <<= 1) {
link_clock = common_rates[clock];
link_avail = intel_dp_max_data_rate(link_clock,
lane_count);
if (mode_rate <= link_avail) {
goto found;
}
}
}
}
return false;
found:
if (intel_dp->color_range_auto) {
/*
* See:
* CEA-861-E - 5.1 Default Encoding Parameters
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
*/
pipe_config->limited_color_range =
bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
} else {
pipe_config->limited_color_range =
intel_dp->limited_color_range;
}
pipe_config->lane_count = lane_count;
pipe_config->pipe_bpp = bpp;
pipe_config->port_clock = common_rates[clock];
intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
&link_bw, &rate_select);
DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
link_bw, rate_select, pipe_config->lane_count,
pipe_config->port_clock, bpp);
DRM_DEBUG_KMS("DP link bw required %i available %i\n",
mode_rate, link_avail);
intel_link_compute_m_n(bpp, lane_count,
adjusted_mode->crtc_clock,
pipe_config->port_clock,
&pipe_config->dp_m_n);
if (intel_connector->panel.downclock_mode != NULL &&
dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
pipe_config->has_drrs = true;
intel_link_compute_m_n(bpp, lane_count,
intel_connector->panel.downclock_mode->clock,
pipe_config->port_clock,
&pipe_config->dp_m2_n2);
}
if (IS_SKYLAKE(dev) && is_edp(intel_dp))
skl_edp_set_pll_config(pipe_config);
else if (IS_BROXTON(dev))
/* handled in ddi */;
else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
hsw_dp_set_ddi_pll_sel(pipe_config);
else
intel_dp_set_clock(encoder, pipe_config);
return true;
}
static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
crtc->config->port_clock);
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_FREQ_MASK;
if (crtc->config->port_clock == 162000) {
/* For a long time we've carried around a ILK-DevA w/a for the
* 160MHz clock. If we're really unlucky, it's still required.
*/
DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
dpa_ctl |= DP_PLL_FREQ_160MHZ;
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
} else {
dpa_ctl |= DP_PLL_FREQ_270MHZ;
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
}
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(500);
}
void intel_dp_set_link_params(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
intel_dp->link_rate = pipe_config->port_clock;
intel_dp->lane_count = pipe_config->lane_count;
}
static void intel_dp_prepare(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
intel_dp_set_link_params(intel_dp, crtc->config);
/*
* There are four kinds of DP registers:
*
* IBX PCH
* SNB CPU
* IVB CPU
* CPT PCH
*
* IBX PCH and CPU are the same for almost everything,
* except that the CPU DP PLL is configured in this
* register
*
* CPT PCH is quite different, having many bits moved
* to the TRANS_DP_CTL register instead. That
* configuration happens (oddly) in ironlake_pch_enable
*/
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
/* Handle DP bits in common between all three register formats */
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
if (crtc->config->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
/* Split out the IBX/CPU vs CPT settings */
if (IS_GEN7(dev) && port == PORT_A) {
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
intel_dp->DP |= crtc->pipe << 29;
} else if (HAS_PCH_CPT(dev) && port != PORT_A) {
u32 trans_dp;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
trans_dp |= TRANS_DP_ENH_FRAMING;
else
trans_dp &= ~TRANS_DP_ENH_FRAMING;
I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
} else {
if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
crtc->config->limited_color_range)
intel_dp->DP |= DP_COLOR_RANGE_16_235;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
if (IS_CHERRYVIEW(dev))
intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
else if (crtc->pipe == PIPE_B)
intel_dp->DP |= DP_PIPEB_SELECT;
}
}
#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
static void wait_panel_status(struct intel_dp *intel_dp,
u32 mask,
u32 value)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp_stat_reg, pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
mask, value,
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
}
DRM_DEBUG_KMS("Wait complete\n");
}
static void wait_panel_on(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power on\n");
wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}
static void wait_panel_off(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power off time\n");
wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power cycle\n");
/* When we disable the VDD override bit last we have to do the manual
* wait. */
wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
intel_dp->panel_power_cycle_delay);
wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}
static void wait_backlight_on(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
intel_dp->backlight_on_delay);
}
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
intel_dp->backlight_off_delay);
}
/* Read the current pp_control value, unlocking the register if it
* is locked
*/
static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 control;
lockdep_assert_held(&dev_priv->pps_mutex);
control = I915_READ(_pp_ctrl_reg(intel_dp));
if (!IS_BROXTON(dev)) {
control &= ~PANEL_UNLOCK_MASK;
control |= PANEL_UNLOCK_REGS;
}
return control;
}
/*
* Must be paired with edp_panel_vdd_off().
* Must hold pps_mutex around the whole on/off sequence.
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
*/
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
u32 pp;
u32 pp_stat_reg, pp_ctrl_reg;
bool need_to_disable = !intel_dp->want_panel_vdd;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!is_edp(intel_dp))
return false;
cancel_delayed_work(&intel_dp->panel_vdd_work);
intel_dp->want_panel_vdd = true;
if (edp_have_panel_vdd(intel_dp))
return need_to_disable;
power_domain = intel_display_port_aux_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
port_name(intel_dig_port->port));
if (!edp_have_panel_power(intel_dp))
wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_FORCE_VDD;
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
/*
* If the panel wasn't on, delay before accessing aux channel
*/
if (!edp_have_panel_power(intel_dp)) {
DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
port_name(intel_dig_port->port));
msleep(intel_dp->panel_power_up_delay);
}
return need_to_disable;
}
/*
* Must be paired with intel_edp_panel_vdd_off() or
* intel_edp_panel_off().
* Nested calls to these functions are not allowed since
* we drop the lock. Caller must use some higher level
* locking to prevent nested calls from other threads.
*/
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
bool vdd;
if (!is_edp(intel_dp))
return;
pps_lock(intel_dp);
vdd = edp_panel_vdd_on(intel_dp);
pps_unlock(intel_dp);
I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
port_name(dp_to_dig_port(intel_dp)->port));
}
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port =
dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
enum intel_display_power_domain power_domain;
u32 pp;
u32 pp_stat_reg, pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
WARN_ON(intel_dp->want_panel_vdd);
if (!edp_have_panel_vdd(intel_dp))
return;
DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
port_name(intel_dig_port->port));
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_FORCE_VDD;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp_stat_reg = _pp_stat_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
/* Make sure sequencer is idle before allowing subsequent activity */
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
if ((pp & POWER_TARGET_ON) == 0)
intel_dp->last_power_cycle = jiffies;
power_domain = intel_display_port_aux_power_domain(intel_encoder);
intel_display_power_put(dev_priv, power_domain);
}
static void edp_panel_vdd_work(struct work_struct *__work)
{
struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
struct intel_dp, panel_vdd_work);
pps_lock(intel_dp);
if (!intel_dp->want_panel_vdd)
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
}
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
unsigned long delay;
/*
* Queue the timer to fire a long time from now (relative to the power
* down delay) to keep the panel power up across a sequence of
* operations.
*/
delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}
/*
* Must be paired with edp_panel_vdd_on().
* Must hold pps_mutex around the whole on/off sequence.
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
*/
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
{
struct drm_i915_private *dev_priv =
intel_dp_to_dev(intel_dp)->dev_private;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!is_edp(intel_dp))
return;
I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
port_name(dp_to_dig_port(intel_dp)->port));
intel_dp->want_panel_vdd = false;
if (sync)
edp_panel_vdd_off_sync(intel_dp);
else
edp_panel_vdd_schedule_off(intel_dp);
}
static void edp_panel_on(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
port_name(dp_to_dig_port(intel_dp)->port));
if (WARN(edp_have_panel_power(intel_dp),
"eDP port %c panel power already on\n",
port_name(dp_to_dig_port(intel_dp)->port)))
return;
wait_panel_power_cycle(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
if (IS_GEN5(dev)) {
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
pp |= POWER_TARGET_ON;
if (!IS_GEN5(dev))
pp |= PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
wait_panel_on(intel_dp);
intel_dp->last_power_on = jiffies;
if (IS_GEN5(dev)) {
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
}
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
if (!is_edp(intel_dp))
return;
pps_lock(intel_dp);
edp_panel_on(intel_dp);
pps_unlock(intel_dp);
}
static void edp_panel_off(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
u32 pp;
u32 pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
port_name(dp_to_dig_port(intel_dp)->port));
WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
port_name(dp_to_dig_port(intel_dp)->port));
pp = ironlake_get_pp_control(intel_dp);
/* We need to switch off panel power _and_ force vdd, for otherwise some
* panels get very unhappy and cease to work. */
pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
EDP_BLC_ENABLE);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
intel_dp->want_panel_vdd = false;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
intel_dp->last_power_cycle = jiffies;
wait_panel_off(intel_dp);
/* We got a reference when we enabled the VDD. */
power_domain = intel_display_port_aux_power_domain(intel_encoder);
intel_display_power_put(dev_priv, power_domain);
}
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
if (!is_edp(intel_dp))
return;
pps_lock(intel_dp);
edp_panel_off(intel_dp);
pps_unlock(intel_dp);
}
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_ctrl_reg;
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
wait_backlight_on(intel_dp);
pps_lock(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_BLC_ENABLE;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
pps_unlock(intel_dp);
}
/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(struct intel_dp *intel_dp)
{
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
intel_panel_enable_backlight(intel_dp->attached_connector);
_intel_edp_backlight_on(intel_dp);
}
/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
u32 pp_ctrl_reg;
if (!is_edp(intel_dp))
return;
pps_lock(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_BLC_ENABLE;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
pps_unlock(intel_dp);
intel_dp->last_backlight_off = jiffies;
edp_wait_backlight_off(intel_dp);
}
/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(struct intel_dp *intel_dp)
{
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
_intel_edp_backlight_off(intel_dp);
intel_panel_disable_backlight(intel_dp->attached_connector);
}
/*
* Hook for controlling the panel power control backlight through the bl_power
* sysfs attribute. Take care to handle multiple calls.
*/
static void intel_edp_backlight_power(struct intel_connector *connector,
bool enable)
{
struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
bool is_enabled;
pps_lock(intel_dp);
is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
pps_unlock(intel_dp);
if (is_enabled == enable)
return;
DRM_DEBUG_KMS("panel power control backlight %s\n",
enable ? "enable" : "disable");
if (enable)
_intel_edp_backlight_on(intel_dp);
else
_intel_edp_backlight_off(intel_dp);
}
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
assert_pipe_disabled(dev_priv,
to_intel_crtc(crtc)->pipe);
DRM_DEBUG_KMS("\n");
dpa_ctl = I915_READ(DP_A);
WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
/* We don't adjust intel_dp->DP while tearing down the link, to
* facilitate link retraining (e.g. after hotplug). Hence clear all
* enable bits here to ensure that we don't enable too much. */
intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
intel_dp->DP |= DP_PLL_ENABLE;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(200);
}
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
assert_pipe_disabled(dev_priv,
to_intel_crtc(crtc)->pipe);
dpa_ctl = I915_READ(DP_A);
WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
"dp pll off, should be on\n");
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
/* We can't rely on the value tracked for the DP register in
* intel_dp->DP because link_down must not change that (otherwise link
* re-training will fail. */
dpa_ctl &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(200);
}
/* If the sink supports it, try to set the power state appropriately */
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D3);
} else {
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
msleep(1);
}
}
if (ret != 1)
DRM_DEBUG_KMS("failed to %s sink power state\n",
mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
}
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
u32 tmp;
power_domain = intel_display_port_power_domain(encoder);
if (!intel_display_power_is_enabled(dev_priv, power_domain))
return false;
tmp = I915_READ(intel_dp->output_reg);
if (!(tmp & DP_PORT_EN))
return false;
if (IS_GEN7(dev) && port == PORT_A) {
*pipe = PORT_TO_PIPE_CPT(tmp);
} else if (HAS_PCH_CPT(dev) && port != PORT_A) {
enum pipe p;
for_each_pipe(dev_priv, p) {
u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
*pipe = p;
return true;
}
}
DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
intel_dp->output_reg);
} else if (IS_CHERRYVIEW(dev)) {
*pipe = DP_PORT_TO_PIPE_CHV(tmp);
} else {
*pipe = PORT_TO_PIPE(tmp);
}
return true;
}
static void intel_dp_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
u32 tmp, flags = 0;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = dp_to_dig_port(intel_dp)->port;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
int dotclock;
tmp = I915_READ(intel_dp->output_reg);
pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
if (HAS_PCH_CPT(dev) && port != PORT_A) {
u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
} else {
if (tmp & DP_SYNC_HS_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & DP_SYNC_VS_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
}
pipe_config->base.adjusted_mode.flags |= flags;
if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
tmp & DP_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
pipe_config->has_dp_encoder = true;
pipe_config->lane_count =
((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(crtc, pipe_config);
if (port == PORT_A) {
if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
pipe_config->port_clock = 162000;
else
pipe_config->port_clock = 270000;
}
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
}
}
static void intel_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
if (crtc->config->has_audio)
intel_audio_codec_disable(encoder);
if (HAS_PSR(dev) && !HAS_DDI(dev))
intel_psr_disable(intel_dp);
/* Make sure the panel is off before trying to change the mode. But also
* ensure that we have vdd while we switch off the panel. */
intel_edp_panel_vdd_on(intel_dp);
intel_edp_backlight_off(intel_dp);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
intel_edp_panel_off(intel_dp);
/* disable the port before the pipe on g4x */
if (INTEL_INFO(dev)->gen < 5)
intel_dp_link_down(intel_dp);
}
static void ilk_post_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = dp_to_dig_port(intel_dp)->port;
intel_dp_link_down(intel_dp);
if (port == PORT_A)
ironlake_edp_pll_off(intel_dp);
}
static void vlv_post_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_dp_link_down(intel_dp);
}
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
bool reset)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
enum pipe pipe = crtc->pipe;
uint32_t val;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
if (crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
}
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
if (crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
}
}
static void chv_post_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_dp_link_down(intel_dp);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, true);
mutex_unlock(&dev_priv->sb_lock);
}
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
uint32_t *DP,
uint8_t dp_train_pat)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
if (HAS_DDI(dev)) {
uint32_t temp = I915_READ(DP_TP_CTL(port));
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
else
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
break;
case DP_TRAINING_PATTERN_1:
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
break;
case DP_TRAINING_PATTERN_2:
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
break;
case DP_TRAINING_PATTERN_3:
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
break;
}
I915_WRITE(DP_TP_CTL(port), temp);
} else if ((IS_GEN7(dev) && port == PORT_A) ||
(HAS_PCH_CPT(dev) && port != PORT_A)) {
*DP &= ~DP_LINK_TRAIN_MASK_CPT;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF_CPT;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1_CPT;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
case DP_TRAINING_PATTERN_3:
DRM_ERROR("DP training pattern 3 not supported\n");
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
}
} else {
if (IS_CHERRYVIEW(dev))
*DP &= ~DP_LINK_TRAIN_MASK_CHV;
else
*DP &= ~DP_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2;
break;
case DP_TRAINING_PATTERN_3:
if (IS_CHERRYVIEW(dev)) {
*DP |= DP_LINK_TRAIN_PAT_3_CHV;
} else {
DRM_ERROR("DP training pattern 3 not supported\n");
*DP |= DP_LINK_TRAIN_PAT_2;
}
break;
}
}
}
static void intel_dp_enable_port(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
/* enable with pattern 1 (as per spec) */
_intel_dp_set_link_train(intel_dp, &intel_dp->DP,
DP_TRAINING_PATTERN_1);
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
/*
* Magic for VLV/CHV. We _must_ first set up the register
* without actually enabling the port, and then do another
* write to enable the port. Otherwise link training will
* fail when the power sequencer is freshly used for this port.
*/
intel_dp->DP |= DP_PORT_EN;
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
}
static void intel_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
if (WARN_ON(dp_reg & DP_PORT_EN))
return;
pps_lock(intel_dp);
if (IS_VALLEYVIEW(dev))
vlv_init_panel_power_sequencer(intel_dp);
intel_dp_enable_port(intel_dp);
edp_panel_vdd_on(intel_dp);
edp_panel_on(intel_dp);
edp_panel_vdd_off(intel_dp, true);
pps_unlock(intel_dp);
if (IS_VALLEYVIEW(dev)) {
unsigned int lane_mask = 0x0;
if (IS_CHERRYVIEW(dev))
lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
lane_mask);
}
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
if (crtc->config->has_audio) {
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
pipe_name(crtc->pipe));
intel_audio_codec_enable(encoder);
}
}
static void g4x_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_enable_dp(encoder);
intel_edp_backlight_on(intel_dp);
}
static void vlv_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_edp_backlight_on(intel_dp);
intel_psr_enable(intel_dp);
}
static void g4x_pre_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
intel_dp_prepare(encoder);
/* Only ilk+ has port A */
if (dport->port == PORT_A) {
ironlake_set_pll_cpu_edp(intel_dp);
ironlake_edp_pll_on(intel_dp);
}
}
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
enum pipe pipe = intel_dp->pps_pipe;
int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
edp_panel_vdd_off_sync(intel_dp);
/*
* VLV seems to get confused when multiple power seqeuencers
* have the same port selected (even if only one has power/vdd
* enabled). The failure manifests as vlv_wait_port_ready() failing
* CHV on the other hand doesn't seem to mind having the same port
* selected in multiple power seqeuencers, but let's clear the
* port select always when logically disconnecting a power sequencer
* from a port.
*/
DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
pipe_name(pipe), port_name(intel_dig_port->port));
I915_WRITE(pp_on_reg, 0);
POSTING_READ(pp_on_reg);
intel_dp->pps_pipe = INVALID_PIPE;
}
static void vlv_steal_power_sequencer(struct drm_device *dev,
enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
lockdep_assert_held(&dev_priv->pps_mutex);
if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
return;
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
struct intel_dp *intel_dp;
enum port port;
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
port = dp_to_dig_port(intel_dp)->port;
if (intel_dp->pps_pipe != pipe)
continue;
DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
pipe_name(pipe), port_name(port));
WARN(encoder->base.crtc,
"stealing pipe %c power sequencer from active eDP port %c\n",
pipe_name(pipe), port_name(port));
/* make sure vdd is off before we steal it */
vlv_detach_power_sequencer(intel_dp);
}
}
static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
lockdep_assert_held(&dev_priv->pps_mutex);
if (!is_edp(intel_dp))
return;
if (intel_dp->pps_pipe == crtc->pipe)
return;
/*
* If another power sequencer was being used on this
* port previously make sure to turn off vdd there while
* we still have control of it.
*/
if (intel_dp->pps_pipe != INVALID_PIPE)
vlv_detach_power_sequencer(intel_dp);
/*
* We may be stealing the power
* sequencer from another port.
*/
vlv_steal_power_sequencer(dev, crtc->pipe);
/* now it's all ours */
intel_dp->pps_pipe = crtc->pipe;
DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
/* init power sequencer on this pipe and port */
intel_dp_init_panel_power_sequencer(dev, intel_dp);
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
}
static void vlv_pre_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
u32 val;
mutex_lock(&dev_priv->sb_lock);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
val = 0;
if (pipe)
val |= (1<<21);
else
val &= ~(1<<21);
val |= 0x001000c4;
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
mutex_unlock(&dev_priv->sb_lock);
intel_enable_dp(encoder);
}
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
intel_dp_prepare(encoder);
/* Program Tx lane resets to default */
mutex_lock(&dev_priv->sb_lock);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
DPIO_PCS_TX_LANE2_RESET |
DPIO_PCS_TX_LANE1_RESET);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
DPIO_PCS_CLK_SOFT_RESET);
/* Fix up inter-pair skew failure */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_pre_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
int data, i, stagger;
u32 val;
mutex_lock(&dev_priv->sb_lock);
/* allow hardware to manage TX FIFO reset source */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
}
/* Program Tx lane latency optimal setting*/
for (i = 0; i < intel_crtc->config->lane_count; i++) {
/* Set the upar bit */
if (intel_crtc->config->lane_count == 1)
data = 0x0;
else
data = (i == 1) ? 0x0 : 0x1;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
data << DPIO_UPAR_SHIFT);
}
/* Data lane stagger programming */
if (intel_crtc->config->port_clock > 270000)
stagger = 0x18;
else if (intel_crtc->config->port_clock > 135000)
stagger = 0xd;
else if (intel_crtc->config->port_clock > 67500)
stagger = 0x7;
else if (intel_crtc->config->port_clock > 33750)
stagger = 0x4;
else
stagger = 0x2;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
}
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(6) |
DPIO_TX2_STAGGER_MULT(0));
if (intel_crtc->config->lane_count > 2) {
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(7) |
DPIO_TX2_STAGGER_MULT(5));
}
/* Deassert data lane reset */
chv_data_lane_soft_reset(encoder, false);
mutex_unlock(&dev_priv->sb_lock);
intel_enable_dp(encoder);
/* Second common lane will stay alive on its own now */
if (dport->release_cl2_override) {
chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
dport->release_cl2_override = false;
}
}
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = intel_crtc->pipe;
unsigned int lane_mask =
intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
u32 val;
intel_dp_prepare(encoder);
/*
* Must trick the second common lane into life.
* Otherwise we can't even access the PLL.
*/
if (ch == DPIO_CH0 && pipe == PIPE_B)
dport->release_cl2_override =
!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
chv_phy_powergate_lanes(encoder, true, lane_mask);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, true);
/* program left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA1_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA1_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA2_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA2_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
/* program clock channel usage */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
}
/*
* This a a bit weird since generally CL
* matches the pipe, but here we need to
* pick the CL based on the port.
*/
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
if (pipe != PIPE_B)
val &= ~CHV_CMN_USEDCLKCHANNEL;
else
val |= CHV_CMN_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
u32 val;
mutex_lock(&dev_priv->sb_lock);
/* disable left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
mutex_unlock(&dev_priv->sb_lock);
/*
* Leave the power down bit cleared for at least one
* lane so that chv_powergate_phy_ch() will power
* on something when the channel is otherwise unused.
* When the port is off and the override is removed
* the lanes power down anyway, so otherwise it doesn't
* really matter what the state of power down bits is
* after this.
*/
chv_phy_powergate_lanes(encoder, false, 0x0);
}
/*
* Native read with retry for link status and receiver capability reads for
* cases where the sink may still be asleep.
*
* Sinks are *supposed* to come up within 1ms from an off state, but we're also
* supposed to retry 3 times per the spec.
*/
static ssize_t
intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
void *buffer, size_t size)
{
ssize_t ret;
int i;
/*
* Sometime we just get the same incorrect byte repeated
* over the entire buffer. Doing just one throw away read
* initially seems to "solve" it.
*/
drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
for (i = 0; i < 3; i++) {
ret = drm_dp_dpcd_read(aux, offset, buffer, size);
if (ret == size)
return ret;
msleep(1);
}
return ret;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
return intel_dp_dpcd_read_wake(&intel_dp->aux,
DP_LANE0_1_STATUS,
link_status,
DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
}
/* These are source-specific values. */
static uint8_t
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = dp_to_dig_port(intel_dp)->port;
if (IS_BROXTON(dev))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else if (INTEL_INFO(dev)->gen >= 9) {
if (dev_priv->edp_low_vswing && port == PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
} else if (IS_VALLEYVIEW(dev))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else if (IS_GEN7(dev) && port == PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
else if (HAS_PCH_CPT(dev) && port != PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
static uint8_t
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
enum port port = dp_to_dig_port(intel_dp)->port;
if (INTEL_INFO(dev)->gen >= 9) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_3;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_3;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else if (IS_VALLEYVIEW(dev)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_3;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else if (IS_GEN7(dev) && port == PORT_A) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
}
}
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct intel_crtc *intel_crtc =
to_intel_crtc(dport->base.base.crtc);
unsigned long demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value;
uint8_t train_set = intel_dp->train_set[0];
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
preemph_reg_value = 0x0004000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x552AB83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5548B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B245555;
uniqtranscale_reg_value = 0x5560B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x5598DA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
preemph_reg_value = 0x0002000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5552B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404848;
uniqtranscale_reg_value = 0x5580B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
preemph_reg_value = 0x0000000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B305555;
uniqtranscale_reg_value = 0x5570B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B2B4040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
preemph_reg_value = 0x0006000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x1B405555;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
default:
return 0;
}
mutex_lock(&dev_priv->sb_lock);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
uniqtranscale_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
mutex_unlock(&dev_priv->sb_lock);
return 0;
}
static bool chv_need_uniq_trans_scale(uint8_t train_set)
{
return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
(train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
}
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
u32 deemph_reg_value, margin_reg_value, val;
uint8_t train_set = intel_dp->train_set[0];
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = intel_crtc->pipe;
int i;
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 128;
margin_reg_value = 52;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 128;
margin_reg_value = 77;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 128;
margin_reg_value = 102;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
deemph_reg_value = 128;
margin_reg_value = 154;
/* FIXME extra to set for 1200 */
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 85;
margin_reg_value = 78;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 85;
margin_reg_value = 116;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 85;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 64;
margin_reg_value = 104;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 64;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 43;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
default:
return 0;
}
mutex_lock(&dev_priv->sb_lock);
/* Clear calc init */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
}
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
}
/* Program swing deemph */
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
val &= ~DPIO_SWING_DEEMPH9P5_MASK;
val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
}
/* Program swing margin */
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
val &= ~DPIO_SWING_MARGIN000_MASK;
val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
/*
* Supposedly this value shouldn't matter when unique transition
* scale is disabled, but in fact it does matter. Let's just
* always program the same value and hope it's OK.
*/
val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
}
/*
* The document said it needs to set bit 27 for ch0 and bit 26
* for ch1. Might be a typo in the doc.
* For now, for this unique transition scale selection, set bit
* 27 for ch0 and ch1.
*/
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
if (chv_need_uniq_trans_scale(train_set))
val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
else
val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
}
/* Start swing calculation */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
}
mutex_unlock(&dev_priv->sb_lock);
return 0;
}
static void
intel_get_adjust_train(struct intel_dp *intel_dp,
const uint8_t link_status[DP_LINK_STATUS_SIZE])
{
uint8_t v = 0;
uint8_t p = 0;
int lane;
uint8_t voltage_max;
uint8_t preemph_max;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
voltage_max = intel_dp_voltage_max(intel_dp);
if (v >= voltage_max)
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
if (p >= preemph_max)
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint32_t
gen4_signal_levels(uint8_t train_set)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
gen6_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
gen7_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400MV_6DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_600MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_500MV_0DB_IVB;
}
}
/* Properly updates "DP" with the correct signal levels. */
static void
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->port;
struct drm_device *dev = intel_dig_port->base.base.dev;
uint32_t signal_levels, mask = 0;
uint8_t train_set = intel_dp->train_set[0];
if (HAS_DDI(dev)) {
signal_levels = ddi_signal_levels(intel_dp);
if (IS_BROXTON(dev))
signal_levels = 0;
else
mask = DDI_BUF_EMP_MASK;
} else if (IS_CHERRYVIEW(dev)) {
signal_levels = chv_signal_levels(intel_dp);
} else if (IS_VALLEYVIEW(dev)) {
signal_levels = vlv_signal_levels(intel_dp);
} else if (IS_GEN7(dev) && port == PORT_A) {
signal_levels = gen7_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
} else if (IS_GEN6(dev) && port == PORT_A) {
signal_levels = gen6_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
} else {
signal_levels = gen4_signal_levels(train_set);
mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
}
if (mask)
DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
DRM_DEBUG_KMS("Using vswing level %d\n",
train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT);
*DP = (*DP & ~mask) | signal_levels;
}
static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
uint32_t *DP,
uint8_t dp_train_pat)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
uint8_t buf[sizeof(intel_dp->train_set) + 1];
int ret, len;
_intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
I915_WRITE(intel_dp->output_reg, *DP);
POSTING_READ(intel_dp->output_reg);
buf[0] = dp_train_pat;
if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
DP_TRAINING_PATTERN_DISABLE) {
/* don't write DP_TRAINING_LANEx_SET on disable */
len = 1;
} else {
/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
len = intel_dp->lane_count + 1;
}
ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
buf, len);
return ret == len;
}
static bool
intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
uint8_t dp_train_pat)
{
memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp_set_signal_levels(intel_dp, DP);
return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
}
static bool
intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
const uint8_t link_status[DP_LINK_STATUS_SIZE])
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
int ret;
intel_get_adjust_train(intel_dp, link_status);
intel_dp_set_signal_levels(intel_dp, DP);
I915_WRITE(intel_dp->output_reg, *DP);
POSTING_READ(intel_dp->output_reg);
ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
intel_dp->train_set, intel_dp->lane_count);
return ret == intel_dp->lane_count;
}
static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
uint32_t val;
if (!HAS_DDI(dev))
return;
val = I915_READ(DP_TP_CTL(port));
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
I915_WRITE(DP_TP_CTL(port), val);
/*
* On PORT_A we can have only eDP in SST mode. There the only reason
* we need to set idle transmission mode is to work around a HW issue
* where we enable the pipe while not in idle link-training mode.
* In this case there is requirement to wait for a minimum number of
* idle patterns to be sent.
*/
if (port == PORT_A)
return;
if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
1))
DRM_ERROR("Timed out waiting for DP idle patterns\n");
}
/* Enable corresponding port and start training pattern 1 */
static void
intel_dp_link_training_clock_recovery(struct intel_dp *intel_dp)
{
struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
struct drm_device *dev = encoder->dev;
int i;
uint8_t voltage;
int voltage_tries, loop_tries;
uint32_t DP = intel_dp->DP;
uint8_t link_config[2];
uint8_t link_bw, rate_select;
if (HAS_DDI(dev))
intel_ddi_prepare_link_retrain(encoder);
intel_dp_compute_rate(intel_dp, intel_dp->link_rate,
&link_bw, &rate_select);
/* Write the link configuration data */
link_config[0] = link_bw;
link_config[1] = intel_dp->lane_count;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
if (intel_dp->num_sink_rates)
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
&rate_select, 1);
link_config[0] = 0;
link_config[1] = DP_SET_ANSI_8B10B;
drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
DP |= DP_PORT_EN;
/* clock recovery */
if (!intel_dp_reset_link_train(intel_dp, &DP,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE)) {
DRM_ERROR("failed to enable link training\n");
return;
}
voltage = 0xff;
voltage_tries = 0;
loop_tries = 0;
for (;;) {
uint8_t link_status[DP_LINK_STATUS_SIZE];
drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
if (!intel_dp_get_link_status(intel_dp, link_status)) {
DRM_ERROR("failed to get link status\n");
break;
}
if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("clock recovery OK\n");
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count) {
++loop_tries;
if (loop_tries == 5) {
DRM_ERROR("too many full retries, give up\n");
break;
}
intel_dp_reset_link_train(intel_dp, &DP,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE);
voltage_tries = 0;
continue;
}
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++voltage_tries;
if (voltage_tries == 5) {
DRM_ERROR("too many voltage retries, give up\n");
break;
}
} else
voltage_tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Update training set as requested by target */
if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
DRM_ERROR("failed to update link training\n");
break;
}
}
intel_dp->DP = DP;
}
static void
intel_dp_link_training_channel_equalization(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
bool channel_eq = false;
int tries, cr_tries;
uint32_t DP = intel_dp->DP;
uint32_t training_pattern = DP_TRAINING_PATTERN_2;
/*
* Training Pattern 3 for HBR2 or 1.2 devices that support it.
*
* Intel platforms that support HBR2 also support TPS3. TPS3 support is
* also mandatory for downstream devices that support HBR2.
*
* Due to WaDisableHBR2 SKL < B0 is the only exception where TPS3 is
* supported but still not enabled.
*/
if (intel_dp_source_supports_hbr2(dev) &&
drm_dp_tps3_supported(intel_dp->dpcd))
training_pattern = DP_TRAINING_PATTERN_3;
else if (intel_dp->link_rate == 540000)
DRM_ERROR("5.4 Gbps link rate without HBR2/TPS3 support\n");
/* channel equalization */
if (!intel_dp_set_link_train(intel_dp, &DP,
training_pattern |
DP_LINK_SCRAMBLING_DISABLE)) {
DRM_ERROR("failed to start channel equalization\n");
return;
}
tries = 0;
cr_tries = 0;
channel_eq = false;
for (;;) {
uint8_t link_status[DP_LINK_STATUS_SIZE];
if (cr_tries > 5) {
DRM_ERROR("failed to train DP, aborting\n");
break;
}
drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
if (!intel_dp_get_link_status(intel_dp, link_status)) {
DRM_ERROR("failed to get link status\n");
break;
}
/* Make sure clock is still ok */
if (!drm_dp_clock_recovery_ok(link_status,
intel_dp->lane_count)) {
intel_dp_link_training_clock_recovery(intel_dp);
intel_dp_set_link_train(intel_dp, &DP,
training_pattern |
DP_LINK_SCRAMBLING_DISABLE);
cr_tries++;
continue;
}
if (drm_dp_channel_eq_ok(link_status,
intel_dp->lane_count)) {
channel_eq = true;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
intel_dp_link_training_clock_recovery(intel_dp);
intel_dp_set_link_train(intel_dp, &DP,
training_pattern |
DP_LINK_SCRAMBLING_DISABLE);
tries = 0;
cr_tries++;
continue;
}
/* Update training set as requested by target */
if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
DRM_ERROR("failed to update link training\n");
break;
}
++tries;
}
intel_dp_set_idle_link_train(intel_dp);
intel_dp->DP = DP;
if (channel_eq)
DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
}
void intel_dp_stop_link_train(struct intel_dp *intel_dp)
{
intel_dp_set_link_train(intel_dp, &intel_dp->DP,
DP_TRAINING_PATTERN_DISABLE);
}
void
intel_dp_start_link_train(struct intel_dp *intel_dp)
{
intel_dp_link_training_clock_recovery(intel_dp);
intel_dp_link_training_channel_equalization(intel_dp);
}
static void
intel_dp_link_down(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
enum port port = intel_dig_port->port;
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t DP = intel_dp->DP;
if (WARN_ON(HAS_DDI(dev)))
return;
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
return;
DRM_DEBUG_KMS("\n");
if ((IS_GEN7(dev) && port == PORT_A) ||
(HAS_PCH_CPT(dev) && port != PORT_A)) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
} else {
if (IS_CHERRYVIEW(dev))
DP &= ~DP_LINK_TRAIN_MASK_CHV;
else
DP &= ~DP_LINK_TRAIN_MASK;
DP |= DP_LINK_TRAIN_PAT_IDLE;
}
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching HDMI port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
/* always enable with pattern 1 (as per spec) */
DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
DP &= ~DP_PORT_EN;
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
}
msleep(intel_dp->panel_power_down_delay);
}
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint8_t rev;
if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
sizeof(intel_dp->dpcd)) < 0)
return false; /* aux transfer failed */
DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
if (intel_dp->dpcd[DP_DPCD_REV] == 0)
return false; /* DPCD not present */
/* Check if the panel supports PSR */
memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
if (is_edp(intel_dp)) {
intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
intel_dp->psr_dpcd,
sizeof(intel_dp->psr_dpcd));
if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
dev_priv->psr.sink_support = true;
DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
}
if (INTEL_INFO(dev)->gen >= 9 &&
(intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
uint8_t frame_sync_cap;
dev_priv->psr.sink_support = true;
intel_dp_dpcd_read_wake(&intel_dp->aux,
DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
&frame_sync_cap, 1);
dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
/* PSR2 needs frame sync as well */
dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
DRM_DEBUG_KMS("PSR2 %s on sink",
dev_priv->psr.psr2_support ? "supported" : "not supported");
}
}
DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
yesno(intel_dp_source_supports_hbr2(dev)),
yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
/* Intermediate frequency support */
if (is_edp(intel_dp) &&
(intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
(intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
(rev >= 0x03)) { /* eDp v1.4 or higher */
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
int i;
intel_dp_dpcd_read_wake(&intel_dp->aux,
DP_SUPPORTED_LINK_RATES,
sink_rates,
sizeof(sink_rates));
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
int val = le16_to_cpu(sink_rates[i]);
if (val == 0)
break;
/* Value read is in kHz while drm clock is saved in deca-kHz */
intel_dp->sink_rates[i] = (val * 200) / 10;
}
intel_dp->num_sink_rates = i;
}
intel_dp_print_rates(intel_dp);
if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_PRESENT))
return true; /* native DP sink */
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
return true; /* no per-port downstream info */
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
intel_dp->downstream_ports,
DP_MAX_DOWNSTREAM_PORTS) < 0)
return false; /* downstream port status fetch failed */
return true;
}
static void
intel_dp_probe_oui(struct intel_dp *intel_dp)
{
u8 buf[3];
if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
return;
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
buf[0], buf[1], buf[2]);
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
buf[0], buf[1], buf[2]);
}
static bool
intel_dp_probe_mst(struct intel_dp *intel_dp)
{
u8 buf[1];
if (!intel_dp->can_mst)
return false;
if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
return false;
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
if (buf[0] & DP_MST_CAP) {
DRM_DEBUG_KMS("Sink is MST capable\n");
intel_dp->is_mst = true;
} else {
DRM_DEBUG_KMS("Sink is not MST capable\n");
intel_dp->is_mst = false;
}
}
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
return intel_dp->is_mst;
}
static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
u8 buf;
int ret = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
ret = -EIO;
goto out;
}
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
buf & ~DP_TEST_SINK_START) < 0) {
DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
ret = -EIO;
goto out;
}
intel_dp->sink_crc.started = false;
out:
hsw_enable_ips(intel_crtc);
return ret;
}
static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
u8 buf;
int ret;
if (intel_dp->sink_crc.started) {
ret = intel_dp_sink_crc_stop(intel_dp);
if (ret)
return ret;
}
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
return -EIO;
if (!(buf & DP_TEST_CRC_SUPPORTED))
return -ENOTTY;
intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
return -EIO;
hsw_disable_ips(intel_crtc);
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
buf | DP_TEST_SINK_START) < 0) {
hsw_enable_ips(intel_crtc);
return -EIO;
}
intel_dp->sink_crc.started = true;
return 0;
}
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
u8 buf;
int count, ret;
int attempts = 6;
bool old_equal_new;
ret = intel_dp_sink_crc_start(intel_dp);
if (ret)
return ret;
do {
intel_wait_for_vblank(dev, intel_crtc->pipe);
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_TEST_SINK_MISC, &buf) < 0) {
ret = -EIO;
goto stop;
}
count = buf & DP_TEST_COUNT_MASK;
/*
* Count might be reset during the loop. In this case
* last known count needs to be reset as well.
*/
if (count == 0)
intel_dp->sink_crc.last_count = 0;
if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
ret = -EIO;
goto stop;
}
old_equal_new = (count == intel_dp->sink_crc.last_count &&
!memcmp(intel_dp->sink_crc.last_crc, crc,
6 * sizeof(u8)));
} while (--attempts && (count == 0 || old_equal_new));
intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
if (attempts == 0) {
if (old_equal_new) {
DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
} else {
DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
ret = -ETIMEDOUT;
goto stop;
}
}
stop:
intel_dp_sink_crc_stop(intel_dp);
return ret;
}
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
return intel_dp_dpcd_read_wake(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector, 1) == 1;
}
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
int ret;
ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
DP_SINK_COUNT_ESI,
sink_irq_vector, 14);
if (ret != 14)
return false;
return true;
}
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
uint8_t test_result = DP_TEST_ACK;
return test_result;
}
static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
uint8_t test_result = DP_TEST_NAK;
return test_result;
}
static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
{
uint8_t test_result = DP_TEST_NAK;
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_connector *connector = &intel_connector->base;
if (intel_connector->detect_edid == NULL ||
connector->edid_corrupt ||
intel_dp->aux.i2c_defer_count > 6) {
/* Check EDID read for NACKs, DEFERs and corruption
* (DP CTS 1.2 Core r1.1)
* 4.2.2.4 : Failed EDID read, I2C_NAK
* 4.2.2.5 : Failed EDID read, I2C_DEFER
* 4.2.2.6 : EDID corruption detected
* Use failsafe mode for all cases
*/
if (intel_dp->aux.i2c_nack_count > 0 ||
intel_dp->aux.i2c_defer_count > 0)
DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
intel_dp->aux.i2c_nack_count,
intel_dp->aux.i2c_defer_count);
intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
} else {
struct edid *block = intel_connector->detect_edid;
/* We have to write the checksum
* of the last block read
*/
block += intel_connector->detect_edid->extensions;
if (!drm_dp_dpcd_write(&intel_dp->aux,
DP_TEST_EDID_CHECKSUM,
&block->checksum,
1))
DRM_DEBUG_KMS("Failed to write EDID checksum\n");
test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
}
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance_test_active = 1;
return test_result;
}
static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
{
uint8_t test_result = DP_TEST_NAK;
return test_result;
}
static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
uint8_t response = DP_TEST_NAK;
uint8_t rxdata = 0;
int status = 0;
intel_dp->compliance_test_active = 0;
intel_dp->compliance_test_type = 0;
intel_dp->compliance_test_data = 0;
intel_dp->aux.i2c_nack_count = 0;
intel_dp->aux.i2c_defer_count = 0;
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
if (status <= 0) {
DRM_DEBUG_KMS("Could not read test request from sink\n");
goto update_status;
}
switch (rxdata) {
case DP_TEST_LINK_TRAINING:
DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
response = intel_dp_autotest_link_training(intel_dp);
break;
case DP_TEST_LINK_VIDEO_PATTERN:
DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
response = intel_dp_autotest_video_pattern(intel_dp);
break;
case DP_TEST_LINK_EDID_READ:
DRM_DEBUG_KMS("EDID test requested\n");
intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
response = intel_dp_autotest_edid(intel_dp);
break;
case DP_TEST_LINK_PHY_TEST_PATTERN:
DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
response = intel_dp_autotest_phy_pattern(intel_dp);
break;
default:
DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
break;
}
update_status:
status = drm_dp_dpcd_write(&intel_dp->aux,
DP_TEST_RESPONSE,
&response, 1);
if (status <= 0)
DRM_DEBUG_KMS("Could not write test response to sink\n");
}
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
bool bret;
if (intel_dp->is_mst) {
u8 esi[16] = { 0 };
int ret = 0;
int retry;
bool handled;
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
if (bret == true) {
/* check link status - esi[10] = 0x200c */
if (intel_dp->active_mst_links &&
!drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
}
DRM_DEBUG_KMS("got esi %3ph\n", esi);
ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
if (handled) {
for (retry = 0; retry < 3; retry++) {
int wret;
wret = drm_dp_dpcd_write(&intel_dp->aux,
DP_SINK_COUNT_ESI+1,
&esi[1], 3);
if (wret == 3) {
break;
}
}
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
if (bret == true) {
DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
goto go_again;
}
} else
ret = 0;
return ret;
} else {
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
/* send a hotplug event */
drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
}
}
return -EINVAL;
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*/
static void
intel_dp_check_link_status(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
u8 sink_irq_vector;
u8 link_status[DP_LINK_STATUS_SIZE];
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
if (!intel_encoder->base.crtc)
return;
if (!to_intel_crtc(intel_encoder->base.crtc)->active)
return;
/* Try to read receiver status if the link appears to be up */
if (!intel_dp_get_link_status(intel_dp, link_status)) {
return;
}
/* Now read the DPCD to see if it's actually running */
if (!intel_dp_get_dpcd(intel_dp)) {
return;
}
/* Try to read the source of the interrupt */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
/* Clear interrupt source */
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector);
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}
if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
intel_encoder->base.name);
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
}
}
/* XXX this is probably wrong for multiple downstream ports */
static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
uint8_t *dpcd = intel_dp->dpcd;
uint8_t type;
if (!intel_dp_get_dpcd(intel_dp))
return connector_status_disconnected;
/* if there's no downstream port, we're done */
if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
return connector_status_connected;
/* If we're HPD-aware, SINK_COUNT changes dynamically */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
uint8_t reg;
if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
&reg, 1) < 0)
return connector_status_unknown;
return DP_GET_SINK_COUNT(reg) ? connector_status_connected
: connector_status_disconnected;
}
/* If no HPD, poke DDC gently */
if (drm_probe_ddc(&intel_dp->aux.ddc))
return connector_status_connected;
/* Well we tried, say unknown for unreliable port types */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type == DP_DS_PORT_TYPE_VGA ||
type == DP_DS_PORT_TYPE_NON_EDID)
return connector_status_unknown;
} else {
type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_TYPE_MASK;
if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
type == DP_DWN_STRM_PORT_TYPE_OTHER)
return connector_status_unknown;
}
/* Anything else is out of spec, warn and ignore */
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
return connector_status_disconnected;
}
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
enum drm_connector_status status;
status = intel_panel_detect(dev);
if (status == connector_status_unknown)
status = connector_status_connected;
return status;
}
static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
u32 bit;
switch (port->port) {
case PORT_A:
return true;
case PORT_B:
bit = SDE_PORTB_HOTPLUG;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG;
break;
default:
MISSING_CASE(port->port);
return false;
}
return I915_READ(SDEISR) & bit;
}
static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
u32 bit;
switch (port->port) {
case PORT_A:
return true;
case PORT_B:
bit = SDE_PORTB_HOTPLUG_CPT;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG_CPT;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG_CPT;
break;
case PORT_E:
bit = SDE_PORTE_HOTPLUG_SPT;
break;
default:
MISSING_CASE(port->port);
return false;
}
return I915_READ(SDEISR) & bit;
}
static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
u32 bit;
switch (port->port) {
case PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
break;
case PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
break;
case PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
break;
default:
MISSING_CASE(port->port);
return false;
}
return I915_READ(PORT_HOTPLUG_STAT) & bit;
}
static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
u32 bit;
switch (port->port) {
case PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
break;
case PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
break;
case PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
break;
default:
MISSING_CASE(port->port);
return false;
}
return I915_READ(PORT_HOTPLUG_STAT) & bit;
}
static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *intel_dig_port)
{
struct intel_encoder *intel_encoder = &intel_dig_port->base;
enum port port;
u32 bit;
intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
switch (port) {
case PORT_A:
bit = BXT_DE_PORT_HP_DDIA;
break;
case PORT_B:
bit = BXT_DE_PORT_HP_DDIB;
break;
case PORT_C:
bit = BXT_DE_PORT_HP_DDIC;
break;
default:
MISSING_CASE(port);
return false;
}
return I915_READ(GEN8_DE_PORT_ISR) & bit;
}
/*
* intel_digital_port_connected - is the specified port connected?
* @dev_priv: i915 private structure
* @port: the port to test
*
* Return %true if @port is connected, %false otherwise.
*/
static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
if (HAS_PCH_IBX(dev_priv))
return ibx_digital_port_connected(dev_priv, port);
if (HAS_PCH_SPLIT(dev_priv))
return cpt_digital_port_connected(dev_priv, port);
else if (IS_BROXTON(dev_priv))
return bxt_digital_port_connected(dev_priv, port);
else if (IS_GM45(dev_priv))
return gm45_digital_port_connected(dev_priv, port);
else
return g4x_digital_port_connected(dev_priv, port);
}
static enum drm_connector_status
ironlake_dp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
if (!intel_digital_port_connected(dev_priv, intel_dig_port))
return connector_status_disconnected;
return intel_dp_detect_dpcd(intel_dp);
}
static enum drm_connector_status
g4x_dp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
/* Can't disconnect eDP, but you can close the lid... */
if (is_edp(intel_dp)) {
enum drm_connector_status status;
status = intel_panel_detect(dev);
if (status == connector_status_unknown)
status = connector_status_connected;
return status;
}
if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
return connector_status_disconnected;
return intel_dp_detect_dpcd(intel_dp);
}
static struct edid *
intel_dp_get_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
/* use cached edid if we have one */
if (intel_connector->edid) {
/* invalid edid */
if (IS_ERR(intel_connector->edid))
return NULL;
return drm_edid_duplicate(intel_connector->edid);
} else
return drm_get_edid(&intel_connector->base,
&intel_dp->aux.ddc);
}
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct edid *edid;
edid = intel_dp_get_edid(intel_dp);
intel_connector->detect_edid = edid;
if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
else
intel_dp->has_audio = drm_detect_monitor_audio(edid);
}
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
kfree(intel_connector->detect_edid);
intel_connector->detect_edid = NULL;
intel_dp->has_audio = false;
}
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = connector->dev;
enum drm_connector_status status;
enum intel_display_power_domain power_domain;
bool ret;
u8 sink_irq_vector;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_dp_unset_edid(intel_dp);
if (intel_dp->is_mst) {
/* MST devices are disconnected from a monitor POV */
if (intel_encoder->type != INTEL_OUTPUT_EDP)
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
return connector_status_disconnected;
}
power_domain = intel_display_port_aux_power_domain(intel_encoder);
intel_display_power_get(to_i915(dev), power_domain);
/* Can't disconnect eDP, but you can close the lid... */
if (is_edp(intel_dp))
status = edp_detect(intel_dp);
else if (HAS_PCH_SPLIT(dev))
status = ironlake_dp_detect(intel_dp);
else
status = g4x_dp_detect(intel_dp);
if (status != connector_status_connected)
goto out;
intel_dp_probe_oui(intel_dp);
ret = intel_dp_probe_mst(intel_dp);
if (ret) {
/* if we are in MST mode then this connector
won't appear connected or have anything with EDID on it */
if (intel_encoder->type != INTEL_OUTPUT_EDP)
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
status = connector_status_disconnected;
goto out;
}
intel_dp_set_edid(intel_dp);
if (intel_encoder->type != INTEL_OUTPUT_EDP)
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
status = connector_status_connected;
/* Try to read the source of the interrupt */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
/* Clear interrupt source */
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector);
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
intel_dp_handle_test_request(intel_dp);
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}
out:
intel_display_power_put(to_i915(dev), power_domain);
return status;
}
static void
intel_dp_force(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
enum intel_display_power_domain power_domain;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_dp_unset_edid(intel_dp);
if (connector->status != connector_status_connected)
return;
power_domain = intel_display_port_aux_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
intel_dp_set_edid(intel_dp);
intel_display_power_put(dev_priv, power_domain);
if (intel_encoder->type != INTEL_OUTPUT_EDP)
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct edid *edid;
edid = intel_connector->detect_edid;
if (edid) {
int ret = intel_connector_update_modes(connector, edid);
if (ret)
return ret;
}
/* if eDP has no EDID, fall back to fixed mode */
if (is_edp(intel_attached_dp(connector)) &&
intel_connector->panel.fixed_mode) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(connector->dev,
intel_connector->panel.fixed_mode);
if (mode) {
drm_mode_probed_add(connector, mode);
return 1;
}
}
return 0;
}
static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
bool has_audio = false;
struct edid *edid;
edid = to_intel_connector(connector)->detect_edid;
if (edid)
has_audio = drm_detect_monitor_audio(edid);
return has_audio;
}
static int
intel_dp_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
struct intel_connector *intel_connector = to_intel_connector(connector);
struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
int ret;
ret = drm_object_property_set_value(&connector->base, property, val);
if (ret)
return ret;
if (property == dev_priv->force_audio_property) {
int i = val;
bool has_audio;
if (i == intel_dp->force_audio)
return 0;
intel_dp->force_audio = i;
if (i == HDMI_AUDIO_AUTO)
has_audio = intel_dp_detect_audio(connector);
else
has_audio = (i == HDMI_AUDIO_ON);
if (has_audio == intel_dp->has_audio)
return 0;
intel_dp->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
bool old_auto = intel_dp->color_range_auto;
bool old_range = intel_dp->limited_color_range;
switch (val) {
case INTEL_BROADCAST_RGB_AUTO:
intel_dp->color_range_auto = true;
break;
case INTEL_BROADCAST_RGB_FULL:
intel_dp->color_range_auto = false;
intel_dp->limited_color_range = false;
break;
case INTEL_BROADCAST_RGB_LIMITED:
intel_dp->color_range_auto = false;
intel_dp->limited_color_range = true;
break;
default:
return -EINVAL;
}
if (old_auto == intel_dp->color_range_auto &&
old_range == intel_dp->limited_color_range)
return 0;
goto done;
}
if (is_edp(intel_dp) &&
property == connector->dev->mode_config.scaling_mode_property) {
if (val == DRM_MODE_SCALE_NONE) {
DRM_DEBUG_KMS("no scaling not supported\n");
return -EINVAL;
}
if (intel_connector->panel.fitting_mode == val) {
/* the eDP scaling property is not changed */
return 0;
}
intel_connector->panel.fitting_mode = val;
goto done;
}
return -EINVAL;
done:
if (intel_encoder->base.crtc)
intel_crtc_restore_mode(intel_encoder->base.crtc);
return 0;
}
static void
intel_dp_connector_destroy(struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
kfree(intel_connector->detect_edid);
if (!IS_ERR_OR_NULL(intel_connector->edid))
kfree(intel_connector->edid);
/* Can't call is_edp() since the encoder may have been destroyed
* already. */
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
intel_panel_fini(&intel_connector->panel);
drm_connector_cleanup(connector);
kfree(connector);
}
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
drm_dp_aux_unregister(&intel_dp->aux);
intel_dp_mst_encoder_cleanup(intel_dig_port);
if (is_edp(intel_dp)) {
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
pps_lock(intel_dp);
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
}
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
}
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
if (!is_edp(intel_dp))
return;
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
pps_lock(intel_dp);
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
}
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!edp_have_panel_vdd(intel_dp))
return;
/*
* The VDD bit needs a power domain reference, so if the bit is
* already enabled when we boot or resume, grab this reference and
* schedule a vdd off, so we don't hold on to the reference
* indefinitely.
*/
DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
intel_display_power_get(dev_priv, power_domain);
edp_panel_vdd_schedule_off(intel_dp);
}
void intel_dp_encoder_reset(struct drm_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (!HAS_DDI(dev_priv))
intel_dp->DP = I915_READ(intel_dp->output_reg);
if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
return;
pps_lock(intel_dp);
/*
* Read out the current power sequencer assignment,
* in case the BIOS did something with it.
*/
if (IS_VALLEYVIEW(encoder->dev))
vlv_initial_power_sequencer_setup(intel_dp);
intel_edp_panel_vdd_sanitize(intel_dp);
pps_unlock(intel_dp);
}
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_dp_detect,
.force = intel_dp_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_dp_set_property,
.atomic_get_property = intel_connector_atomic_get_property,
.destroy = intel_dp_connector_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.best_encoder = intel_best_encoder,
};
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.reset = intel_dp_encoder_reset,
.destroy = intel_dp_encoder_destroy,
};
enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain power_domain;
enum irqreturn ret = IRQ_NONE;
if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
/*
* vdd off can generate a long pulse on eDP which
* would require vdd on to handle it, and thus we
* would end up in an endless cycle of
* "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
*/
DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
port_name(intel_dig_port->port));
return IRQ_HANDLED;
}
DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
port_name(intel_dig_port->port),
long_hpd ? "long" : "short");
power_domain = intel_display_port_aux_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
if (long_hpd) {
if (!intel_digital_port_connected(dev_priv, intel_dig_port))
goto mst_fail;
if (!intel_dp_get_dpcd(intel_dp)) {
goto mst_fail;
}
intel_dp_probe_oui(intel_dp);
if (!intel_dp_probe_mst(intel_dp)) {
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
intel_dp_check_link_status(intel_dp);
drm_modeset_unlock(&dev->mode_config.connection_mutex);
goto mst_fail;
}
} else {
if (intel_dp->is_mst) {
if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
goto mst_fail;
}
if (!intel_dp->is_mst) {
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
intel_dp_check_link_status(intel_dp);
drm_modeset_unlock(&dev->mode_config.connection_mutex);
}
}
ret = IRQ_HANDLED;
goto put_power;
mst_fail:
/* if we were in MST mode, and device is not there get out of MST mode */
if (intel_dp->is_mst) {
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
}
put_power:
intel_display_power_put(dev_priv, power_domain);
return ret;
}
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
struct intel_dp *intel_dp;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
intel_dp = enc_to_intel_dp(&intel_encoder->base);
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
intel_encoder->type == INTEL_OUTPUT_EDP)
return intel_dp->output_reg;
}
return -1;
}
/* check the VBT to see whether the eDP is on another port */
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
{
struct drm_i915_private *dev_priv = dev->dev_private;
union child_device_config *p_child;
int i;
static const short port_mapping[] = {
[PORT_B] = DVO_PORT_DPB,
[PORT_C] = DVO_PORT_DPC,
[PORT_D] = DVO_PORT_DPD,
[PORT_E] = DVO_PORT_DPE,
};
/*
* eDP not supported on g4x. so bail out early just
* for a bit extra safety in case the VBT is bonkers.
*/
if (INTEL_INFO(dev)->gen < 5)
return false;
if (port == PORT_A)
return true;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
p_child = dev_priv->vbt.child_dev + i;
if (p_child->common.dvo_port == port_mapping[port] &&
(p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
(DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
return true;
}
return false;
}
void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
intel_dp->color_range_auto = true;
if (is_edp(intel_dp)) {
drm_mode_create_scaling_mode_property(connector->dev);
drm_object_attach_property(
&connector->base,
connector->dev->mode_config.scaling_mode_property,
DRM_MODE_SCALE_ASPECT);
intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
}
}
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
intel_dp->last_power_cycle = jiffies;
intel_dp->last_power_on = jiffies;
intel_dp->last_backlight_off = jiffies;
}
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct edp_power_seq cur, vbt, spec,
*final = &intel_dp->pps_delays;
u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
lockdep_assert_held(&dev_priv->pps_mutex);
/* already initialized? */
if (final->t11_t12 != 0)
return;
if (IS_BROXTON(dev)) {
/*
* TODO: BXT has 2 sets of PPS registers.
* Correct Register for Broxton need to be identified
* using VBT. hardcoding for now
*/
pp_ctrl_reg = BXT_PP_CONTROL(0);
pp_on_reg = BXT_PP_ON_DELAYS(0);
pp_off_reg = BXT_PP_OFF_DELAYS(0);
} else if (HAS_PCH_SPLIT(dev)) {
pp_ctrl_reg = PCH_PP_CONTROL;
pp_on_reg = PCH_PP_ON_DELAYS;
pp_off_reg = PCH_PP_OFF_DELAYS;
pp_div_reg = PCH_PP_DIVISOR;
} else {
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
}
/* Workaround: Need to write PP_CONTROL with the unlock key as
* the very first thing. */
pp_ctl = ironlake_get_pp_control(intel_dp);
pp_on = I915_READ(pp_on_reg);
pp_off = I915_READ(pp_off_reg);
if (!IS_BROXTON(dev)) {
I915_WRITE(pp_ctrl_reg, pp_ctl);
pp_div = I915_READ(pp_div_reg);
}
/* Pull timing values out of registers */
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
PANEL_POWER_UP_DELAY_SHIFT;
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
PANEL_LIGHT_ON_DELAY_SHIFT;
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
PANEL_LIGHT_OFF_DELAY_SHIFT;
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
PANEL_POWER_DOWN_DELAY_SHIFT;
if (IS_BROXTON(dev)) {
u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
BXT_POWER_CYCLE_DELAY_SHIFT;
if (tmp > 0)
cur.t11_t12 = (tmp - 1) * 1000;
else
cur.t11_t12 = 0;
} else {
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
}
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
vbt = dev_priv->vbt.edp_pps;
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
* our hw here, which are all in 100usec. */
spec.t1_t3 = 210 * 10;
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
spec.t10 = 500 * 10;
/* This one is special and actually in units of 100ms, but zero
* based in the hw (so we need to add 100 ms). But the sw vbt
* table multiplies it with 1000 to make it in units of 100usec,
* too. */
spec.t11_t12 = (510 + 100) * 10;
DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
/* Use the max of the register settings and vbt. If both are
* unset, fall back to the spec limits. */
#define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
spec.field : \
max(cur.field, vbt.field))
assign_final(t1_t3);
assign_final(t8);
assign_final(t9);
assign_final(t10);
assign_final(t11_t12);
#undef assign_final
#define get_delay(field) (DIV_ROUND_UP(final->field, 10))
intel_dp->panel_power_up_delay = get_delay(t1_t3);
intel_dp->backlight_on_delay = get_delay(t8);
intel_dp->backlight_off_delay = get_delay(t9);
intel_dp->panel_power_down_delay = get_delay(t10);
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
intel_dp->panel_power_cycle_delay);
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
}
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp_on, pp_off, pp_div, port_sel = 0;
int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
enum port port = dp_to_dig_port(intel_dp)->port;
const struct edp_power_seq *seq = &intel_dp->pps_delays;
lockdep_assert_held(&dev_priv->pps_mutex);
if (IS_BROXTON(dev)) {
/*
* TODO: BXT has 2 sets of PPS registers.
* Correct Register for Broxton need to be identified
* using VBT. hardcoding for now
*/
pp_ctrl_reg = BXT_PP_CONTROL(0);
pp_on_reg = BXT_PP_ON_DELAYS(0);
pp_off_reg = BXT_PP_OFF_DELAYS(0);
} else if (HAS_PCH_SPLIT(dev)) {
pp_on_reg = PCH_PP_ON_DELAYS;
pp_off_reg = PCH_PP_OFF_DELAYS;
pp_div_reg = PCH_PP_DIVISOR;
} else {
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
}
/*
* And finally store the new values in the power sequencer. The
* backlight delays are set to 1 because we do manual waits on them. For
* T8, even BSpec recommends doing it. For T9, if we don't do this,
* we'll end up waiting for the backlight off delay twice: once when we
* do the manual sleep, and once when we disable the panel and wait for
* the PP_STATUS bit to become zero.
*/
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
/* Compute the divisor for the pp clock, simply match the Bspec
* formula. */
if (IS_BROXTON(dev)) {
pp_div = I915_READ(pp_ctrl_reg);
pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
<< BXT_POWER_CYCLE_DELAY_SHIFT);
} else {
pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
}
/* Haswell doesn't have any port selection bits for the panel
* power sequencer any more. */
if (IS_VALLEYVIEW(dev)) {
port_sel = PANEL_PORT_SELECT_VLV(port);
} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
if (port == PORT_A)
port_sel = PANEL_PORT_SELECT_DPA;
else
port_sel = PANEL_PORT_SELECT_DPD;
}
pp_on |= port_sel;
I915_WRITE(pp_on_reg, pp_on);
I915_WRITE(pp_off_reg, pp_off);
if (IS_BROXTON(dev))
I915_WRITE(pp_ctrl_reg, pp_div);
else
I915_WRITE(pp_div_reg, pp_div);
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
I915_READ(pp_on_reg),
I915_READ(pp_off_reg),
IS_BROXTON(dev) ?
(I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
I915_READ(pp_div_reg));
}
/**
* intel_dp_set_drrs_state - program registers for RR switch to take effect
* @dev: DRM device
* @refresh_rate: RR to be programmed
*
* This function gets called when refresh rate (RR) has to be changed from
* one frequency to another. Switches can be between high and low RR
* supported by the panel or to any other RR based on media playback (in
* this case, RR value needs to be passed from user space).
*
* The caller of this function needs to take a lock on dev_priv->drrs.
*/
static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
struct intel_digital_port *dig_port = NULL;
struct intel_dp *intel_dp = dev_priv->drrs.dp;
struct intel_crtc_state *config = NULL;
struct intel_crtc *intel_crtc = NULL;
enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
if (refresh_rate <= 0) {
DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
return;
}
if (intel_dp == NULL) {
DRM_DEBUG_KMS("DRRS not supported.\n");
return;
}
/*
* FIXME: This needs proper synchronization with psr state for some
* platforms that cannot have PSR and DRRS enabled at the same time.
*/
dig_port = dp_to_dig_port(intel_dp);
encoder = &dig_port->base;
intel_crtc = to_intel_crtc(encoder->base.crtc);
if (!intel_crtc) {
DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
return;
}
config = intel_crtc->config;
if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
return;
}
if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
refresh_rate)
index = DRRS_LOW_RR;
if (index == dev_priv->drrs.refresh_rate_type) {
DRM_DEBUG_KMS(
"DRRS requested for previously set RR...ignoring\n");
return;
}
if (!intel_crtc->active) {
DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
return;
}
if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
switch (index) {
case DRRS_HIGH_RR:
intel_dp_set_m_n(intel_crtc, M1_N1);
break;
case DRRS_LOW_RR:
intel_dp_set_m_n(intel_crtc, M2_N2);
break;
case DRRS_MAX_RR:
default:
DRM_ERROR("Unsupported refreshrate type\n");
}
} else if (INTEL_INFO(dev)->gen > 6) {
u32 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
u32 val;
val = I915_READ(reg);
if (index > DRRS_HIGH_RR) {
if (IS_VALLEYVIEW(dev))
val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
else
val |= PIPECONF_EDP_RR_MODE_SWITCH;
} else {
if (IS_VALLEYVIEW(dev))
val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
else
val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
}
I915_WRITE(reg, val);
}
dev_priv->drrs.refresh_rate_type = index;
DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}
/**
* intel_edp_drrs_enable - init drrs struct if supported
* @intel_dp: DP struct
*
* Initializes frontbuffer_bits and drrs.dp
*/
void intel_edp_drrs_enable(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = dig_port->base.base.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (!intel_crtc->config->has_drrs) {
DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
return;
}
mutex_lock(&dev_priv->drrs.mutex);
if (WARN_ON(dev_priv->drrs.dp)) {
DRM_ERROR("DRRS already enabled\n");
goto unlock;
}
dev_priv->drrs.busy_frontbuffer_bits = 0;
dev_priv->drrs.dp = intel_dp;
unlock:
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_disable - Disable DRRS
* @intel_dp: DP struct
*
*/
void intel_edp_drrs_disable(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = dig_port->base.base.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (!intel_crtc->config->has_drrs)
return;
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv->dev,
intel_dp->attached_connector->panel.
fixed_mode->vrefresh);
dev_priv->drrs.dp = NULL;
mutex_unlock(&dev_priv->drrs.mutex);
cancel_delayed_work_sync(&dev_priv->drrs.work);
}
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), drrs.work.work);
struct intel_dp *intel_dp;
mutex_lock(&dev_priv->drrs.mutex);
intel_dp = dev_priv->drrs.dp;
if (!intel_dp)
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck.
*/
if (dev_priv->drrs.busy_frontbuffer_bits)
goto unlock;
if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv->dev,
intel_dp->attached_connector->panel.
downclock_mode->vrefresh);
unlock:
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_invalidate - Disable Idleness DRRS
* @dev: DRM device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* This function gets called everytime rendering on the given planes start.
* Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
*
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
*/
void intel_edp_drrs_invalidate(struct drm_device *dev,
unsigned frontbuffer_bits)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
return;
cancel_delayed_work(&dev_priv->drrs.work);
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
/* invalidate means busy screen hence upclock */
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv->dev,
dev_priv->drrs.dp->attached_connector->panel.
fixed_mode->vrefresh);
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_flush - Restart Idleness DRRS
* @dev: DRM device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* This function gets called every time rendering on the given planes has
* completed or flip on a crtc is completed. So DRRS should be upclocked
* (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
* if no other planes are dirty.
*
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
*/
void intel_edp_drrs_flush(struct drm_device *dev,
unsigned frontbuffer_bits)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
return;
cancel_delayed_work(&dev_priv->drrs.work);
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
/* flush means busy screen hence upclock */
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv->dev,
dev_priv->drrs.dp->attached_connector->panel.
fixed_mode->vrefresh);
/*
* flush also means no more activity hence schedule downclock, if all
* other fbs are quiescent too
*/
if (!dev_priv->drrs.busy_frontbuffer_bits)
schedule_delayed_work(&dev_priv->drrs.work,
msecs_to_jiffies(1000));
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* DOC: Display Refresh Rate Switching (DRRS)
*
* Display Refresh Rate Switching (DRRS) is a power conservation feature
* which enables swtching between low and high refresh rates,
* dynamically, based on the usage scenario. This feature is applicable
* for internal panels.
*
* Indication that the panel supports DRRS is given by the panel EDID, which
* would list multiple refresh rates for one resolution.
*
* DRRS is of 2 types - static and seamless.
* Static DRRS involves changing refresh rate (RR) by doing a full modeset
* (may appear as a blink on screen) and is used in dock-undock scenario.
* Seamless DRRS involves changing RR without any visual effect to the user
* and can be used during normal system usage. This is done by programming
* certain registers.
*
* Support for static/seamless DRRS may be indicated in the VBT based on
* inputs from the panel spec.
*
* DRRS saves power by switching to low RR based on usage scenarios.
*
* eDP DRRS:-
* The implementation is based on frontbuffer tracking implementation.
* When there is a disturbance on the screen triggered by user activity or a
* periodic system activity, DRRS is disabled (RR is changed to high RR).
* When there is no movement on screen, after a timeout of 1 second, a switch
* to low RR is made.
* For integration with frontbuffer tracking code,
* intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
*
* DRRS can be further extended to support other internal panels and also
* the scenario of video playback wherein RR is set based on the rate
* requested by userspace.
*/
/**
* intel_dp_drrs_init - Init basic DRRS work and mutex.
* @intel_connector: eDP connector
* @fixed_mode: preferred mode of panel
*
* This function is called only once at driver load to initialize basic
* DRRS stuff.
*
* Returns:
* Downclock mode if panel supports it, else return NULL.
* DRRS support is determined by the presence of downclock mode (apart
* from VBT setting).
*/
static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector *intel_connector,
struct drm_display_mode *fixed_mode)
{
struct drm_connector *connector = &intel_connector->base;
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *downclock_mode = NULL;
INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
mutex_init(&dev_priv->drrs.mutex);
if (INTEL_INFO(dev)->gen <= 6) {
DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
return NULL;
}
if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
return NULL;
}
downclock_mode = intel_find_panel_downclock
(dev, fixed_mode, connector);
if (!downclock_mode) {
DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
return NULL;
}
dev_priv->drrs.type = dev_priv->vbt.drrs_type;
dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
return downclock_mode;
}
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *fixed_mode = NULL;
struct drm_display_mode *downclock_mode = NULL;
bool has_dpcd;
struct drm_display_mode *scan;
struct edid *edid;
enum pipe pipe = INVALID_PIPE;
if (!is_edp(intel_dp))
return true;
pps_lock(intel_dp);
intel_edp_panel_vdd_sanitize(intel_dp);
pps_unlock(intel_dp);
/* Cache DPCD and EDID for edp. */
has_dpcd = intel_dp_get_dpcd(intel_dp);
if (has_dpcd) {
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
dev_priv->no_aux_handshake =
intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
} else {
/* if this fails, presume the device is a ghost */
DRM_INFO("failed to retrieve link info, disabling eDP\n");
return false;
}
/* We now know it's not a ghost, init power sequence regs. */
pps_lock(intel_dp);
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
pps_unlock(intel_dp);
mutex_lock(&dev->mode_config.mutex);
edid = drm_get_edid(connector, &intel_dp->aux.ddc);
if (edid) {
if (drm_add_edid_modes(connector, edid)) {
drm_mode_connector_update_edid_property(connector,
edid);
drm_edid_to_eld(connector, edid);
} else {
kfree(edid);
edid = ERR_PTR(-EINVAL);
}
} else {
edid = ERR_PTR(-ENOENT);
}
intel_connector->edid = edid;
/* prefer fixed mode from EDID if available */
list_for_each_entry(scan, &connector->probed_modes, head) {
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
fixed_mode = drm_mode_duplicate(dev, scan);
downclock_mode = intel_dp_drrs_init(
intel_connector, fixed_mode);
break;
}
}
/* fallback to VBT if available for eDP */
if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
fixed_mode = drm_mode_duplicate(dev,
dev_priv->vbt.lfp_lvds_vbt_mode);
if (fixed_mode)
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
}
mutex_unlock(&dev->mode_config.mutex);
if (IS_VALLEYVIEW(dev)) {
/*
* Figure out the current pipe for the initial backlight setup.
* If the current pipe isn't valid, try the PPS pipe, and if that
* fails just assume pipe A.
*/
if (IS_CHERRYVIEW(dev))
pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
else
pipe = PORT_TO_PIPE(intel_dp->DP);
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = intel_dp->pps_pipe;
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = PIPE_A;
DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
pipe_name(pipe));
}
intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
intel_connector->panel.backlight.power = intel_edp_backlight_power;
intel_panel_setup_backlight(connector, pipe);
return true;
}
bool
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
int type;
intel_dp->pps_pipe = INVALID_PIPE;
/* intel_dp vfuncs */
if (INTEL_INFO(dev)->gen >= 9)
intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
else if (IS_VALLEYVIEW(dev))
intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
else if (HAS_PCH_SPLIT(dev))
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
else
intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
if (INTEL_INFO(dev)->gen >= 9)
intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
else
intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
/* Preserve the current hw state. */
intel_dp->DP = I915_READ(intel_dp->output_reg);
intel_dp->attached_connector = intel_connector;
if (intel_dp_is_edp(dev, port))
type = DRM_MODE_CONNECTOR_eDP;
else
type = DRM_MODE_CONNECTOR_DisplayPort;
/*
* For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
* for DP the encoder type can be set by the caller to
* INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
*/
if (type == DRM_MODE_CONNECTOR_eDP)
intel_encoder->type = INTEL_OUTPUT_EDP;
/* eDP only on port B and/or C on vlv/chv */
if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
port != PORT_B && port != PORT_C))
return false;
DRM_DEBUG_KMS("Adding %s connector on port %c\n",
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
port_name(port));
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
edp_panel_vdd_work);
intel_connector_attach_encoder(intel_connector, intel_encoder);
drm_connector_register(connector);
if (HAS_DDI(dev))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
intel_connector->unregister = intel_dp_connector_unregister;
/* Set up the hotplug pin. */
switch (port) {
case PORT_A:
intel_encoder->hpd_pin = HPD_PORT_A;
break;
case PORT_B:
intel_encoder->hpd_pin = HPD_PORT_B;
if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
intel_encoder->hpd_pin = HPD_PORT_A;
break;
case PORT_C:
intel_encoder->hpd_pin = HPD_PORT_C;
break;
case PORT_D:
intel_encoder->hpd_pin = HPD_PORT_D;
break;
case PORT_E:
intel_encoder->hpd_pin = HPD_PORT_E;
break;
default:
BUG();
}
if (is_edp(intel_dp)) {
pps_lock(intel_dp);
intel_dp_init_panel_power_timestamps(intel_dp);
if (IS_VALLEYVIEW(dev))
vlv_initial_power_sequencer_setup(intel_dp);
else
intel_dp_init_panel_power_sequencer(dev, intel_dp);
pps_unlock(intel_dp);
}
intel_dp_aux_init(intel_dp, intel_connector);
/* init MST on ports that can support it */
if (HAS_DP_MST(dev) &&
(port == PORT_B || port == PORT_C || port == PORT_D))
intel_dp_mst_encoder_init(intel_dig_port,
intel_connector->base.base.id);
if (!intel_edp_init_connector(intel_dp, intel_connector)) {
drm_dp_aux_unregister(&intel_dp->aux);
if (is_edp(intel_dp)) {
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
pps_lock(intel_dp);
edp_panel_vdd_off_sync(intel_dp);
pps_unlock(intel_dp);
}
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
return false;
}
intel_dp_add_properties(intel_dp, connector);
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev) && !IS_GM45(dev)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
i915_debugfs_connector_add(connector);
return true;
}
bool intel_dp_init(struct drm_device *dev,
int output_reg,
enum port port)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
struct intel_connector *intel_connector;
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return false;
intel_connector = intel_connector_alloc();
if (!intel_connector)
goto err_connector_alloc;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
intel_encoder->compute_config = intel_dp_compute_config;
intel_encoder->disable = intel_disable_dp;
intel_encoder->get_hw_state = intel_dp_get_hw_state;
intel_encoder->get_config = intel_dp_get_config;
intel_encoder->suspend = intel_dp_encoder_suspend;
if (IS_CHERRYVIEW(dev)) {
intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
intel_encoder->pre_enable = chv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->post_disable = chv_post_disable_dp;
intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
} else if (IS_VALLEYVIEW(dev)) {
intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
intel_encoder->pre_enable = vlv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->post_disable = vlv_post_disable_dp;
} else {
intel_encoder->pre_enable = g4x_pre_enable_dp;
intel_encoder->enable = g4x_enable_dp;
if (INTEL_INFO(dev)->gen >= 5)
intel_encoder->post_disable = ilk_post_disable_dp;
}
intel_dig_port->port = port;
intel_dig_port->dp.output_reg = output_reg;
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
if (IS_CHERRYVIEW(dev)) {
if (port == PORT_D)
intel_encoder->crtc_mask = 1 << 2;
else
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
} else {
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
}
intel_encoder->cloneable = 0;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
dev_priv->hotplug.irq_port[port] = intel_dig_port;
if (!intel_dp_init_connector(intel_dig_port, intel_connector))
goto err_init_connector;
return true;
err_init_connector:
drm_encoder_cleanup(encoder);
kfree(intel_connector);
err_connector_alloc:
kfree(intel_dig_port);
return false;
}
void intel_dp_mst_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
/* disable MST */
for (i = 0; i < I915_MAX_PORTS; i++) {
struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
if (!intel_dig_port)
continue;
if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
if (!intel_dig_port->dp.can_mst)
continue;
if (intel_dig_port->dp.is_mst)
drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
}
}
}
void intel_dp_mst_resume(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < I915_MAX_PORTS; i++) {
struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
if (!intel_dig_port)
continue;
if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
int ret;
if (!intel_dig_port->dp.can_mst)
continue;
ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
if (ret != 0) {
intel_dp_check_mst_status(&intel_dig_port->dp);
}
}
}
}