kolibrios-fun/programs/develop/libraries/newlib/math/cbrt.c
Sergey Semyonov (Serge) 2336060a0c newlib: update
git-svn-id: svn://kolibrios.org@1906 a494cfbc-eb01-0410-851d-a64ba20cac60
2011-03-11 18:52:24 +00:00

163 lines
3.0 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* cbrt.c
*
* Cube root
*
*
*
* SYNOPSIS:
*
* double x, y, cbrt();
*
* y = cbrt( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC -10,10 200000 1.8e-17 6.2e-18
* IEEE 0,1e308 30000 1.5e-16 5.0e-17
*
*/
/* cbrt.c */
/*
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/*
Modified for mingwex.a
2002-07-01 Danny Smith <dannysmith@users.sourceforge.net>
*/
#ifdef __MINGW32__
#include <math.h>
#include "cephes_mconf.h"
#else
#include "mconf.h"
#endif
static const double CBRT2 = 1.2599210498948731647672;
static const double CBRT4 = 1.5874010519681994747517;
static const double CBRT2I = 0.79370052598409973737585;
static const double CBRT4I = 0.62996052494743658238361;
#ifndef __MINGW32__
#ifdef ANSIPROT
extern double frexp ( double, int * );
extern double ldexp ( double, int );
extern int isnan ( double );
extern int isfinite ( double );
#else
double frexp(), ldexp();
int isnan(), isfinite();
#endif
#endif
double cbrt(x)
double x;
{
int e, rem, sign;
double z;
#ifdef __MINGW32__
if (!isfinite (x) || x == 0 )
return x;
#else
#ifdef NANS
if( isnan(x) )
return x;
#endif
#ifdef INFINITIES
if( !isfinite(x) )
return x;
#endif
if( x == 0 )
return( x );
#endif /* __MINGW32__ */
if( x > 0 )
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving
* mantissa between 0.5 and 1
*/
x = frexp( x, &e );
/* Approximate cube root of number between .5 and 1,
* peak relative error = 9.2e-6
*/
x = (((-1.3466110473359520655053e-1 * x
+ 5.4664601366395524503440e-1) * x
- 9.5438224771509446525043e-1) * x
+ 1.1399983354717293273738e0 ) * x
+ 4.0238979564544752126924e-1;
/* exponent divided by 3 */
if( e >= 0 )
{
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2;
else if( rem == 2 )
x *= CBRT4;
}
/* argument less than 1 */
else
{
e = -e;
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2I;
else if( rem == 2 )
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexp( x, e );
/* Newton iteration */
x -= ( x - (z/(x*x)) )*0.33333333333333333333;
#ifdef DEC
x -= ( x - (z/(x*x)) )/3.0;
#else
x -= ( x - (z/(x*x)) )*0.33333333333333333333;
#endif
if( sign < 0 )
x = -x;
return(x);
}