kolibrios-fun/drivers/video/Intel-2D/gen3_render.c
Sergey Semyonov (Serge) be775e6230 Intel-2D: genXX_blit_tex for all
git-svn-id: svn://kolibrios.org@3299 a494cfbc-eb01-0410-851d-a64ba20cac60
2013-03-01 06:48:32 +00:00

1968 lines
46 KiB
C

/*
* Copyright © 2010-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sna.h"
#include "sna_render.h"
#include "sna_render_inline.h"
#include "sna_reg.h"
//#include "sna_video.h"
#include "gen3_render.h"
#define NO_COMPOSITE 0
#define NO_COMPOSITE_SPANS 0
#define NO_COPY 0
#define NO_COPY_BOXES 0
#define NO_FILL 0
#define NO_FILL_ONE 0
#define NO_FILL_BOXES 0
#define PREFER_BLT_FILL 1
enum {
SHADER_NONE = 0,
SHADER_ZERO,
SHADER_BLACK,
SHADER_WHITE,
SHADER_CONSTANT,
SHADER_LINEAR,
SHADER_RADIAL,
SHADER_TEXTURE,
SHADER_OPACITY,
};
#define MAX_3D_SIZE 2048
#define MAX_3D_PITCH 8192
#define OUT_BATCH(v) batch_emit(sna, v)
#define OUT_BATCH_F(v) batch_emit_float(sna, v)
#define OUT_VERTEX(v) vertex_emit(sna, v)
enum gen3_radial_mode {
RADIAL_ONE,
RADIAL_TWO
};
static const struct blendinfo {
bool dst_alpha;
bool src_alpha;
uint32_t src_blend;
uint32_t dst_blend;
} gen3_blend_op[] = {
/* Clear */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ZERO},
/* Src */ {0, 0, BLENDFACT_ONE, BLENDFACT_ZERO},
/* Dst */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ONE},
/* Over */ {0, 1, BLENDFACT_ONE, BLENDFACT_INV_SRC_ALPHA},
/* OverReverse */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ONE},
/* In */ {1, 0, BLENDFACT_DST_ALPHA, BLENDFACT_ZERO},
/* InReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_SRC_ALPHA},
/* Out */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ZERO},
/* OutReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_INV_SRC_ALPHA},
/* Atop */ {1, 1, BLENDFACT_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA},
/* AtopReverse */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_SRC_ALPHA},
/* Xor */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA},
/* Add */ {0, 0, BLENDFACT_ONE, BLENDFACT_ONE},
};
#define S6_COLOR_WRITE_ONLY \
(S6_COLOR_WRITE_ENABLE | \
BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT | \
BLENDFACT_ONE << S6_CBUF_SRC_BLEND_FACT_SHIFT | \
BLENDFACT_ZERO << S6_CBUF_DST_BLEND_FACT_SHIFT)
static const struct formatinfo {
unsigned int fmt, xfmt;
uint32_t card_fmt;
bool rb_reversed;
} gen3_tex_formats[] = {
{PICT_a8, 0, MAPSURF_8BIT | MT_8BIT_A8, false},
{PICT_a8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_ARGB8888, false},
{PICT_x8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_XRGB8888, false},
{PICT_a8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_ABGR8888, false},
{PICT_x8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_XBGR8888, false}
};
#define xFixedToDouble(f) pixman_fixed_to_double(f)
static inline bool too_large(int width, int height)
{
return width > MAX_3D_SIZE || height > MAX_3D_SIZE;
}
static inline uint32_t gen3_buf_tiling(uint32_t tiling)
{
uint32_t v = 0;
switch (tiling) {
case I915_TILING_Y: v |= BUF_3D_TILE_WALK_Y;
case I915_TILING_X: v |= BUF_3D_TILED_SURFACE;
case I915_TILING_NONE: break;
}
return v;
}
static uint32_t gen3_get_blend_cntl(int op,
bool has_component_alpha,
uint32_t dst_format)
{
uint32_t sblend;
uint32_t dblend;
sblend = BLENDFACT_ONE;
dblend = BLENDFACT_INV_SRC_ALPHA;
#if 0
if (op <= PictOpSrc) /* for clear and src disable blending */
return S6_COLOR_WRITE_ONLY;
/* If there's no dst alpha channel, adjust the blend op so that we'll
* treat it as always 1.
*/
if (gen3_blend_op[op].dst_alpha) {
if (PICT_FORMAT_A(dst_format) == 0) {
if (sblend == BLENDFACT_DST_ALPHA)
sblend = BLENDFACT_ONE;
else if (sblend == BLENDFACT_INV_DST_ALPHA)
sblend = BLENDFACT_ZERO;
}
/* gen3 engine reads 8bit color buffer into green channel
* in cases like color buffer blending etc., and also writes
* back green channel. So with dst_alpha blend we should use
* color factor. See spec on "8-bit rendering".
*/
if (dst_format == PICT_a8) {
if (sblend == BLENDFACT_DST_ALPHA)
sblend = BLENDFACT_DST_COLR;
else if (sblend == BLENDFACT_INV_DST_ALPHA)
sblend = BLENDFACT_INV_DST_COLR;
}
}
/* If the source alpha is being used, then we should only be in a case
* where the source blend factor is 0, and the source blend value is the
* mask channels multiplied by the source picture's alpha.
*/
if (has_component_alpha && gen3_blend_op[op].src_alpha) {
if (dblend == BLENDFACT_SRC_ALPHA)
dblend = BLENDFACT_SRC_COLR;
else if (dblend == BLENDFACT_INV_SRC_ALPHA)
dblend = BLENDFACT_INV_SRC_COLR;
}
#endif
return (S6_CBUF_BLEND_ENABLE | S6_COLOR_WRITE_ENABLE |
BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT |
sblend << S6_CBUF_SRC_BLEND_FACT_SHIFT |
dblend << S6_CBUF_DST_BLEND_FACT_SHIFT);
}
static bool gen3_dst_rb_reversed(uint32_t format)
{
switch (format) {
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
case PICT_a8:
return false;
default:
return true;
}
}
#define DSTORG_HORT_BIAS(x) ((x)<<20)
#define DSTORG_VERT_BIAS(x) ((x)<<16)
static uint32_t gen3_get_dst_format(uint32_t format)
{
#define BIAS (DSTORG_HORT_BIAS(0x8) | DSTORG_VERT_BIAS(0x8))
switch (format) {
default:
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
case PICT_a8b8g8r8:
case PICT_x8b8g8r8:
return BIAS | COLR_BUF_ARGB8888;
case PICT_a8:
return BIAS | COLR_BUF_8BIT;
}
#undef BIAS
}
fastcall static void
gen3_emit_composite_primitive_identity_source_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float dst_x, dst_y;
float src_x, src_y;
float msk_x, msk_y;
float w, h;
float *v;
dst_x = r->dst.x + op->dst.x;
dst_y = r->dst.y + op->dst.y;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 18;
v[0] = dst_x + w;
v[1] = dst_y + h;
v[2] = (src_x + w) * op->src.scale[0];
v[3] = (src_y + h) * op->src.scale[1];
v[4] = (msk_x + w) * op->mask.scale[0];
v[5] = (msk_y + h) * op->mask.scale[1];
v[6] = dst_x;
v[7] = v[1];
v[8] = src_x * op->src.scale[0];
v[9] = v[3];
v[10] = msk_x * op->mask.scale[0];
v[11] =v[5];
v[12] = v[6];
v[13] = dst_y;
v[14] = v[8];
v[15] = src_y * op->src.scale[1];
v[16] = v[10];
v[17] = msk_y * op->mask.scale[1];
}
static inline void
gen3_2d_perspective(struct sna *sna, int in, int out)
{
gen3_fs_rcp(out, 0, gen3_fs_operand(in, W, W, W, W));
gen3_fs_mul(out,
gen3_fs_operand(in, X, Y, ZERO, ONE),
gen3_fs_operand_reg(out));
}
static inline void
gen3_linear_coord(struct sna *sna,
const struct sna_composite_channel *channel,
int in, int out)
{
int c = channel->u.gen3.constants;
if (!channel->is_affine) {
gen3_2d_perspective(sna, in, FS_U0);
in = FS_U0;
}
gen3_fs_mov(out, gen3_fs_operand_zero());
gen3_fs_dp3(out, MASK_X,
gen3_fs_operand(in, X, Y, ONE, ZERO),
gen3_fs_operand_reg(c));
}
static void
gen3_radial_coord(struct sna *sna,
const struct sna_composite_channel *channel,
int in, int out)
{
int c = channel->u.gen3.constants;
if (!channel->is_affine) {
gen3_2d_perspective(sna, in, FS_U0);
in = FS_U0;
}
switch (channel->u.gen3.mode) {
case RADIAL_ONE:
/*
pdx = (x - c1x) / dr, pdy = (y - c1y) / dr;
r? = pdx*pdx + pdy*pdy
t = r?/sqrt(r?) - r1/dr;
*/
gen3_fs_mad(FS_U0, MASK_X | MASK_Y,
gen3_fs_operand(in, X, Y, ZERO, ZERO),
gen3_fs_operand(c, Z, Z, ZERO, ZERO),
gen3_fs_operand(c, NEG_X, NEG_Y, ZERO, ZERO));
gen3_fs_dp2add(FS_U0, MASK_X,
gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO),
gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO),
gen3_fs_operand_zero());
gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U0, X, X, X, X));
gen3_fs_mad(out, 0,
gen3_fs_operand(FS_U0, X, ZERO, ZERO, ZERO),
gen3_fs_operand(out, X, ZERO, ZERO, ZERO),
gen3_fs_operand(c, W, ZERO, ZERO, ZERO));
break;
case RADIAL_TWO:
/*
pdx = x - c1x, pdy = y - c1y;
A = dx? + dy? - dr?
B = -2*(pdx*dx + pdy*dy + r1*dr);
C = pdx? + pdy? - r1?;
det = B*B - 4*A*C;
t = (-B + sqrt (det)) / (2 * A)
*/
/* u0.x = pdx, u0.y = pdy, u[0].z = r1; */
gen3_fs_add(FS_U0,
gen3_fs_operand(in, X, Y, ZERO, ZERO),
gen3_fs_operand(c, X, Y, Z, ZERO));
/* u0.x = pdx, u0.y = pdy, u[0].z = r1, u[0].w = B; */
gen3_fs_dp3(FS_U0, MASK_W,
gen3_fs_operand(FS_U0, X, Y, ONE, ZERO),
gen3_fs_operand(c+1, X, Y, Z, ZERO));
/* u1.x = pdx? + pdy? - r1?; [C] */
gen3_fs_dp3(FS_U1, MASK_X,
gen3_fs_operand(FS_U0, X, Y, Z, ZERO),
gen3_fs_operand(FS_U0, X, Y, NEG_Z, ZERO));
/* u1.x = C, u1.y = B, u1.z=-4*A; */
gen3_fs_mov_masked(FS_U1, MASK_Y, gen3_fs_operand(FS_U0, W, W, W, W));
gen3_fs_mov_masked(FS_U1, MASK_Z, gen3_fs_operand(c, W, W, W, W));
/* u1.x = B? - 4*A*C */
gen3_fs_dp2add(FS_U1, MASK_X,
gen3_fs_operand(FS_U1, X, Y, ZERO, ZERO),
gen3_fs_operand(FS_U1, Z, Y, ZERO, ZERO),
gen3_fs_operand_zero());
/* out.x = -B + sqrt (B? - 4*A*C), */
gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U1, X, X, X, X));
gen3_fs_mad(out, MASK_X,
gen3_fs_operand(out, X, ZERO, ZERO, ZERO),
gen3_fs_operand(FS_U1, X, ZERO, ZERO, ZERO),
gen3_fs_operand(FS_U0, NEG_W, ZERO, ZERO, ZERO));
/* out.x = (-B + sqrt (B? - 4*A*C)) / (2 * A), */
gen3_fs_mul(out,
gen3_fs_operand(out, X, ZERO, ZERO, ZERO),
gen3_fs_operand(c+1, W, ZERO, ZERO, ZERO));
break;
}
}
static void
gen3_composite_emit_shader(struct sna *sna,
const struct sna_composite_op *op,
uint8_t blend)
{
bool dst_is_alpha = PIXMAN_FORMAT_RGB(op->dst.format) == 0;
const struct sna_composite_channel *src, *mask;
struct gen3_render_state *state = &sna->render_state.gen3;
uint32_t shader_offset, id;
int src_reg, mask_reg;
int t, length;
src = &op->src;
mask = &op->mask;
if (mask->u.gen3.type == SHADER_NONE)
mask = NULL;
id = (src->u.gen3.type |
src->is_affine << 4 |
src->alpha_fixup << 5 |
src->rb_reversed << 6);
if (mask) {
id |= (mask->u.gen3.type << 8 |
mask->is_affine << 12 |
gen3_blend_op[blend].src_alpha << 13 |
op->has_component_alpha << 14 |
mask->alpha_fixup << 15 |
mask->rb_reversed << 16);
}
id |= dst_is_alpha << 24;
id |= op->rb_reversed << 25;
if (id == state->last_shader)
return;
state->last_shader = id;
shader_offset = sna->kgem.nbatch++;
t = 0;
switch (src->u.gen3.type) {
case SHADER_NONE:
case SHADER_OPACITY:
assert(0);
case SHADER_ZERO:
case SHADER_BLACK:
case SHADER_WHITE:
break;
case SHADER_CONSTANT:
gen3_fs_dcl(FS_T8);
src_reg = FS_T8;
break;
case SHADER_TEXTURE:
case SHADER_RADIAL:
case SHADER_LINEAR:
gen3_fs_dcl(FS_S0);
gen3_fs_dcl(FS_T0);
t++;
break;
}
if (mask == NULL) {
switch (src->u.gen3.type) {
case SHADER_ZERO:
gen3_fs_mov(FS_OC, gen3_fs_operand_zero());
goto done;
case SHADER_BLACK:
if (dst_is_alpha)
gen3_fs_mov(FS_OC, gen3_fs_operand_one());
else
gen3_fs_mov(FS_OC, gen3_fs_operand(FS_R0, ZERO, ZERO, ZERO, ONE));
goto done;
case SHADER_WHITE:
gen3_fs_mov(FS_OC, gen3_fs_operand_one());
goto done;
}
if (src->alpha_fixup && dst_is_alpha) {
gen3_fs_mov(FS_OC, gen3_fs_operand_one());
goto done;
}
/* No mask, so load directly to output color */
if (src->u.gen3.type != SHADER_CONSTANT) {
if (dst_is_alpha || src->rb_reversed ^ op->rb_reversed)
src_reg = FS_R0;
else
src_reg = FS_OC;
}
switch (src->u.gen3.type) {
case SHADER_LINEAR:
gen3_linear_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(src_reg, FS_S0, FS_R0);
break;
case SHADER_RADIAL:
gen3_radial_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(src_reg, FS_S0, FS_R0);
break;
case SHADER_TEXTURE:
if (src->is_affine)
gen3_fs_texld(src_reg, FS_S0, FS_T0);
else
gen3_fs_texldp(src_reg, FS_S0, FS_T0);
break;
case SHADER_NONE:
case SHADER_WHITE:
case SHADER_BLACK:
case SHADER_ZERO:
assert(0);
case SHADER_CONSTANT:
break;
}
if (src_reg != FS_OC) {
if (src->alpha_fixup)
gen3_fs_mov(FS_OC,
src->rb_reversed ^ op->rb_reversed ?
gen3_fs_operand(src_reg, Z, Y, X, ONE) :
gen3_fs_operand(src_reg, X, Y, Z, ONE));
else if (dst_is_alpha)
gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, W, W, W, W));
else if (src->rb_reversed ^ op->rb_reversed)
gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, Z, Y, X, W));
else
gen3_fs_mov(FS_OC, gen3_fs_operand_reg(src_reg));
} else if (src->alpha_fixup)
gen3_fs_mov_masked(FS_OC, MASK_W, gen3_fs_operand_one());
} else {
int out_reg = FS_OC;
if (op->rb_reversed)
out_reg = FS_U0;
switch (mask->u.gen3.type) {
case SHADER_CONSTANT:
gen3_fs_dcl(FS_T9);
mask_reg = FS_T9;
break;
case SHADER_TEXTURE:
case SHADER_LINEAR:
case SHADER_RADIAL:
gen3_fs_dcl(FS_S0 + t);
/* fall through */
case SHADER_OPACITY:
gen3_fs_dcl(FS_T0 + t);
break;
case SHADER_ZERO:
case SHADER_BLACK:
assert(0);
case SHADER_NONE:
case SHADER_WHITE:
break;
}
t = 0;
switch (src->u.gen3.type) {
case SHADER_LINEAR:
gen3_linear_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(FS_R0, FS_S0, FS_R0);
src_reg = FS_R0;
t++;
break;
case SHADER_RADIAL:
gen3_radial_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(FS_R0, FS_S0, FS_R0);
src_reg = FS_R0;
t++;
break;
case SHADER_TEXTURE:
if (src->is_affine)
gen3_fs_texld(FS_R0, FS_S0, FS_T0);
else
gen3_fs_texldp(FS_R0, FS_S0, FS_T0);
src_reg = FS_R0;
t++;
break;
case SHADER_CONSTANT:
case SHADER_NONE:
case SHADER_ZERO:
case SHADER_BLACK:
case SHADER_WHITE:
break;
}
if (src->alpha_fixup)
gen3_fs_mov_masked(src_reg, MASK_W, gen3_fs_operand_one());
if (src->rb_reversed)
gen3_fs_mov(src_reg, gen3_fs_operand(src_reg, Z, Y, X, W));
switch (mask->u.gen3.type) {
case SHADER_LINEAR:
gen3_linear_coord(sna, mask, FS_T0 + t, FS_R1);
gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1);
mask_reg = FS_R1;
break;
case SHADER_RADIAL:
gen3_radial_coord(sna, mask, FS_T0 + t, FS_R1);
gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1);
mask_reg = FS_R1;
break;
case SHADER_TEXTURE:
if (mask->is_affine)
gen3_fs_texld(FS_R1, FS_S0 + t, FS_T0 + t);
else
gen3_fs_texldp(FS_R1, FS_S0 + t, FS_T0 + t);
mask_reg = FS_R1;
break;
case SHADER_OPACITY:
switch (src->u.gen3.type) {
case SHADER_BLACK:
case SHADER_WHITE:
if (dst_is_alpha || src->u.gen3.type == SHADER_WHITE) {
gen3_fs_mov(out_reg,
gen3_fs_operand(FS_T0 + t, X, X, X, X));
} else {
gen3_fs_mov(out_reg,
gen3_fs_operand(FS_T0 + t, ZERO, ZERO, ZERO, X));
}
break;
default:
if (dst_is_alpha) {
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, W, W, W, W),
gen3_fs_operand(FS_T0 + t, X, X, X, X));
} else {
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, X, Y, Z, W),
gen3_fs_operand(FS_T0 + t, X, X, X, X));
}
}
goto mask_done;
case SHADER_CONSTANT:
case SHADER_ZERO:
case SHADER_BLACK:
case SHADER_WHITE:
case SHADER_NONE:
break;
}
if (mask->alpha_fixup)
gen3_fs_mov_masked(mask_reg, MASK_W, gen3_fs_operand_one());
if (mask->rb_reversed)
gen3_fs_mov(mask_reg, gen3_fs_operand(mask_reg, Z, Y, X, W));
if (dst_is_alpha) {
switch (src->u.gen3.type) {
case SHADER_BLACK:
case SHADER_WHITE:
gen3_fs_mov(out_reg,
gen3_fs_operand(mask_reg, W, W, W, W));
break;
default:
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, W, W, W, W),
gen3_fs_operand(mask_reg, W, W, W, W));
break;
}
} else {
/* If component alpha is active in the mask and the blend
* operation uses the source alpha, then we know we don't
* need the source value (otherwise we would have hit a
* fallback earlier), so we provide the source alpha (src.A *
* mask.X) as output color.
* Conversely, if CA is set and we don't need the source alpha,
* then we produce the source value (src.X * mask.X) and the
* source alpha is unused. Otherwise, we provide the non-CA
* source value (src.X * mask.A).
*/
if (op->has_component_alpha) {
switch (src->u.gen3.type) {
case SHADER_BLACK:
if (gen3_blend_op[blend].src_alpha)
gen3_fs_mov(out_reg,
gen3_fs_operand_reg(mask_reg));
else
gen3_fs_mov(out_reg,
gen3_fs_operand(mask_reg, ZERO, ZERO, ZERO, W));
break;
case SHADER_WHITE:
gen3_fs_mov(out_reg,
gen3_fs_operand_reg(mask_reg));
break;
default:
if (gen3_blend_op[blend].src_alpha)
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, W, W, W, W),
gen3_fs_operand_reg(mask_reg));
else
gen3_fs_mul(out_reg,
gen3_fs_operand_reg(src_reg),
gen3_fs_operand_reg(mask_reg));
break;
}
} else {
switch (src->u.gen3.type) {
case SHADER_WHITE:
gen3_fs_mov(out_reg,
gen3_fs_operand(mask_reg, W, W, W, W));
break;
case SHADER_BLACK:
gen3_fs_mov(out_reg,
gen3_fs_operand(mask_reg, ZERO, ZERO, ZERO, W));
break;
default:
gen3_fs_mul(out_reg,
gen3_fs_operand_reg(src_reg),
gen3_fs_operand(mask_reg, W, W, W, W));
break;
}
}
}
mask_done:
if (op->rb_reversed)
gen3_fs_mov(FS_OC, gen3_fs_operand(FS_U0, Z, Y, X, W));
}
done:
length = sna->kgem.nbatch - shader_offset;
sna->kgem.batch[shader_offset] =
_3DSTATE_PIXEL_SHADER_PROGRAM | (length - 2);
}
static uint32_t gen3_ms_tiling(uint32_t tiling)
{
uint32_t v = 0;
switch (tiling) {
case I915_TILING_Y: v |= MS3_TILE_WALK;
case I915_TILING_X: v |= MS3_TILED_SURFACE;
case I915_TILING_NONE: break;
}
return v;
}
static void gen3_emit_invariant(struct sna *sna)
{
/* Disable independent alpha blend */
OUT_BATCH(_3DSTATE_INDEPENDENT_ALPHA_BLEND_CMD | IAB_MODIFY_ENABLE |
IAB_MODIFY_FUNC | BLENDFUNC_ADD << IAB_FUNC_SHIFT |
IAB_MODIFY_SRC_FACTOR | BLENDFACT_ONE << IAB_SRC_FACTOR_SHIFT |
IAB_MODIFY_DST_FACTOR | BLENDFACT_ZERO << IAB_DST_FACTOR_SHIFT);
OUT_BATCH(_3DSTATE_COORD_SET_BINDINGS |
CSB_TCB(0, 0) |
CSB_TCB(1, 1) |
CSB_TCB(2, 2) |
CSB_TCB(3, 3) |
CSB_TCB(4, 4) |
CSB_TCB(5, 5) |
CSB_TCB(6, 6) |
CSB_TCB(7, 7));
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(3) | I1_LOAD_S(4) | I1_LOAD_S(5) | I1_LOAD_S(6) | 3);
OUT_BATCH(0); /* Disable texture coordinate wrap-shortest */
OUT_BATCH((1 << S4_POINT_WIDTH_SHIFT) |
S4_LINE_WIDTH_ONE |
S4_CULLMODE_NONE |
S4_VFMT_XY);
OUT_BATCH(0); /* Disable fog/stencil. *Enable* write mask. */
OUT_BATCH(S6_COLOR_WRITE_ONLY); /* Disable blending, depth */
OUT_BATCH(_3DSTATE_SCISSOR_ENABLE_CMD | DISABLE_SCISSOR_RECT);
OUT_BATCH(_3DSTATE_DEPTH_SUBRECT_DISABLE);
OUT_BATCH(_3DSTATE_LOAD_INDIRECT);
OUT_BATCH(0x00000000);
OUT_BATCH(_3DSTATE_STIPPLE);
OUT_BATCH(0x00000000);
sna->render_state.gen3.need_invariant = false;
}
#define MAX_OBJECTS 3 /* worst case: dst + src + mask */
static void
gen3_get_batch(struct sna *sna, const struct sna_composite_op *op)
{
kgem_set_mode(&sna->kgem, KGEM_RENDER, op->dst.bo);
if (!kgem_check_batch(&sna->kgem, 200)) {
DBG(("%s: flushing batch: size %d > %d\n",
__FUNCTION__, 200,
sna->kgem.surface-sna->kgem.nbatch));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (!kgem_check_reloc(&sna->kgem, MAX_OBJECTS)) {
DBG(("%s: flushing batch: reloc %d >= %d\n",
__FUNCTION__,
sna->kgem.nreloc,
(int)KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (!kgem_check_exec(&sna->kgem, MAX_OBJECTS)) {
DBG(("%s: flushing batch: exec %d >= %d\n",
__FUNCTION__,
sna->kgem.nexec,
(int)KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (sna->render_state.gen3.need_invariant)
gen3_emit_invariant(sna);
#undef MAX_OBJECTS
}
static void gen3_emit_target(struct sna *sna,
struct kgem_bo *bo,
int width,
int height,
int format)
{
struct gen3_render_state *state = &sna->render_state.gen3;
assert(!too_large(width, height));
/* BUF_INFO is an implicit flush, so skip if the target is unchanged. */
assert(bo->unique_id != 0);
if (bo->unique_id != state->current_dst) {
uint32_t v;
DBG(("%s: setting new target id=%d, handle=%d\n",
__FUNCTION__, bo->unique_id, bo->handle));
OUT_BATCH(_3DSTATE_BUF_INFO_CMD);
OUT_BATCH(BUF_3D_ID_COLOR_BACK |
gen3_buf_tiling(bo->tiling) |
bo->pitch);
OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
bo,
I915_GEM_DOMAIN_RENDER << 16 |
I915_GEM_DOMAIN_RENDER,
0));
OUT_BATCH(_3DSTATE_DST_BUF_VARS_CMD);
OUT_BATCH(gen3_get_dst_format(format));
v = DRAW_YMAX(height - 1) | DRAW_XMAX(width - 1);
if (v != state->last_drawrect_limit) {
OUT_BATCH(_3DSTATE_DRAW_RECT_CMD);
OUT_BATCH(0); /* XXX dither origin? */
OUT_BATCH(0);
OUT_BATCH(v);
OUT_BATCH(0);
state->last_drawrect_limit = v;
}
state->current_dst = bo->unique_id;
}
kgem_bo_mark_dirty(bo);
}
static void gen3_emit_composite_state(struct sna *sna,
const struct sna_composite_op *op)
{
struct gen3_render_state *state = &sna->render_state.gen3;
uint32_t map[4];
uint32_t sampler[4];
struct kgem_bo *bo[2];
unsigned int tex_count, n;
uint32_t ss2;
gen3_get_batch(sna, op);
if (kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo)) {
if (op->src.bo == op->dst.bo || op->mask.bo == op->dst.bo)
OUT_BATCH(MI_FLUSH | MI_INVALIDATE_MAP_CACHE);
else
OUT_BATCH(_3DSTATE_MODES_5_CMD |
PIPELINE_FLUSH_RENDER_CACHE |
PIPELINE_FLUSH_TEXTURE_CACHE);
kgem_clear_dirty(&sna->kgem);
}
gen3_emit_target(sna,
op->dst.bo,
op->dst.width,
op->dst.height,
op->dst.format);
ss2 = ~0;
tex_count = 0;
switch (op->src.u.gen3.type) {
case SHADER_OPACITY:
case SHADER_NONE:
assert(0);
case SHADER_ZERO:
case SHADER_BLACK:
case SHADER_WHITE:
break;
case SHADER_CONSTANT:
if (op->src.u.gen3.mode != state->last_diffuse) {
OUT_BATCH(_3DSTATE_DFLT_DIFFUSE_CMD);
OUT_BATCH(op->src.u.gen3.mode);
state->last_diffuse = op->src.u.gen3.mode;
}
break;
case SHADER_LINEAR:
case SHADER_RADIAL:
case SHADER_TEXTURE:
ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT);
ss2 |= S2_TEXCOORD_FMT(tex_count,
op->src.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D);
map[tex_count * 2 + 0] =
op->src.card_format |
gen3_ms_tiling(op->src.bo->tiling) |
(op->src.height - 1) << MS3_HEIGHT_SHIFT |
(op->src.width - 1) << MS3_WIDTH_SHIFT;
map[tex_count * 2 + 1] =
(op->src.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT;
sampler[tex_count * 2 + 0] = op->src.filter;
sampler[tex_count * 2 + 1] =
op->src.repeat |
tex_count << SS3_TEXTUREMAP_INDEX_SHIFT;
bo[tex_count] = op->src.bo;
tex_count++;
break;
}
switch (op->mask.u.gen3.type) {
case SHADER_NONE:
case SHADER_ZERO:
case SHADER_BLACK:
case SHADER_WHITE:
break;
case SHADER_CONSTANT:
if (op->mask.u.gen3.mode != state->last_specular) {
OUT_BATCH(_3DSTATE_DFLT_SPEC_CMD);
OUT_BATCH(op->mask.u.gen3.mode);
state->last_specular = op->mask.u.gen3.mode;
}
break;
case SHADER_LINEAR:
case SHADER_RADIAL:
case SHADER_TEXTURE:
ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT);
ss2 |= S2_TEXCOORD_FMT(tex_count,
op->mask.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D);
map[tex_count * 2 + 0] =
op->mask.card_format |
gen3_ms_tiling(op->mask.bo->tiling) |
(op->mask.height - 1) << MS3_HEIGHT_SHIFT |
(op->mask.width - 1) << MS3_WIDTH_SHIFT;
map[tex_count * 2 + 1] =
(op->mask.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT;
sampler[tex_count * 2 + 0] = op->mask.filter;
sampler[tex_count * 2 + 1] =
op->mask.repeat |
tex_count << SS3_TEXTUREMAP_INDEX_SHIFT;
bo[tex_count] = op->mask.bo;
tex_count++;
break;
case SHADER_OPACITY:
ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT);
ss2 |= S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_1D);
break;
}
{
uint32_t blend_offset = sna->kgem.nbatch;
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(2) | I1_LOAD_S(6) | 1);
OUT_BATCH(ss2);
OUT_BATCH(gen3_get_blend_cntl(op->op,
op->has_component_alpha,
op->dst.format));
if (memcmp(sna->kgem.batch + state->last_blend + 1,
sna->kgem.batch + blend_offset + 1,
2 * 4) == 0)
sna->kgem.nbatch = blend_offset;
else
state->last_blend = blend_offset;
}
if (op->u.gen3.num_constants) {
int count = op->u.gen3.num_constants;
if (state->last_constants) {
int last = sna->kgem.batch[state->last_constants+1];
if (last == (1 << (count >> 2)) - 1 &&
memcmp(&sna->kgem.batch[state->last_constants+2],
op->u.gen3.constants,
count * sizeof(uint32_t)) == 0)
count = 0;
}
if (count) {
state->last_constants = sna->kgem.nbatch;
OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | count);
OUT_BATCH((1 << (count >> 2)) - 1);
memcpy(sna->kgem.batch + sna->kgem.nbatch,
op->u.gen3.constants,
count * sizeof(uint32_t));
sna->kgem.nbatch += count;
}
}
if (tex_count != 0) {
uint32_t rewind;
n = 0;
if (tex_count == state->tex_count) {
for (; n < tex_count; n++) {
if (map[2*n+0] != state->tex_map[2*n+0] ||
map[2*n+1] != state->tex_map[2*n+1] ||
state->tex_handle[n] != bo[n]->handle ||
state->tex_delta[n] != bo[n]->delta)
break;
}
}
if (n < tex_count) {
OUT_BATCH(_3DSTATE_MAP_STATE | (3 * tex_count));
OUT_BATCH((1 << tex_count) - 1);
for (n = 0; n < tex_count; n++) {
OUT_BATCH(kgem_add_reloc(&sna->kgem,
sna->kgem.nbatch,
bo[n],
I915_GEM_DOMAIN_SAMPLER<< 16,
0));
OUT_BATCH(map[2*n + 0]);
OUT_BATCH(map[2*n + 1]);
state->tex_map[2*n+0] = map[2*n+0];
state->tex_map[2*n+1] = map[2*n+1];
state->tex_handle[n] = bo[n]->handle;
state->tex_delta[n] = bo[n]->delta;
}
state->tex_count = n;
}
rewind = sna->kgem.nbatch;
OUT_BATCH(_3DSTATE_SAMPLER_STATE | (3 * tex_count));
OUT_BATCH((1 << tex_count) - 1);
for (n = 0; n < tex_count; n++) {
OUT_BATCH(sampler[2*n + 0]);
OUT_BATCH(sampler[2*n + 1]);
OUT_BATCH(0);
}
if (state->last_sampler &&
memcmp(&sna->kgem.batch[state->last_sampler+1],
&sna->kgem.batch[rewind + 1],
(3*tex_count + 1)*sizeof(uint32_t)) == 0)
sna->kgem.nbatch = rewind;
else
state->last_sampler = rewind;
}
gen3_composite_emit_shader(sna, op, op->op);
}
static bool gen3_magic_ca_pass(struct sna *sna,
const struct sna_composite_op *op)
{
if (!op->need_magic_ca_pass)
return false;
DBG(("%s(%d)\n", __FUNCTION__,
sna->render.vertex_index - sna->render.vertex_start));
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(6) | 0);
OUT_BATCH(gen3_get_blend_cntl(PictOpAdd, true, op->dst.format));
gen3_composite_emit_shader(sna, op, PictOpAdd);
OUT_BATCH(PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL |
(sna->render.vertex_index - sna->render.vertex_start));
OUT_BATCH(sna->render.vertex_start);
sna->render_state.gen3.last_blend = 0;
return true;
}
static void gen3_vertex_flush(struct sna *sna)
{
assert(sna->render.vertex_offset);
DBG(("%s[%x] = %d\n", __FUNCTION__,
4*sna->render.vertex_offset,
sna->render.vertex_index - sna->render.vertex_start));
sna->kgem.batch[sna->render.vertex_offset] =
PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL |
(sna->render.vertex_index - sna->render.vertex_start);
sna->kgem.batch[sna->render.vertex_offset + 1] =
sna->render.vertex_start;
sna->render.vertex_offset = 0;
}
static int gen3_vertex_finish(struct sna *sna)
{
struct kgem_bo *bo;
DBG(("%s: used=%d/%d, vbo active? %d\n",
__FUNCTION__, sna->render.vertex_used, sna->render.vertex_size,
sna->render.vbo ? sna->render.vbo->handle : 0));
assert(sna->render.vertex_offset == 0);
assert(sna->render.vertex_used);
assert(sna->render.vertex_used <= sna->render.vertex_size);
sna_vertex_wait__locked(&sna->render);
bo = sna->render.vbo;
if (bo) {
DBG(("%s: reloc = %d\n", __FUNCTION__,
sna->render.vertex_reloc[0]));
if (sna->render.vertex_reloc[0]) {
sna->kgem.batch[sna->render.vertex_reloc[0]] =
kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[0],
bo, I915_GEM_DOMAIN_VERTEX << 16, 0);
sna->render.vertex_reloc[0] = 0;
}
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
sna->render.vbo = NULL;
kgem_bo_destroy(&sna->kgem, bo);
}
sna->render.vertices = NULL;
sna->render.vbo = kgem_create_linear(&sna->kgem,
256*1024, CREATE_GTT_MAP);
if (sna->render.vbo)
sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo);
if (sna->render.vertices == NULL) {
if (sna->render.vbo)
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
sna->render.vbo = NULL;
return 0;
}
assert(sna->render.vbo->snoop == false);
if (sna->render.vertex_used) {
memcpy(sna->render.vertices,
sna->render.vertex_data,
sizeof(float)*sna->render.vertex_used);
}
sna->render.vertex_size = 64 * 1024 - 1;
return sna->render.vertex_size - sna->render.vertex_used;
}
static void gen3_vertex_close(struct sna *sna)
{
struct kgem_bo *bo, *free_bo = NULL;
unsigned int delta = 0;
assert(sna->render.vertex_offset == 0);
if (sna->render.vertex_reloc[0] == 0)
return;
DBG(("%s: used=%d/%d, vbo active? %d\n",
__FUNCTION__, sna->render.vertex_used, sna->render.vertex_size,
sna->render.vbo ? sna->render.vbo->handle : 0));
bo = sna->render.vbo;
if (bo) {
if (sna->render.vertex_size - sna->render.vertex_used < 64) {
DBG(("%s: discarding full vbo\n", __FUNCTION__));
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
} else if (IS_CPU_MAP(bo->map)) {
DBG(("%s: converting CPU map to GTT\n", __FUNCTION__));
sna->render.vertices = kgem_bo_map__gtt(&sna->kgem, bo);
if (sna->render.vertices == NULL) {
DBG(("%s: discarding non-mappable vertices\n",__FUNCTION__));
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
}
}
} else {
if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) {
DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__,
sna->render.vertex_used, sna->kgem.nbatch));
memcpy(sna->kgem.batch + sna->kgem.nbatch,
sna->render.vertex_data,
sna->render.vertex_used * 4);
delta = sna->kgem.nbatch * 4;
bo = NULL;
sna->kgem.nbatch += sna->render.vertex_used;
} else {
DBG(("%s: new vbo: %d\n", __FUNCTION__,
sna->render.vertex_used));
bo = kgem_create_linear(&sna->kgem,
4*sna->render.vertex_used,
CREATE_NO_THROTTLE);
if (bo) {
assert(bo->snoop == false);
kgem_bo_write(&sna->kgem, bo,
sna->render.vertex_data,
4*sna->render.vertex_used);
}
free_bo = bo;
}
}
DBG(("%s: reloc = %d\n", __FUNCTION__, sna->render.vertex_reloc[0]));
sna->kgem.batch[sna->render.vertex_reloc[0]] =
kgem_add_reloc(&sna->kgem, sna->render.vertex_reloc[0],
bo, I915_GEM_DOMAIN_VERTEX << 16, delta);
sna->render.vertex_reloc[0] = 0;
if (sna->render.vbo == NULL) {
DBG(("%s: resetting vbo\n", __FUNCTION__));
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
assert(sna->render.vertices == sna->render.vertex_data);
assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data));
}
if (free_bo)
kgem_bo_destroy(&sna->kgem, free_bo);
}
static bool gen3_rectangle_begin(struct sna *sna,
const struct sna_composite_op *op)
{
struct gen3_render_state *state = &sna->render_state.gen3;
int ndwords, i1_cmd = 0, i1_len = 0;
if (sna_vertex_wait__locked(&sna->render) && sna->render.vertex_offset)
return true;
ndwords = 2;
if (op->need_magic_ca_pass)
ndwords += 100;
if (sna->render.vertex_reloc[0] == 0)
i1_len++, i1_cmd |= I1_LOAD_S(0), ndwords++;
if (state->floats_per_vertex != op->floats_per_vertex)
i1_len++, i1_cmd |= I1_LOAD_S(1), ndwords++;
if (!kgem_check_batch(&sna->kgem, ndwords+1))
return false;
if (i1_cmd) {
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | i1_cmd | (i1_len - 1));
if (sna->render.vertex_reloc[0] == 0)
sna->render.vertex_reloc[0] = sna->kgem.nbatch++;
if (state->floats_per_vertex != op->floats_per_vertex) {
state->floats_per_vertex = op->floats_per_vertex;
OUT_BATCH(state->floats_per_vertex << S1_VERTEX_WIDTH_SHIFT |
state->floats_per_vertex << S1_VERTEX_PITCH_SHIFT);
}
}
if (sna->kgem.nbatch == 2 + state->last_vertex_offset &&
!op->need_magic_ca_pass) {
sna->render.vertex_offset = state->last_vertex_offset;
} else {
sna->render.vertex_offset = sna->kgem.nbatch;
OUT_BATCH(MI_NOOP); /* to be filled later */
OUT_BATCH(MI_NOOP);
sna->render.vertex_start = sna->render.vertex_index;
state->last_vertex_offset = sna->render.vertex_offset;
}
return true;
}
static int gen3_get_rectangles__flush(struct sna *sna,
const struct sna_composite_op *op)
{
/* Preventing discarding new vbo after lock contention */
if (sna_vertex_wait__locked(&sna->render)) {
int rem = vertex_space(sna);
if (rem > op->floats_per_rect)
return rem;
}
if (!kgem_check_batch(&sna->kgem, op->need_magic_ca_pass ? 105: 5))
return 0;
if (!kgem_check_reloc_and_exec(&sna->kgem, 1))
return 0;
if (sna->render.vertex_offset) {
gen3_vertex_flush(sna);
if (gen3_magic_ca_pass(sna, op)) {
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(6) | 0);
OUT_BATCH(gen3_get_blend_cntl(op->op,
op->has_component_alpha,
op->dst.format));
gen3_composite_emit_shader(sna, op, op->op);
}
}
return gen3_vertex_finish(sna);
}
inline static int gen3_get_rectangles(struct sna *sna,
const struct sna_composite_op *op,
int want)
{
int rem;
DBG(("%s: want=%d, rem=%d\n",
__FUNCTION__, want*op->floats_per_rect, vertex_space(sna)));
assert(want);
assert(sna->render.vertex_index * op->floats_per_vertex == sna->render.vertex_used);
start:
rem = vertex_space(sna);
if (unlikely(op->floats_per_rect > rem)) {
DBG(("flushing vbo for %s: %d < %d\n",
__FUNCTION__, rem, op->floats_per_rect));
rem = gen3_get_rectangles__flush(sna, op);
if (unlikely(rem == 0))
goto flush;
}
if (unlikely(sna->render.vertex_offset == 0)) {
if (!gen3_rectangle_begin(sna, op))
goto flush;
else
goto start;
}
assert(op->floats_per_rect >= vertex_space(sna));
assert(rem <= vertex_space(sna));
if (want > 1 && want * op->floats_per_rect > rem)
want = rem / op->floats_per_rect;
sna->render.vertex_index += 3*want;
assert(want);
assert(sna->render.vertex_index * op->floats_per_vertex <= sna->render.vertex_size);
return want;
flush:
DBG(("%s: flushing batch\n", __FUNCTION__));
if (sna->render.vertex_offset) {
gen3_vertex_flush(sna);
gen3_magic_ca_pass(sna, op);
}
sna_vertex_wait__locked(&sna->render);
_kgem_submit(&sna->kgem);
gen3_emit_composite_state(sna, op);
assert(sna->render.vertex_offset == 0);
assert(sna->render.vertex_reloc[0] == 0);
goto start;
}
fastcall static void
gen3_render_composite_blt(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n", __FUNCTION__,
r->src.x, r->src.y, op->src.offset[0], op->src.offset[1],
r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1],
r->dst.x, r->dst.y, op->dst.x, op->dst.y,
r->width, r->height));
gen3_get_rectangles(sna, op, 1);
op->prim_emit(sna, op, r);
}
static void
gen3_render_composite_done(struct sna *sna,
const struct sna_composite_op *op)
{
DBG(("%s()\n", __FUNCTION__));
if (sna->render.vertex_offset) {
gen3_vertex_flush(sna);
gen3_magic_ca_pass(sna, op);
}
}
static void
discard_vbo(struct sna *sna)
{
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
}
static void
gen3_render_reset(struct sna *sna)
{
struct gen3_render_state *state = &sna->render_state.gen3;
state->need_invariant = true;
state->current_dst = 0;
state->tex_count = 0;
state->last_drawrect_limit = ~0U;
state->last_target = 0;
state->last_blend = 0;
state->last_constants = 0;
state->last_sampler = 0;
state->last_shader = 0x7fffffff;
state->last_diffuse = 0xcc00ffee;
state->last_specular = 0xcc00ffee;
state->floats_per_vertex = 0;
state->last_floats_per_vertex = 0;
state->last_vertex_offset = 0;
if (sna->render.vbo != NULL &&
!kgem_bo_is_mappable(&sna->kgem, sna->render.vbo)) {
DBG(("%s: discarding vbo as next access will stall: %d\n",
__FUNCTION__, sna->render.vbo->presumed_offset));
discard_vbo(sna);
}
sna->render.vertex_reloc[0] = 0;
sna->render.vertex_offset = 0;
}
static void
gen3_render_retire(struct kgem *kgem)
{
struct sna *sna;
sna = container_of(kgem, struct sna, kgem);
if (sna->render.vertex_reloc[0] == 0 &&
sna->render.vbo && !kgem_bo_is_busy(sna->render.vbo)) {
DBG(("%s: resetting idle vbo\n", __FUNCTION__));
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
}
}
static void
gen3_render_expire(struct kgem *kgem)
{
struct sna *sna;
sna = container_of(kgem, struct sna, kgem);
if (sna->render.vbo && !sna->render.vertex_used) {
DBG(("%s: discarding vbo\n", __FUNCTION__));
discard_vbo(sna);
}
}
static bool gen3_composite_channel_set_format(struct sna_composite_channel *channel,
CARD32 format)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) {
if (gen3_tex_formats[i].fmt == format) {
channel->card_format = gen3_tex_formats[i].card_fmt;
channel->rb_reversed = gen3_tex_formats[i].rb_reversed;
return true;
}
}
return false;
}
static void
gen3_align_vertex(struct sna *sna,
const struct sna_composite_op *op)
{
if (op->floats_per_vertex != sna->render_state.gen3.last_floats_per_vertex) {
if (sna->render.vertex_size - sna->render.vertex_used < 2*op->floats_per_rect)
gen3_vertex_finish(sna);
DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n",
sna->render_state.gen3.last_floats_per_vertex,
op->floats_per_vertex,
sna->render.vertex_index,
(sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex));
sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex;
sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex;
assert(sna->render.vertex_used < sna->render.vertex_size - op->floats_per_rect);
sna->render_state.gen3.last_floats_per_vertex = op->floats_per_vertex;
}
}
static inline bool is_constant_ps(uint32_t type)
{
switch (type) {
case SHADER_NONE: /* be warned! */
case SHADER_ZERO:
case SHADER_BLACK:
case SHADER_WHITE:
case SHADER_CONSTANT:
return true;
default:
return false;
}
}
static bool
gen3_blit_tex(struct sna *sna,
uint8_t op,
PixmapPtr src, struct kgem_bo *src_bo,
PixmapPtr mask,struct kgem_bo *mask_bo,
PixmapPtr dst, struct kgem_bo *dst_bo,
int32_t src_x, int32_t src_y,
int32_t msk_x, int32_t msk_y,
int32_t dst_x, int32_t dst_y,
int32_t width, int32_t height,
struct sna_composite_op *tmp)
{
DBG(("%s: %dx%d, current mode=%d\n", __FUNCTION__,
width, height, sna->kgem.ring));
tmp->op = PictOpSrc;
tmp->dst.pixmap = dst;
tmp->dst.bo = dst_bo;
tmp->dst.width = dst->drawable.width;
tmp->dst.height = dst->drawable.height;
tmp->dst.format = PICT_x8r8g8b8;
tmp->rb_reversed = gen3_dst_rb_reversed(tmp->dst.format);
tmp->u.gen3.num_constants = 0;
tmp->src.u.gen3.type = SHADER_TEXTURE;
tmp->src.is_affine = true;
tmp->src.repeat = RepeatNone;
tmp->src.filter = PictFilterNearest;
tmp->src.bo = src_bo;
tmp->src.pict_format = PICT_x8r8g8b8;
gen3_composite_channel_set_format(&tmp->src, tmp->src.pict_format);
tmp->src.width = src->drawable.width;
tmp->src.height = src->drawable.height;
tmp->mask.u.gen3.type = SHADER_TEXTURE;
tmp->mask.is_affine = true;
tmp->need_magic_ca_pass = false;
tmp->has_component_alpha = false;
tmp->mask.repeat = RepeatNone;
tmp->mask.filter = PictFilterNearest;
tmp->mask.is_affine = true;
tmp->mask.bo = mask_bo;
tmp->mask.pict_format = PIXMAN_a8;
gen3_composite_channel_set_format(&tmp->mask, tmp->mask.pict_format);
tmp->mask.width = mask->drawable.width;
tmp->mask.height = mask->drawable.height;
tmp->src.scale[0] = 1.f/width; //src->width;
tmp->src.scale[1] = 1.f/height; //src->height;
// tmp->src.offset[0] = -dst_x;
// tmp->src.offset[1] = -dst_y;
tmp->mask.scale[0] = 1.f/mask->drawable.width;
tmp->mask.scale[1] = 1.f/mask->drawable.height;
// tmp->mask.offset[0] = -dst_x;
// tmp->mask.offset[1] = -dst_y;
tmp->prim_emit = gen3_emit_composite_primitive_identity_source_mask;
tmp->floats_per_vertex = 2;
if (!is_constant_ps(tmp->src.u.gen3.type))
tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 4;
if (!is_constant_ps(tmp->mask.u.gen3.type))
tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 4;
DBG(("%s: floats_per_vertex = 2 + %d + %d = %d [specialised emitter? %d]\n", __FUNCTION__,
!is_constant_ps(tmp->src.u.gen3.type) ? tmp->src.is_affine ? 2 : 4 : 0,
!is_constant_ps(tmp->mask.u.gen3.type) ? tmp->mask.is_affine ? 2 : 4 : 0,
tmp->floats_per_vertex,
tmp->prim_emit != gen3_emit_composite_primitive));
tmp->floats_per_rect = 3 * tmp->floats_per_vertex;
tmp->blt = gen3_render_composite_blt;
tmp->done = gen3_render_composite_done;
if (!kgem_check_bo(&sna->kgem,
tmp->dst.bo, tmp->src.bo, tmp->mask.bo,
NULL)) {
kgem_submit(&sna->kgem);
}
gen3_emit_composite_state(sna, tmp);
gen3_align_vertex(sna, tmp);
return true;
}
static void gen3_render_flush(struct sna *sna)
{
gen3_vertex_close(sna);
assert(sna->render.vertex_reloc[0] == 0);
assert(sna->render.vertex_offset == 0);
}
static void
gen3_render_fini(struct sna *sna)
{
}
bool gen3_render_init(struct sna *sna)
{
struct sna_render *render = &sna->render;
// render->video = gen3_render_video;
sna->render.blit_tex = gen3_blit_tex;
render->reset = gen3_render_reset;
render->flush = gen3_render_flush;
render->fini = gen3_render_fini;
render->max_3d_size = MAX_3D_SIZE;
render->max_3d_pitch = MAX_3D_PITCH;
sna->kgem.retire = gen3_render_retire;
sna->kgem.expire = gen3_render_expire;
return true;
}