kolibrios-fun/programs/develop/libraries/pixman/pixman-image.c
Sergey Semyonov (Serge) 4dd0483a93 pixman-1.0
git-svn-id: svn://kolibrios.org@1891 a494cfbc-eb01-0410-851d-a64ba20cac60
2011-02-27 17:46:46 +00:00

847 lines
20 KiB
C

/*
* Copyright © 2000 SuSE, Inc.
* Copyright © 2007 Red Hat, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of SuSE not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. SuSE makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
* SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
* BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "pixman-private.h"
#include "pixman-combine32.h"
pixman_bool_t
_pixman_init_gradient (gradient_t * gradient,
const pixman_gradient_stop_t *stops,
int n_stops)
{
return_val_if_fail (n_stops > 0, FALSE);
gradient->stops = pixman_malloc_ab (n_stops, sizeof (pixman_gradient_stop_t));
if (!gradient->stops)
return FALSE;
memcpy (gradient->stops, stops, n_stops * sizeof (pixman_gradient_stop_t));
gradient->n_stops = n_stops;
gradient->stop_range = 0xffff;
return TRUE;
}
/*
* By default, just evaluate the image at 32bpp and expand. Individual image
* types can plug in a better scanline getter if they want to. For example
* we could produce smoother gradients by evaluating them at higher color
* depth, but that's a project for the future.
*/
void
_pixman_image_get_scanline_generic_64 (pixman_image_t * image,
int x,
int y,
int width,
uint32_t * buffer,
const uint32_t * mask)
{
uint32_t *mask8 = NULL;
/* Contract the mask image, if one exists, so that the 32-bit fetch
* function can use it.
*/
if (mask)
{
mask8 = pixman_malloc_ab (width, sizeof(uint32_t));
if (!mask8)
return;
pixman_contract (mask8, (uint64_t *)mask, width);
}
/* Fetch the source image into the first half of buffer. */
_pixman_image_get_scanline_32 (image, x, y, width, (uint32_t*)buffer, mask8);
/* Expand from 32bpp to 64bpp in place. */
pixman_expand ((uint64_t *)buffer, buffer, PIXMAN_a8r8g8b8, width);
free (mask8);
}
pixman_image_t *
_pixman_image_allocate (void)
{
pixman_image_t *image = malloc (sizeof (pixman_image_t));
if (image)
{
image_common_t *common = &image->common;
pixman_region32_init (&common->clip_region);
common->alpha_count = 0;
common->have_clip_region = FALSE;
common->clip_sources = FALSE;
common->transform = NULL;
common->repeat = PIXMAN_REPEAT_NONE;
common->filter = PIXMAN_FILTER_NEAREST;
common->filter_params = NULL;
common->n_filter_params = 0;
common->alpha_map = NULL;
common->component_alpha = FALSE;
common->ref_count = 1;
common->classify = NULL;
common->client_clip = FALSE;
common->destroy_func = NULL;
common->destroy_data = NULL;
common->dirty = TRUE;
}
return image;
}
source_image_class_t
_pixman_image_classify (pixman_image_t *image,
int x,
int y,
int width,
int height)
{
if (image->common.classify)
return image->common.classify (image, x, y, width, height);
else
return SOURCE_IMAGE_CLASS_UNKNOWN;
}
void
_pixman_image_get_scanline_32 (pixman_image_t *image,
int x,
int y,
int width,
uint32_t * buffer,
const uint32_t *mask)
{
image->common.get_scanline_32 (image, x, y, width, buffer, mask);
}
/* Even thought the type of buffer is uint32_t *, the function actually expects
* a uint64_t *buffer.
*/
void
_pixman_image_get_scanline_64 (pixman_image_t *image,
int x,
int y,
int width,
uint32_t * buffer,
const uint32_t *unused)
{
image->common.get_scanline_64 (image, x, y, width, buffer, unused);
}
static void
image_property_changed (pixman_image_t *image)
{
image->common.dirty = TRUE;
}
/* Ref Counting */
PIXMAN_EXPORT pixman_image_t *
pixman_image_ref (pixman_image_t *image)
{
image->common.ref_count++;
return image;
}
/* returns TRUE when the image is freed */
PIXMAN_EXPORT pixman_bool_t
pixman_image_unref (pixman_image_t *image)
{
image_common_t *common = (image_common_t *)image;
common->ref_count--;
if (common->ref_count == 0)
{
if (image->common.destroy_func)
image->common.destroy_func (image, image->common.destroy_data);
pixman_region32_fini (&common->clip_region);
if (common->transform)
free (common->transform);
if (common->filter_params)
free (common->filter_params);
if (common->alpha_map)
pixman_image_unref ((pixman_image_t *)common->alpha_map);
if (image->type == LINEAR ||
image->type == RADIAL ||
image->type == CONICAL)
{
if (image->gradient.stops)
free (image->gradient.stops);
}
if (image->type == BITS && image->bits.free_me)
free (image->bits.free_me);
free (image);
return TRUE;
}
return FALSE;
}
PIXMAN_EXPORT void
pixman_image_set_destroy_function (pixman_image_t * image,
pixman_image_destroy_func_t func,
void * data)
{
image->common.destroy_func = func;
image->common.destroy_data = data;
}
PIXMAN_EXPORT void *
pixman_image_get_destroy_data (pixman_image_t *image)
{
return image->common.destroy_data;
}
void
_pixman_image_reset_clip_region (pixman_image_t *image)
{
image->common.have_clip_region = FALSE;
}
static pixman_bool_t out_of_bounds_workaround = TRUE;
/* Old X servers rely on out-of-bounds accesses when they are asked
* to composite with a window as the source. They create a pixman image
* pointing to some bogus position in memory, but then they set a clip
* region to the position where the actual bits are.
*
* Due to a bug in old versions of pixman, where it would not clip
* against the image bounds when a clip region was set, this would
* actually work. So by default we allow certain out-of-bound access
* to happen unless explicitly disabled.
*
* Fixed X servers should call this function to disable the workaround.
*/
PIXMAN_EXPORT void
pixman_disable_out_of_bounds_workaround (void)
{
out_of_bounds_workaround = FALSE;
}
static pixman_bool_t
source_image_needs_out_of_bounds_workaround (bits_image_t *image)
{
if (image->common.clip_sources &&
image->common.repeat == PIXMAN_REPEAT_NONE &&
image->common.have_clip_region &&
out_of_bounds_workaround)
{
if (!image->common.client_clip)
{
/* There is no client clip, so if the clip region extends beyond the
* drawable geometry, it must be because the X server generated the
* bogus clip region.
*/
const pixman_box32_t *extents =
pixman_region32_extents (&image->common.clip_region);
if (extents->x1 >= 0 && extents->x2 <= image->width &&
extents->y1 >= 0 && extents->y2 <= image->height)
{
return FALSE;
}
}
return TRUE;
}
return FALSE;
}
static void
compute_image_info (pixman_image_t *image)
{
pixman_format_code_t code;
uint32_t flags = 0;
/* Transform */
if (!image->common.transform)
{
flags |= (FAST_PATH_ID_TRANSFORM |
FAST_PATH_X_UNIT_POSITIVE |
FAST_PATH_Y_UNIT_ZERO |
FAST_PATH_AFFINE_TRANSFORM);
}
else
{
flags |= FAST_PATH_HAS_TRANSFORM;
if (image->common.transform->matrix[2][0] == 0 &&
image->common.transform->matrix[2][1] == 0 &&
image->common.transform->matrix[2][2] == pixman_fixed_1)
{
flags |= FAST_PATH_AFFINE_TRANSFORM;
if (image->common.transform->matrix[0][1] == 0 &&
image->common.transform->matrix[1][0] == 0)
{
flags |= FAST_PATH_SCALE_TRANSFORM;
}
}
if (image->common.transform->matrix[0][0] > 0)
flags |= FAST_PATH_X_UNIT_POSITIVE;
if (image->common.transform->matrix[1][0] == 0)
flags |= FAST_PATH_Y_UNIT_ZERO;
}
/* Filter */
switch (image->common.filter)
{
case PIXMAN_FILTER_NEAREST:
case PIXMAN_FILTER_FAST:
flags |= (FAST_PATH_NEAREST_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
break;
case PIXMAN_FILTER_BILINEAR:
case PIXMAN_FILTER_GOOD:
case PIXMAN_FILTER_BEST:
flags |= (FAST_PATH_BILINEAR_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
break;
case PIXMAN_FILTER_CONVOLUTION:
break;
default:
flags |= FAST_PATH_NO_CONVOLUTION_FILTER;
break;
}
/* Repeat mode */
switch (image->common.repeat)
{
case PIXMAN_REPEAT_NONE:
flags |=
FAST_PATH_NO_REFLECT_REPEAT |
FAST_PATH_NO_PAD_REPEAT |
FAST_PATH_NO_NORMAL_REPEAT;
break;
case PIXMAN_REPEAT_REFLECT:
flags |=
FAST_PATH_NO_PAD_REPEAT |
FAST_PATH_NO_NONE_REPEAT |
FAST_PATH_NO_NORMAL_REPEAT;
break;
case PIXMAN_REPEAT_PAD:
flags |=
FAST_PATH_NO_REFLECT_REPEAT |
FAST_PATH_NO_NONE_REPEAT |
FAST_PATH_NO_NORMAL_REPEAT;
break;
default:
flags |=
FAST_PATH_NO_REFLECT_REPEAT |
FAST_PATH_NO_PAD_REPEAT |
FAST_PATH_NO_NONE_REPEAT;
break;
}
/* Component alpha */
if (image->common.component_alpha)
flags |= FAST_PATH_COMPONENT_ALPHA;
else
flags |= FAST_PATH_UNIFIED_ALPHA;
flags |= (FAST_PATH_NO_ACCESSORS | FAST_PATH_NARROW_FORMAT);
/* Type specific checks */
switch (image->type)
{
case SOLID:
code = PIXMAN_solid;
if (image->solid.color.alpha == 0xffff)
flags |= FAST_PATH_IS_OPAQUE;
break;
case BITS:
if (image->bits.width == 1 &&
image->bits.height == 1 &&
image->common.repeat != PIXMAN_REPEAT_NONE)
{
code = PIXMAN_solid;
}
else
{
code = image->bits.format;
}
if (!PIXMAN_FORMAT_A (image->bits.format) &&
PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_GRAY &&
PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_COLOR)
{
flags |= FAST_PATH_SAMPLES_OPAQUE;
if (image->common.repeat != PIXMAN_REPEAT_NONE)
flags |= FAST_PATH_IS_OPAQUE;
}
if (source_image_needs_out_of_bounds_workaround (&image->bits))
flags |= FAST_PATH_NEEDS_WORKAROUND;
if (image->bits.read_func || image->bits.write_func)
flags &= ~FAST_PATH_NO_ACCESSORS;
if (PIXMAN_FORMAT_IS_WIDE (image->bits.format))
flags &= ~FAST_PATH_NARROW_FORMAT;
break;
case RADIAL:
code = PIXMAN_unknown;
/*
* As explained in pixman-radial-gradient.c, every point of
* the plane has a valid associated radius (and thus will be
* colored) if and only if a is negative (i.e. one of the two
* circles contains the other one).
*/
if (image->radial.a >= 0)
break;
/* Fall through */
case LINEAR:
code = PIXMAN_unknown;
if (image->common.repeat != PIXMAN_REPEAT_NONE)
{
int i;
flags |= FAST_PATH_IS_OPAQUE;
for (i = 0; i < image->gradient.n_stops; ++i)
{
if (image->gradient.stops[i].color.alpha != 0xffff)
{
flags &= ~FAST_PATH_IS_OPAQUE;
break;
}
}
}
break;
default:
code = PIXMAN_unknown;
break;
}
/* Alpha map */
if (!image->common.alpha_map)
{
flags |= FAST_PATH_NO_ALPHA_MAP;
}
else
{
if (PIXMAN_FORMAT_IS_WIDE (image->common.alpha_map->format))
flags &= ~FAST_PATH_NARROW_FORMAT;
}
/* Both alpha maps and convolution filters can introduce
* non-opaqueness in otherwise opaque images. Also
* an image with component alpha turned on is only opaque
* if all channels are opaque, so we simply turn it off
* unconditionally for those images.
*/
if (image->common.alpha_map ||
image->common.filter == PIXMAN_FILTER_CONVOLUTION ||
image->common.component_alpha)
{
flags &= ~(FAST_PATH_IS_OPAQUE | FAST_PATH_SAMPLES_OPAQUE);
}
image->common.flags = flags;
image->common.extended_format_code = code;
}
void
_pixman_image_validate (pixman_image_t *image)
{
if (image->common.dirty)
{
compute_image_info (image);
/* It is important that property_changed is
* called *after* compute_image_info() because
* property_changed() can make use of the flags
* to set up accessors etc.
*/
image->common.property_changed (image);
image->common.dirty = FALSE;
}
if (image->common.alpha_map)
_pixman_image_validate ((pixman_image_t *)image->common.alpha_map);
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region32 (pixman_image_t * image,
pixman_region32_t *region)
{
image_common_t *common = (image_common_t *)image;
pixman_bool_t result;
if (region)
{
if ((result = pixman_region32_copy (&common->clip_region, region)))
image->common.have_clip_region = TRUE;
}
else
{
_pixman_image_reset_clip_region (image);
result = TRUE;
}
image_property_changed (image);
return result;
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region (pixman_image_t * image,
pixman_region16_t *region)
{
image_common_t *common = (image_common_t *)image;
pixman_bool_t result;
if (region)
{
if ((result = pixman_region32_copy_from_region16 (&common->clip_region, region)))
image->common.have_clip_region = TRUE;
}
else
{
_pixman_image_reset_clip_region (image);
result = TRUE;
}
image_property_changed (image);
return result;
}
PIXMAN_EXPORT void
pixman_image_set_has_client_clip (pixman_image_t *image,
pixman_bool_t client_clip)
{
image->common.client_clip = client_clip;
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_transform (pixman_image_t * image,
const pixman_transform_t *transform)
{
static const pixman_transform_t id =
{
{ { pixman_fixed_1, 0, 0 },
{ 0, pixman_fixed_1, 0 },
{ 0, 0, pixman_fixed_1 } }
};
image_common_t *common = (image_common_t *)image;
pixman_bool_t result;
if (common->transform == transform)
return TRUE;
if (memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
{
free (common->transform);
common->transform = NULL;
result = TRUE;
goto out;
}
if (common->transform == NULL)
common->transform = malloc (sizeof (pixman_transform_t));
if (common->transform == NULL)
{
result = FALSE;
goto out;
}
memcpy (common->transform, transform, sizeof(pixman_transform_t));
result = TRUE;
out:
image_property_changed (image);
return result;
}
PIXMAN_EXPORT void
pixman_image_set_repeat (pixman_image_t *image,
pixman_repeat_t repeat)
{
image->common.repeat = repeat;
image_property_changed (image);
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_set_filter (pixman_image_t * image,
pixman_filter_t filter,
const pixman_fixed_t *params,
int n_params)
{
image_common_t *common = (image_common_t *)image;
pixman_fixed_t *new_params;
if (params == common->filter_params && filter == common->filter)
return TRUE;
new_params = NULL;
if (params)
{
new_params = pixman_malloc_ab (n_params, sizeof (pixman_fixed_t));
if (!new_params)
return FALSE;
memcpy (new_params,
params, n_params * sizeof (pixman_fixed_t));
}
common->filter = filter;
if (common->filter_params)
free (common->filter_params);
common->filter_params = new_params;
common->n_filter_params = n_params;
image_property_changed (image);
return TRUE;
}
PIXMAN_EXPORT void
pixman_image_set_source_clipping (pixman_image_t *image,
pixman_bool_t clip_sources)
{
image->common.clip_sources = clip_sources;
image_property_changed (image);
}
/* Unlike all the other property setters, this function does not
* copy the content of indexed. Doing this copying is simply
* way, way too expensive.
*/
PIXMAN_EXPORT void
pixman_image_set_indexed (pixman_image_t * image,
const pixman_indexed_t *indexed)
{
bits_image_t *bits = (bits_image_t *)image;
bits->indexed = indexed;
image_property_changed (image);
}
PIXMAN_EXPORT void
pixman_image_set_alpha_map (pixman_image_t *image,
pixman_image_t *alpha_map,
int16_t x,
int16_t y)
{
image_common_t *common = (image_common_t *)image;
return_if_fail (!alpha_map || alpha_map->type == BITS);
if (alpha_map && common->alpha_count > 0)
{
/* If this image is being used as an alpha map itself,
* then you can't give it an alpha map of its own.
*/
return;
}
if (alpha_map && alpha_map->common.alpha_map)
{
/* If the image has an alpha map of its own,
* then it can't be used as an alpha map itself
*/
return;
}
if (common->alpha_map != (bits_image_t *)alpha_map)
{
if (common->alpha_map)
{
common->alpha_map->common.alpha_count--;
pixman_image_unref ((pixman_image_t *)common->alpha_map);
}
if (alpha_map)
{
common->alpha_map = (bits_image_t *)pixman_image_ref (alpha_map);
common->alpha_map->common.alpha_count++;
}
else
{
common->alpha_map = NULL;
}
}
common->alpha_origin_x = x;
common->alpha_origin_y = y;
image_property_changed (image);
}
PIXMAN_EXPORT void
pixman_image_set_component_alpha (pixman_image_t *image,
pixman_bool_t component_alpha)
{
image->common.component_alpha = component_alpha;
image_property_changed (image);
}
PIXMAN_EXPORT pixman_bool_t
pixman_image_get_component_alpha (pixman_image_t *image)
{
return image->common.component_alpha;
}
PIXMAN_EXPORT void
pixman_image_set_accessors (pixman_image_t * image,
pixman_read_memory_func_t read_func,
pixman_write_memory_func_t write_func)
{
return_if_fail (image != NULL);
if (image->type == BITS)
{
image->bits.read_func = read_func;
image->bits.write_func = write_func;
image_property_changed (image);
}
}
PIXMAN_EXPORT uint32_t *
pixman_image_get_data (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.bits;
return NULL;
}
PIXMAN_EXPORT int
pixman_image_get_width (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.width;
return 0;
}
PIXMAN_EXPORT int
pixman_image_get_height (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.height;
return 0;
}
PIXMAN_EXPORT int
pixman_image_get_stride (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.rowstride * (int) sizeof (uint32_t);
return 0;
}
PIXMAN_EXPORT int
pixman_image_get_depth (pixman_image_t *image)
{
if (image->type == BITS)
return PIXMAN_FORMAT_DEPTH (image->bits.format);
return 0;
}
PIXMAN_EXPORT pixman_format_code_t
pixman_image_get_format (pixman_image_t *image)
{
if (image->type == BITS)
return image->bits.format;
return 0;
}
uint32_t
_pixman_image_get_solid (pixman_image_t * image,
pixman_format_code_t format)
{
uint32_t result;
_pixman_image_get_scanline_32 (image, 0, 0, 1, &result, NULL);
/* If necessary, convert RGB <--> BGR. */
if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB)
{
result = (((result & 0xff000000) >> 0) |
((result & 0x00ff0000) >> 16) |
((result & 0x0000ff00) >> 0) |
((result & 0x000000ff) << 16));
}
return result;
}