kolibrios-fun/contrib/media/updf/include/bits/valarray_array.h
right-hearted 4f7ee97ec9 uPDF with buttons
git-svn-id: svn://kolibrios.org@4680 a494cfbc-eb01-0410-851d-a64ba20cac60
2014-03-22 21:00:40 +00:00

578 lines
18 KiB
C++

// The template and inlines for the -*- C++ -*- internal _Array helper class.
// Copyright (C) 1997-2000 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef _CPP_BITS_ARRAY_H
#define _CPP_BITS_ARRAY_H 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <bits/cpp_type_traits.h>
#include <bits/std_cstdlib.h>
#include <bits/std_cstring.h>
#include <new>
namespace std
{
//
// Helper functions on raw pointers
//
// We get memory by the old fashion way
inline void*
__valarray_get_memory(size_t __n)
{ return operator new(__n); }
template<typename _Tp>
inline _Tp*__restrict__
__valarray_get_storage(size_t __n)
{
return static_cast<_Tp*__restrict__>
(__valarray_get_memory(__n * sizeof(_Tp)));
}
// Return memory to the system
inline void
__valarray_release_memory(void* __p)
{ operator delete(__p); }
// Turn a raw-memory into an array of _Tp filled with _Tp()
// This is required in 'valarray<T> v(n);'
template<typename _Tp, bool>
struct _Array_default_ctor
{
// Please note that this isn't exception safe. But
// valarrays aren't required to be exception safe.
inline static void
_S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
{ while (__b != __e) new(__b++) _Tp(); }
};
template<typename _Tp>
struct _Array_default_ctor<_Tp, true>
{
// For fundamental types, it suffices to say 'memset()'
inline static void
_S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
{ memset(__b, 0, (__e - __b)*sizeof(_Tp)); }
};
template<typename _Tp>
inline void
__valarray_default_construct(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
{
_Array_default_ctor<_Tp, __is_fundamental<_Tp>::_M_type>::
_S_do_it(__b, __e);
}
// Turn a raw-memory into an array of _Tp filled with __t
// This is the required in valarray<T> v(n, t). Also
// used in valarray<>::resize().
template<typename _Tp, bool>
struct _Array_init_ctor
{
// Please note that this isn't exception safe. But
// valarrays aren't required to be exception safe.
inline static void
_S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e, const _Tp __t)
{ while (__b != __e) new(__b++) _Tp(__t); }
};
template<typename _Tp>
struct _Array_init_ctor<_Tp, true>
{
inline static void
_S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e, const _Tp __t)
{ while (__b != __e) *__b++ = __t; }
};
template<typename _Tp>
inline void
__valarray_fill_construct(_Tp* __restrict__ __b, _Tp* __restrict__ __e,
const _Tp __t)
{
_Array_init_ctor<_Tp, __is_fundamental<_Tp>::_M_type>::
_S_do_it(__b, __e, __t);
}
//
// copy-construct raw array [__o, *) from plain array [__b, __e)
// We can't just say 'memcpy()'
//
template<typename _Tp, bool>
struct _Array_copy_ctor
{
// Please note that this isn't exception safe. But
// valarrays aren't required to be exception safe.
inline static void
_S_do_it(const _Tp* __restrict__ __b, const _Tp* __restrict__ __e,
_Tp* __restrict__ __o)
{ while (__b != __e) new(__o++) _Tp(*__b++); }
};
template<typename _Tp>
struct _Array_copy_ctor<_Tp, true>
{
inline static void
_S_do_it(const _Tp* __restrict__ __b, const _Tp* __restrict__ __e,
_Tp* __restrict__ __o)
{ memcpy(__o, __b, (__e - __b)*sizeof(_Tp)); }
};
template<typename _Tp>
inline void
__valarray_copy_construct(const _Tp* __restrict__ __b,
const _Tp* __restrict__ __e,
_Tp* __restrict__ __o)
{
_Array_copy_ctor<_Tp, __is_fundamental<_Tp>::_M_type>::
_S_do_it(__b, __e, __o);
}
// copy-construct raw array [__o, *) from strided array __a[<__n : __s>]
template<typename _Tp>
inline void
__valarray_copy_construct (const _Tp* __restrict__ __a, size_t __n,
size_t __s, _Tp* __restrict__ __o)
{
if (__is_fundamental<_Tp>::_M_type)
while (__n--) { *__o++ = *__a; __a += __s; }
else
while (__n--) { new(__o++) _Tp(*__a); __a += __s; }
}
// copy-construct raw array [__o, *) from indexed array __a[__i[<__n>]]
template<typename _Tp>
inline void
__valarray_copy_construct (const _Tp* __restrict__ __a,
const size_t* __restrict__ __i,
_Tp* __restrict__ __o, size_t __n)
{
if (__is_fundamental<_Tp>::_M_type)
while (__n--) *__o++ = __a[*__i++];
else
while (__n--) new (__o++) _Tp(__a[*__i++]);
}
// Do the necessary cleanup when we're done with arrays.
template<typename _Tp>
inline void
__valarray_destroy_elements(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
{
if (!__is_fundamental<_Tp>::_M_type)
while (__b != __e) { __b->~_Tp(); ++__b; }
}
// fill plain array __a[<__n>] with __t
template<typename _Tp>
void
__valarray_fill (_Tp* __restrict__ __a, size_t __n, const _Tp& __t)
{ while (__n--) *__a++ = __t; }
// fill strided array __a[<__n-1 : __s>] with __t
template<typename _Tp>
inline void
__valarray_fill (_Tp* __restrict__ __a, size_t __n,
size_t __s, const _Tp& __t)
{ for (size_t __i=0; __i<__n; ++__i, __a+=__s) *__a = __t; }
// fill indir ect array __a[__i[<__n>]] with __i
template<typename _Tp>
inline void
__valarray_fill(_Tp* __restrict__ __a, const size_t* __restrict__ __i,
size_t __n, const _Tp& __t)
{ for (size_t __j=0; __j<__n; ++__j, ++__i) __a[*__i] = __t; }
// copy plain array __a[<__n>] in __b[<__n>]
// For non-fundamental types, it is wrong to say 'memcpy()'
template<typename _Tp, bool>
struct _Array_copier
{
inline static void
_S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b)
{ while (__n--) *__b++ = *__a++; }
};
template<typename _Tp>
struct _Array_copier<_Tp, true>
{
inline static void
_S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b)
{ memcpy (__b, __a, __n * sizeof (_Tp)); }
};
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, size_t __n,
_Tp* __restrict__ __b)
{
_Array_copier<_Tp, __is_fundamental<_Tp>::_M_type>::
_S_do_it(__a, __n, __b);
}
// copy strided array __a[<__n : __s>] in plain __b[<__n>]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, size_t __n, size_t __s,
_Tp* __restrict__ __b)
{ for (size_t __i=0; __i<__n; ++__i, ++__b, __a += __s) *__b = *__a; }
// copy plain __a[<__n>] in strided __b[<__n : __s>]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, _Tp* __restrict__ __b,
size_t __n, size_t __s)
{ for (size_t __i=0; __i<__n; ++__i, ++__a, __b+=__s) *__b = *__a; }
// copy indexed __a[__i[<__n>]] in plain __b[<__n>]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a,
const size_t* __restrict__ __i,
_Tp* __restrict__ __b, size_t __n)
{ for (size_t __j=0; __j<__n; ++__j, ++__b, ++__i) *__b = __a[*__i]; }
// copy plain __a[<__n>] in indexed __b[__i[<__n>]]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, size_t __n,
_Tp* __restrict__ __b, const size_t* __restrict__ __i)
{ for (size_t __j=0; __j<__n; ++__j, ++__a, ++__i) __b[*__i] = *__a; }
//
// Compute the sum of elements in range [__f, __l)
// This is a naive algorithm. It suffers from cancelling.
// In the future try to specialize
// for _Tp = float, double, long double using a more accurate
// algorithm.
//
template<typename _Tp>
inline _Tp
__valarray_sum(const _Tp* __restrict__ __f, const _Tp* __restrict__ __l)
{
_Tp __r = _Tp();
while (__f != __l) __r += *__f++;
return __r;
}
// Compute the product of all elements in range [__f, __l)
template<typename _Tp>
inline _Tp
__valarray_product(const _Tp* __restrict__ __f,
const _Tp* __restrict__ __l)
{
_Tp __r = _Tp(1);
while (__f != __l) __r = __r * *__f++;
return __r;
}
// Compute the min/max of an array-expression
template<typename _Ta>
inline typename _Ta::value_type
__valarray_min(const _Ta& __a)
{
size_t __s = __a.size();
typedef typename _Ta::value_type _Value_type;
_Value_type __r = __s == 0 ? _Value_type() : __a[0];
for (size_t __i = 1; __i < __s; ++__i)
{
_Value_type __t = __a[__i];
if (__t < __r)
__r = __t;
}
return __r;
}
template<typename _Ta>
inline typename _Ta::value_type
__valarray_max(const _Ta& __a)
{
size_t __s = __a.size();
typedef typename _Ta::value_type _Value_type;
_Value_type __r = __s == 0 ? _Value_type() : __a[0];
for (size_t __i = 1; __i < __s; ++__i)
{
_Value_type __t = __a[__i];
if (__t > __r)
__r = __t;
}
return __r;
}
//
// Helper class _Array, first layer of valarray abstraction.
// All operations on valarray should be forwarded to this class
// whenever possible. -- gdr
//
template<typename _Tp>
struct _Array
{
explicit _Array (size_t);
explicit _Array (_Tp* const __restrict__);
explicit _Array (const valarray<_Tp>&);
_Array (const _Tp* __restrict__, size_t);
_Tp* begin () const;
_Tp* const __restrict__ _M_data;
};
template<typename _Tp>
inline void
__valarray_fill (_Array<_Tp> __a, size_t __n, const _Tp& __t)
{ __valarray_fill (__a._M_data, __n, __t); }
template<typename _Tp>
inline void
__valarray_fill (_Array<_Tp> __a, size_t __n, size_t __s, const _Tp& __t)
{ __valarray_fill (__a._M_data, __n, __s, __t); }
template<typename _Tp>
inline void
__valarray_fill (_Array<_Tp> __a, _Array<size_t> __i,
size_t __n, const _Tp& __t)
{ __valarray_fill (__a._M_data, __i._M_data, __n, __t); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b)
{ __valarray_copy (__a._M_data, __n, __b._M_data); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, size_t __n, size_t __s, _Array<_Tp> __b)
{ __valarray_copy(__a._M_data, __n, __s, __b._M_data); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, _Array<_Tp> __b, size_t __n, size_t __s)
{ __valarray_copy (__a._M_data, __b._M_data, __n, __s); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, _Array<size_t> __i,
_Array<_Tp> __b, size_t __n)
{ __valarray_copy (__a._M_data, __i._M_data, __b._M_data, __n); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b,
_Array<size_t> __i)
{ __valarray_copy (__a._M_data, __n, __b._M_data, __i._M_data); }
template<typename _Tp>
inline
_Array<_Tp>::_Array (size_t __n)
: _M_data(__valarray_get_storage<_Tp>(__n))
{ __valarray_default_construct(_M_data, _M_data + __n); }
template<typename _Tp>
inline
_Array<_Tp>::_Array (_Tp* const __restrict__ __p) : _M_data (__p) {}
template<typename _Tp>
inline _Array<_Tp>::_Array (const valarray<_Tp>& __v)
: _M_data (__v._M_data) {}
template<typename _Tp>
inline
_Array<_Tp>::_Array (const _Tp* __restrict__ __b, size_t __s)
: _M_data(__valarray_get_storage<_Tp>(__s))
{ __valarray_copy_construct(__b, __s, _M_data); }
template<typename _Tp>
inline _Tp*
_Array<_Tp>::begin () const
{ return _M_data; }
#define _DEFINE_ARRAY_FUNCTION(_Op, _Name) \
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, const _Tp& __t) \
{ \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p) \
*__p _Op##= __t; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b) \
{ \
_Tp* __p = __a._M_data; \
for (_Tp* __q=__b._M_data; __q<__b._M_data+__n; ++__p, ++__q) \
*__p _Op##= *__q; \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, \
const _Expr<_Dom,_Tp>& __e, size_t __n) \
{ \
_Tp* __p (__a._M_data); \
for (size_t __i=0; __i<__n; ++__i, ++__p) *__p _Op##= __e[__i]; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, size_t __s, \
_Array<_Tp> __b) \
{ \
_Tp* __q (__b._M_data); \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__s*__n; __p+=__s, ++__q) \
*__p _Op##= *__q; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<_Tp> __b, \
size_t __n, size_t __s) \
{ \
_Tp* __q (__b._M_data); \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p, __q+=__s) \
*__p _Op##= *__q; \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __s, \
const _Expr<_Dom,_Tp>& __e, size_t __n) \
{ \
_Tp* __p (__a._M_data); \
for (size_t __i=0; __i<__n; ++__i, __p+=__s) *__p _Op##= __e[__i]; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<size_t> __i, \
_Array<_Tp> __b, size_t __n) \
{ \
_Tp* __q (__b._M_data); \
for (size_t* __j=__i._M_data; __j<__i._M_data+__n; ++__j, ++__q) \
__a._M_data[*__j] _Op##= *__q; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, \
_Array<_Tp> __b, _Array<size_t> __i) \
{ \
_Tp* __p (__a._M_data); \
for (size_t* __j=__i._M_data; __j<__i._M_data+__n; ++__j, ++__p) \
*__p _Op##= __b._M_data[*__j]; \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<size_t> __i, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
size_t* __j (__i._M_data); \
for (size_t __k=0; __k<__n; ++__k, ++__j) \
__a._M_data[*__j] _Op##= __e[__k]; \
} \
\
template<typename _Tp> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<bool> __m, \
_Array<_Tp> __b, size_t __n) \
{ \
bool* ok (__m._M_data); \
_Tp* __p (__a._M_data); \
for (_Tp* __q=__b._M_data; __q<__b._M_data+__n; ++__q, ++ok, ++__p) { \
while (! *ok) { \
++ok; \
++__p; \
} \
*__p _Op##= *__q; \
} \
} \
\
template<typename _Tp> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, \
_Array<_Tp> __b, _Array<bool> __m) \
{ \
bool* ok (__m._M_data); \
_Tp* __q (__b._M_data); \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p, ++ok, ++__q) { \
while (! *ok) { \
++ok; \
++__q; \
} \
*__p _Op##= *__q; \
} \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<bool> __m, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
bool* ok(__m._M_data); \
_Tp* __p (__a._M_data); \
for (size_t __i=0; __i<__n; ++__i, ++ok, ++__p) { \
while (! *ok) { \
++ok; \
++__p; \
} \
*__p _Op##= __e[__i]; \
} \
}
_DEFINE_ARRAY_FUNCTION(+, plus)
_DEFINE_ARRAY_FUNCTION(-, minus)
_DEFINE_ARRAY_FUNCTION(*, multiplies)
_DEFINE_ARRAY_FUNCTION(/, divides)
_DEFINE_ARRAY_FUNCTION(%, modulus)
_DEFINE_ARRAY_FUNCTION(^, xor)
_DEFINE_ARRAY_FUNCTION(|, or)
_DEFINE_ARRAY_FUNCTION(&, and)
_DEFINE_ARRAY_FUNCTION(<<, shift_left)
_DEFINE_ARRAY_FUNCTION(>>, shift_right)
#undef _DEFINE_VALARRAY_FUNCTION
} // std::
#ifdef _GLIBCPP_NO_TEMPLATE_EXPORT
# define export
# include <bits/valarray_array.tcc>
#endif
#endif /* _CPP_BITS_ARRAY_H */
// Local Variables:
// mode:c++
// End: