forked from KolibriOS/kolibrios
add menuetlibc sources
git-svn-id: svn://kolibrios.org@1882 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
62
programs/develop/libraries/menuetlibc/src/libm/Makefile
Executable file
62
programs/develop/libraries/menuetlibc/src/libm/Makefile
Executable file
@@ -0,0 +1,62 @@
|
||||
CFLAGS = -D_USE_LIBM_MATH_H
|
||||
CSFLAGS = $(CFLAGS)
|
||||
|
||||
THIS_SRCS = e_acosh.c e_acos.s e_asin.s e_atan2.s e_atanh.c e_cosh.c e_exp.s \
|
||||
ef_acos.c ef_acosh.c ef_asin.c ef_atan2.s ef_atanh.c ef_cosh.c ef_exp.s \
|
||||
ef_fmod.s ef_gamma.c ef_hypot.c ef_j0.c ef_j1.c ef_jn.c ef_lgamm.c ef_log10.s \
|
||||
ef_log.s e_fmod.s ef_pow.c ef_remai.s ef_rem_p.c ef_scalb.s ef_sinh.c \
|
||||
ef_sqrt.s e_gamma.c e_hypot.c e_j0.c e_j1.c e_jn.c e_lgamma.c e_log10.s \
|
||||
e_log.s e_pow.c e_remain.s e_rem_pi.c erf_gamm.c erf_lgam.c er_gamma.c \
|
||||
er_lgamm.c e_scalb.s e_sinh.c e_sqrt.s k_cos.c kf_cos.c kf_rem_p.c kf_sin.c \
|
||||
kf_tan.c k_rem_pi.c k_sin.c k_standa.c k_tan.c s_asinh.c s_atan.s s_cbrt.c \
|
||||
s_ceil.s s_copysi.s s_cos.s s_erf.c s_expm1.s s_fabs.c sf_asinh.c sf_atan.s \
|
||||
sf_cbrt.c sf_ceil.s sf_copys.s sf_cos.s sf_erf.c sf_expm1.s sf_fabs.c \
|
||||
sf_finit.s sf_floor.s sf_frexp.c sf_ilogb.s s_finite.s sf_isinf.c sf_isnan.c \
|
||||
sf_ldexp.c sf_log1p.s sf_logb.s s_floor.s sf_modf.c sf_nexta.c s_frexp.c \
|
||||
sf_rint.s sf_scalb.s sf_signi.s sf_sin.s sf_tanh.c sf_tan.s s_ilogb.s s_infini.c \
|
||||
s_isinf.c s_isnan.c s_ldexp.c s_libver.c s_log1p.s s_logb.s s_mather.c \
|
||||
s_modf.c s_nextaf.c s_rint.s s_scalbn.s s_signga.c s_signif.s s_sin.s \
|
||||
s_tanh.c s_tan.s w_acos.c w_acosh.c w_asin.c w_atan2.c w_atanh.c \
|
||||
w_cabs.c w_cosh.c w_drem.c w_exp.c wf_acos.c wf_acosh.c wf_asin.c \
|
||||
wf_atan2.c wf_atanh.c wf_cabs.c wf_cosh.c wf_drem.c wf_exp.c wf_fmod.c \
|
||||
wf_gamma.c wf_hypot.c wf_j0.c wf_j1.c wf_jn.c wf_lgamm.c wf_log10.c wf_log.c \
|
||||
w_fmod.c wf_pow.c wf_remai.c wf_scalb.c wf_sinh.c wf_sqrt.c w_gamma.c w_hypot.c \
|
||||
w_j0.c w_j1.c w_jn.c w_lgamma.c w_log10.c w_log.c w_pow.c w_remain.c \
|
||||
wrf_gamm.c wrf_lgam.c wr_gamma.c wr_lgamm.c w_scalb.c w_sinh.c \
|
||||
w_sqrt.c
|
||||
|
||||
include $(MENUET_LIBC_TOPDIR)/Make.rules
|
||||
|
||||
mk_lib: gen_tmp all
|
||||
make -f Makefile-link OUTFILE="libm.a"
|
||||
ifdef ON_MINGW
|
||||
copy libm.a $(MENUETDEV)\lib
|
||||
del libm.a
|
||||
else
|
||||
mv -f libm.a $(MENUETDEV)/lib
|
||||
endif
|
||||
|
||||
dll: _gen_tmp all
|
||||
make -f Makefile-link-dll OUTFILE="libm.so"
|
||||
ifdef ON_MINGW
|
||||
copy libm.so $(MENUETDEV)\lib
|
||||
del libm.so
|
||||
else
|
||||
mv -f libm.so $(MENUETDEV)/lib
|
||||
endif
|
||||
|
||||
_gen_tmp:
|
||||
ifdef ON_MINGW
|
||||
@$(D_ECHO) > ..\tmp_make
|
||||
else
|
||||
@$(D_ECHO) > ../tmp_make
|
||||
endif
|
||||
|
||||
gen_tmp:
|
||||
ifdef ON_MINGW
|
||||
@echo foo = bar> ../tmp_make
|
||||
@..\m_echo ..\tmp_make B_MENUET_LIBC_OBJS =
|
||||
else
|
||||
@echo "foo = bar" > ../tmp_make
|
||||
@../m_echo ../tmp_make B_MENUET_LIBC_OBJS =
|
||||
endif
|
4
programs/develop/libraries/menuetlibc/src/libm/Makefile-link
Executable file
4
programs/develop/libraries/menuetlibc/src/libm/Makefile-link
Executable file
@@ -0,0 +1,4 @@
|
||||
include ../tmp_make
|
||||
|
||||
all:
|
||||
ar rcs $(OUTFILE) $(B_MENUET_LIBC_OBJS)
|
2
programs/develop/libraries/menuetlibc/src/libm/Makefile-link-dll
Executable file
2
programs/develop/libraries/menuetlibc/src/libm/Makefile-link-dll
Executable file
@@ -0,0 +1,2 @@
|
||||
all:
|
||||
ld -r -d -Bdynamic -o $(OUTFILE) @../tmp_make
|
12
programs/develop/libraries/menuetlibc/src/libm/e_acos.s
Executable file
12
programs/develop/libraries/menuetlibc/src/libm/e_acos.s
Executable file
@@ -0,0 +1,12 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_acos)
|
||||
fldl 4(%esp)
|
||||
fst %st(1)
|
||||
fmul %st(0)
|
||||
fld1
|
||||
fsubp
|
||||
fsqrt
|
||||
fxch %st(1)
|
||||
fpatan
|
||||
ret
|
70
programs/develop/libraries/menuetlibc/src/libm/e_acosh.c
Executable file
70
programs/develop/libraries/menuetlibc/src/libm/e_acosh.c
Executable file
@@ -0,0 +1,70 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_acosh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_acosh.c,v 1.6 1994/08/18 23:04:54 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_acosh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* acosh(x) = log [ x + sqrt(x*x-1) ]
|
||||
* we have
|
||||
* acosh(x) := log(x)+ln2, if x is large; else
|
||||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
||||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
||||
*
|
||||
* Special cases:
|
||||
* acosh(x) is NaN with signal if x<1.
|
||||
* acosh(NaN) is NaN without signal.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one = 1.0,
|
||||
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_acosh(double x)
|
||||
#else
|
||||
double __ieee754_acosh(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double t;
|
||||
int32_t hx;
|
||||
u_int32_t lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
if(hx<0x3ff00000) { /* x < 1 */
|
||||
return (x-x)/(x-x);
|
||||
} else if(hx >=0x41b00000) { /* x > 2**28 */
|
||||
if(hx >=0x7ff00000) { /* x is inf of NaN */
|
||||
return x+x;
|
||||
} else
|
||||
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
|
||||
} else if(((hx-0x3ff00000)|lx)==0) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
|
||||
t=x*x;
|
||||
return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
|
||||
} else { /* 1<x<2 */
|
||||
t = x-one;
|
||||
return log1p(t+sqrt(2.0*t+t*t));
|
||||
}
|
||||
}
|
11
programs/develop/libraries/menuetlibc/src/libm/e_asin.s
Executable file
11
programs/develop/libraries/menuetlibc/src/libm/e_asin.s
Executable file
@@ -0,0 +1,11 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_asin)
|
||||
fldl 4(%esp)
|
||||
fst %st(1)
|
||||
fmul %st(0)
|
||||
fld1
|
||||
fsubp
|
||||
fsqrt
|
||||
fpatan
|
||||
ret
|
7
programs/develop/libraries/menuetlibc/src/libm/e_atan2.s
Executable file
7
programs/develop/libraries/menuetlibc/src/libm/e_atan2.s
Executable file
@@ -0,0 +1,7 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_atan2)
|
||||
fldl 4(%esp)
|
||||
fldl 12(%esp)
|
||||
fpatan
|
||||
ret
|
75
programs/develop/libraries/menuetlibc/src/libm/e_atanh.c
Executable file
75
programs/develop/libraries/menuetlibc/src/libm/e_atanh.c
Executable file
@@ -0,0 +1,75 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_atanh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_atanh.c,v 1.6 1994/08/18 23:05:12 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_atanh(x)
|
||||
* Method :
|
||||
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
|
||||
* 2.For x>=0.5
|
||||
* 1 2x x
|
||||
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
||||
* 2 1 - x 1 - x
|
||||
*
|
||||
* For x<0.5
|
||||
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
||||
*
|
||||
* Special cases:
|
||||
* atanh(x) is NaN if |x| > 1 with signal;
|
||||
* atanh(NaN) is that NaN with no signal;
|
||||
* atanh(+-1) is +-INF with signal.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one = 1.0, huge = 1e300;
|
||||
#else
|
||||
static double one = 1.0, huge = 1e300;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero = 0.0;
|
||||
#else
|
||||
static double zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_atanh(double x)
|
||||
#else
|
||||
double __ieee754_atanh(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double t;
|
||||
int32_t hx,ix;
|
||||
u_int32_t lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
|
||||
return (x-x)/(x-x);
|
||||
if(ix==0x3ff00000)
|
||||
return x/zero;
|
||||
if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
|
||||
SET_HIGH_WORD(x,ix);
|
||||
if(ix<0x3fe00000) { /* x < 0.5 */
|
||||
t = x+x;
|
||||
t = 0.5*log1p(t+t*x/(one-x));
|
||||
} else
|
||||
t = 0.5*log1p((x+x)/(one-x));
|
||||
if(hx>=0) return t; else return -t;
|
||||
}
|
94
programs/develop/libraries/menuetlibc/src/libm/e_cosh.c
Executable file
94
programs/develop/libraries/menuetlibc/src/libm/e_cosh.c
Executable file
@@ -0,0 +1,94 @@
|
||||
/* Copyright (C) 1995 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_cosh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_cosh.c,v 1.5 1994/08/18 23:05:15 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_cosh(x)
|
||||
* Method :
|
||||
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
|
||||
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
|
||||
* 2.
|
||||
* [ exp(x) - 1 ]^2
|
||||
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
|
||||
* 2*exp(x)
|
||||
*
|
||||
* exp(x) + 1/exp(x)
|
||||
* ln2/2 <= x <= 22 : cosh(x) := -------------------
|
||||
* 2
|
||||
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
|
||||
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
|
||||
* ln2ovft < x : cosh(x) := huge*huge (overflow)
|
||||
*
|
||||
* Special cases:
|
||||
* cosh(x) is |x| if x is +INF, -INF, or NaN.
|
||||
* only cosh(0)=1 is exact for finite x.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one = 1.0, half=0.5, huge = 1.0e300;
|
||||
#else
|
||||
static double one = 1.0, half=0.5, huge = 1.0e300;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_cosh(double x)
|
||||
#else
|
||||
double __ieee754_cosh(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double t,w;
|
||||
int32_t ix;
|
||||
u_int32_t lx;
|
||||
|
||||
/* High word of |x|. */
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7ff00000) return x*x;
|
||||
|
||||
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
|
||||
if(ix<0x3fd62e43) {
|
||||
t = expm1(fabs(x));
|
||||
w = one+t;
|
||||
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
|
||||
return one+(t*t)/(w+w);
|
||||
}
|
||||
|
||||
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
|
||||
if (ix < 0x40360000) {
|
||||
t = __ieee754_exp(fabs(x));
|
||||
return half*t+half/t;
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
|
||||
if (ix < 0x40862E42) return half*__ieee754_exp(fabs(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
GET_LOW_WORD(lx,x);
|
||||
if (ix<0x408633CE ||
|
||||
((ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87dU))) {
|
||||
w = __ieee754_exp(half*fabs(x));
|
||||
t = half*w;
|
||||
return t*w;
|
||||
}
|
||||
|
||||
/* |x| > overflowthresold, cosh(x) overflow */
|
||||
return huge*huge;
|
||||
}
|
15
programs/develop/libraries/menuetlibc/src/libm/e_exp.s
Executable file
15
programs/develop/libraries/menuetlibc/src/libm/e_exp.s
Executable file
@@ -0,0 +1,15 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_exp)
|
||||
fldl 4(%esp)
|
||||
fldl2e
|
||||
fmulp
|
||||
fstl %st(1)
|
||||
frndint
|
||||
fstl %st(2)
|
||||
fsubrp
|
||||
f2xm1
|
||||
fld1
|
||||
faddp
|
||||
fscale
|
||||
ret
|
10
programs/develop/libraries/menuetlibc/src/libm/e_fmod.s
Executable file
10
programs/develop/libraries/menuetlibc/src/libm/e_fmod.s
Executable file
@@ -0,0 +1,10 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_fmod)
|
||||
fldl 12(%esp)
|
||||
fldl 4(%esp)
|
||||
1: fprem
|
||||
fstsw %ax
|
||||
sahf
|
||||
jp 1b
|
||||
fstpl %st(1)
|
||||
ret
|
38
programs/develop/libraries/menuetlibc/src/libm/e_gamma.c
Executable file
38
programs/develop/libraries/menuetlibc/src/libm/e_gamma.c
Executable file
@@ -0,0 +1,38 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_gamma.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_gamma.c,v 1.4 1994/08/10 20:30:51 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_gamma(x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call __ieee754_gamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_gamma(double x)
|
||||
#else
|
||||
double __ieee754_gamma(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
return __ieee754_gamma_r(x,&signgam);
|
||||
}
|
129
programs/develop/libraries/menuetlibc/src/libm/e_hypot.c
Executable file
129
programs/develop/libraries/menuetlibc/src/libm/e_hypot.c
Executable file
@@ -0,0 +1,129 @@
|
||||
/* Copyright (C) 1995 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_hypot.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_hypot.c,v 1.6 1994/08/18 23:05:24 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_hypot(x,y)
|
||||
*
|
||||
* Method :
|
||||
* If (assume round-to-nearest) z=x*x+y*y
|
||||
* has error less than sqrt(2)/2 ulp, than
|
||||
* sqrt(z) has error less than 1 ulp (exercise).
|
||||
*
|
||||
* So, compute sqrt(x*x+y*y) with some care as
|
||||
* follows to get the error below 1 ulp:
|
||||
*
|
||||
* Assume x>y>0;
|
||||
* (if possible, set rounding to round-to-nearest)
|
||||
* 1. if x > 2y use
|
||||
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
|
||||
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
|
||||
* 2. if x <= 2y use
|
||||
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
|
||||
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
|
||||
* y1= y with lower 32 bits chopped, y2 = y-y1.
|
||||
*
|
||||
* NOTE: scaling may be necessary if some argument is too
|
||||
* large or too tiny
|
||||
*
|
||||
* Special cases:
|
||||
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
||||
* hypot(x,y) is NAN if x or y is NAN.
|
||||
*
|
||||
* Accuracy:
|
||||
* hypot(x,y) returns sqrt(x^2+y^2) with error less
|
||||
* than 1 ulps (units in the last place)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_hypot(double x, double y)
|
||||
#else
|
||||
double __ieee754_hypot(x,y)
|
||||
double x, y;
|
||||
#endif
|
||||
{
|
||||
double a=x,b=y,t1,t2,y1a,y2,w;
|
||||
int32_t j,k,ha,hb;
|
||||
|
||||
GET_HIGH_WORD(ha,x);
|
||||
ha &= 0x7fffffff;
|
||||
GET_HIGH_WORD(hb,y);
|
||||
hb &= 0x7fffffff;
|
||||
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
|
||||
SET_HIGH_WORD(a,ha); /* a <- |a| */
|
||||
SET_HIGH_WORD(b,hb); /* b <- |b| */
|
||||
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
|
||||
k=0;
|
||||
if(ha > 0x5f300000) { /* a>2**500 */
|
||||
if(ha >= 0x7ff00000) { /* Inf or NaN */
|
||||
u_int32_t low;
|
||||
w = a+b; /* for sNaN */
|
||||
GET_LOW_WORD(low,a);
|
||||
if(((ha&0xfffff)|low)==0) w = a;
|
||||
GET_LOW_WORD(low,b);
|
||||
if(((hb^0x7ff00000)|low)==0) w = b;
|
||||
return w;
|
||||
}
|
||||
/* scale a and b by 2**-600 */
|
||||
ha -= 0x25800000; hb -= 0x25800000; k += 600;
|
||||
SET_HIGH_WORD(a,ha);
|
||||
SET_HIGH_WORD(b,hb);
|
||||
}
|
||||
if(hb < 0x20b00000) { /* b < 2**-500 */
|
||||
if(hb <= 0x000fffff) { /* subnormal b or 0 */
|
||||
u_int32_t low;
|
||||
GET_LOW_WORD(low,b);
|
||||
if((hb|low)==0) return a;
|
||||
t1=0;
|
||||
SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
|
||||
b *= t1;
|
||||
a *= t1;
|
||||
k -= 1022;
|
||||
} else { /* scale a and b by 2^600 */
|
||||
ha += 0x25800000; /* a *= 2^600 */
|
||||
hb += 0x25800000; /* b *= 2^600 */
|
||||
k -= 600;
|
||||
SET_HIGH_WORD(a,ha);
|
||||
SET_HIGH_WORD(b,hb);
|
||||
}
|
||||
}
|
||||
/* medium size a and b */
|
||||
w = a-b;
|
||||
if (w>b) {
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha);
|
||||
t2 = a-t1;
|
||||
w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
} else {
|
||||
a = a+a;
|
||||
y1a = 0;
|
||||
SET_HIGH_WORD(y1a,hb);
|
||||
y2 = b - y1a;
|
||||
t1 = 0;
|
||||
SET_HIGH_WORD(t1,ha+0x00100000);
|
||||
t2 = a - t1;
|
||||
w = sqrt(t1*y1a-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if(k!=0) {
|
||||
u_int32_t high;
|
||||
t1 = 1.0;
|
||||
GET_HIGH_WORD(high,t1);
|
||||
SET_HIGH_WORD(t1,high+(k<<20));
|
||||
return t1*w;
|
||||
} else return w;
|
||||
}
|
488
programs/develop/libraries/menuetlibc/src/libm/e_j0.c
Executable file
488
programs/develop/libraries/menuetlibc/src/libm/e_j0.c
Executable file
@@ -0,0 +1,488 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_j0.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_j0.c,v 1.6 1994/08/18 23:05:29 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_j0(x), __ieee754_y0(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j0(x):
|
||||
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
|
||||
* 2. Reduce x to |x| since j0(x)=j0(-x), and
|
||||
* for x in (0,2)
|
||||
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
|
||||
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
|
||||
* for x in (2,inf)
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* as follow:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (cos(x) + sin(x))
|
||||
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j0(nan)= nan
|
||||
* j0(0) = 1
|
||||
* j0(inf) = 0
|
||||
*
|
||||
* Method -- y0(x):
|
||||
* 1. For x<2.
|
||||
* Since
|
||||
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
|
||||
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
|
||||
* We use the following function to approximate y0,
|
||||
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
|
||||
* where
|
||||
* U(z) = u00 + u01*z + ... + u06*z^6
|
||||
* V(z) = 1 + v01*z + ... + v04*z^4
|
||||
* with absolute approximation error bounded by 2**-72.
|
||||
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
|
||||
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
|
||||
* 2. For x>=2.
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* by the method mentioned above.
|
||||
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static double pzero(double), qzero(double);
|
||||
#else
|
||||
static double pzero(), qzero();
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
huge = 1e300,
|
||||
one = 1.0,
|
||||
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
/* R0/S0 on [0, 2.00] */
|
||||
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
|
||||
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
|
||||
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
|
||||
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
|
||||
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
|
||||
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
|
||||
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
|
||||
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero = 0.0;
|
||||
#else
|
||||
static double zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_j0(double x)
|
||||
#else
|
||||
double __ieee754_j0(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double z, s,c,ss,cc,r,u,v;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7ff00000) return one/(x*x);
|
||||
x = fabs(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
ss = s-c;
|
||||
cc = s+c;
|
||||
if(ix<0x7fe00000) { /* make sure x+x not overflow */
|
||||
z = -cos(x+x);
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
|
||||
else {
|
||||
u = pzero(x); v = qzero(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<0x3f200000) { /* |x| < 2**-13 */
|
||||
if(huge+x>one) { /* raise inexact if x != 0 */
|
||||
if(ix<0x3e400000) return one; /* |x|<2**-27 */
|
||||
else return one - 0.25*x*x;
|
||||
}
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
||||
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
|
||||
if(ix < 0x3FF00000) { /* |x| < 1.00 */
|
||||
return one + z*(-0.25+(r/s));
|
||||
} else {
|
||||
u = 0.5*x;
|
||||
return((one+u)*(one-u)+z*(r/s));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
|
||||
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
|
||||
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
|
||||
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
|
||||
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
|
||||
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
|
||||
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
|
||||
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
|
||||
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
|
||||
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
|
||||
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_y0(double x)
|
||||
#else
|
||||
double __ieee754_y0(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double z, s,c,ss,cc,u,v;
|
||||
int32_t hx,ix,lx;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
|
||||
if(ix>=0x7ff00000) return one/(x+x*x);
|
||||
if((ix|lx)==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
||||
* where x0 = x-pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) + cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
ss = s-c;
|
||||
cc = s+c;
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix<0x7fe00000) { /* make sure x+x not overflow */
|
||||
z = -cos(x+x);
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
|
||||
else {
|
||||
u = pzero(x); v = qzero(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<=0x3e400000) { /* x < 2**-27 */
|
||||
return(u00 + tpi*__ieee754_log(x));
|
||||
}
|
||||
z = x*x;
|
||||
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
|
||||
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
|
||||
return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
|
||||
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
|
||||
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
|
||||
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
|
||||
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double pS8[5] = {
|
||||
#else
|
||||
static double pS8[5] = {
|
||||
#endif
|
||||
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
|
||||
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
|
||||
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
|
||||
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
|
||||
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
|
||||
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
|
||||
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
|
||||
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
|
||||
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
|
||||
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double pS5[5] = {
|
||||
#else
|
||||
static double pS5[5] = {
|
||||
#endif
|
||||
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
|
||||
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
|
||||
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
|
||||
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
|
||||
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#else
|
||||
static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
|
||||
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
|
||||
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
|
||||
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
|
||||
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
|
||||
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double pS3[5] = {
|
||||
#else
|
||||
static double pS3[5] = {
|
||||
#endif
|
||||
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
|
||||
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
|
||||
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
|
||||
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
|
||||
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
|
||||
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
|
||||
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
|
||||
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
|
||||
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
|
||||
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double pS2[5] = {
|
||||
#else
|
||||
static double pS2[5] = {
|
||||
#endif
|
||||
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
|
||||
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
|
||||
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
|
||||
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
|
||||
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static double pzero(double x)
|
||||
#else
|
||||
static double pzero(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const double *p,*q;
|
||||
#else
|
||||
double *p,*q;
|
||||
#endif
|
||||
double z,r,s;
|
||||
int32_t ix;
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x40200000) {p = pR8; q= pS8;}
|
||||
else if(ix>=0x40122E8B){p = pR5; q= pS5;}
|
||||
else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
|
||||
else if(ix>=0x40000000){p = pR2; q= pS2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
|
||||
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
|
||||
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
|
||||
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
|
||||
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qS8[6] = {
|
||||
#else
|
||||
static double qS8[6] = {
|
||||
#endif
|
||||
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
|
||||
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
|
||||
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
|
||||
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
|
||||
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
|
||||
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
|
||||
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
|
||||
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
|
||||
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
|
||||
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
|
||||
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qS5[6] = {
|
||||
#else
|
||||
static double qS5[6] = {
|
||||
#endif
|
||||
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
|
||||
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
|
||||
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
|
||||
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
|
||||
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
|
||||
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#else
|
||||
static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
|
||||
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
|
||||
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
|
||||
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
|
||||
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
|
||||
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qS3[6] = {
|
||||
#else
|
||||
static double qS3[6] = {
|
||||
#endif
|
||||
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
|
||||
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
|
||||
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
|
||||
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
|
||||
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
|
||||
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
|
||||
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
|
||||
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
|
||||
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
|
||||
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
|
||||
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qS2[6] = {
|
||||
#else
|
||||
static double qS2[6] = {
|
||||
#endif
|
||||
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
|
||||
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
|
||||
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
|
||||
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
|
||||
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
|
||||
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static double qzero(double x)
|
||||
#else
|
||||
static double qzero(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const double *p,*q;
|
||||
#else
|
||||
double *p,*q;
|
||||
#endif
|
||||
double s,r,z;
|
||||
int32_t ix;
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x40200000) {p = qR8; q= qS8;}
|
||||
else if(ix>=0x40122E8B){p = qR5; q= qS5;}
|
||||
else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
|
||||
else if(ix>=0x40000000){p = qR2; q= qS2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return (-.125 + r/s)/x;
|
||||
}
|
487
programs/develop/libraries/menuetlibc/src/libm/e_j1.c
Executable file
487
programs/develop/libraries/menuetlibc/src/libm/e_j1.c
Executable file
@@ -0,0 +1,487 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_j1.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_j1.c,v 1.6 1994/08/18 23:05:33 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_j1(x), __ieee754_y1(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j1(x):
|
||||
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
||||
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
||||
* for x in (0,2)
|
||||
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
||||
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
||||
* for x in (2,inf)
|
||||
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* as follow:
|
||||
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (sin(x) + cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j1(nan)= nan
|
||||
* j1(0) = 0
|
||||
* j1(inf) = 0
|
||||
*
|
||||
* Method -- y1(x):
|
||||
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
||||
* 2. For x<2.
|
||||
* Since
|
||||
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
||||
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
||||
* We use the following function to approximate y1,
|
||||
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
||||
* where for x in [0,2] (abs err less than 2**-65.89)
|
||||
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
|
||||
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
|
||||
* Note: For tiny x, 1/x dominate y1 and hence
|
||||
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
|
||||
* 3. For x>=2.
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* by method mentioned above.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static double pone(double), qone(double);
|
||||
#else
|
||||
static double pone(), qone();
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
huge = 1e300,
|
||||
one = 1.0,
|
||||
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
/* R0/S0 on [0,2] */
|
||||
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
|
||||
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
|
||||
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
|
||||
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
|
||||
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
|
||||
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
|
||||
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
|
||||
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
|
||||
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero = 0.0;
|
||||
#else
|
||||
static double zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_j1(double x)
|
||||
#else
|
||||
double __ieee754_j1(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double z, s,c,ss,cc,r,u,v,y;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7ff00000) return one/x;
|
||||
y = fabs(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sin(y);
|
||||
c = cos(y);
|
||||
ss = -s-c;
|
||||
cc = s-c;
|
||||
if(ix<0x7fe00000) { /* make sure y+y not overflow */
|
||||
z = cos(y+y);
|
||||
if ((s*c)>zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/*
|
||||
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);
|
||||
else {
|
||||
u = pone(y); v = qone(y);
|
||||
z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
|
||||
}
|
||||
if(hx<0) return -z;
|
||||
else return z;
|
||||
}
|
||||
if(ix<0x3e400000) { /* |x|<2**-27 */
|
||||
if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(r00+z*(r01+z*(r02+z*r03)));
|
||||
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
|
||||
r *= x;
|
||||
return(x*0.5+r/s);
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double U0[5] = {
|
||||
#else
|
||||
static double U0[5] = {
|
||||
#endif
|
||||
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
|
||||
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
|
||||
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
|
||||
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
|
||||
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double V0[5] = {
|
||||
#else
|
||||
static double V0[5] = {
|
||||
#endif
|
||||
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
|
||||
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
|
||||
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
|
||||
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
|
||||
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_y1(double x)
|
||||
#else
|
||||
double __ieee754_y1(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double z, s,c,ss,cc,u,v;
|
||||
int32_t hx,ix,lx;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
||||
if(ix>=0x7ff00000) return one/(x+x*x);
|
||||
if((ix|lx)==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
ss = -s-c;
|
||||
cc = s-c;
|
||||
if(ix<0x7fe00000) { /* make sure x+x not overflow */
|
||||
z = cos(x+x);
|
||||
if ((s*c)>zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
||||
* where x0 = x-3pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (cos(x) + sin(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
|
||||
else {
|
||||
u = pone(x); v = qone(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<=0x3c900000) { /* x < 2**-54 */
|
||||
return(-tpi/x);
|
||||
}
|
||||
z = x*x;
|
||||
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
|
||||
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
|
||||
return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
|
||||
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
|
||||
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
|
||||
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
|
||||
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double ps8[5] = {
|
||||
#else
|
||||
static double ps8[5] = {
|
||||
#endif
|
||||
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
|
||||
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
|
||||
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
|
||||
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
|
||||
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
|
||||
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
|
||||
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
|
||||
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
|
||||
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
|
||||
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double ps5[5] = {
|
||||
#else
|
||||
static double ps5[5] = {
|
||||
#endif
|
||||
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
|
||||
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
|
||||
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
|
||||
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
|
||||
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double pr3[6] = {
|
||||
#else
|
||||
static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
|
||||
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
|
||||
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
|
||||
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
|
||||
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
|
||||
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double ps3[5] = {
|
||||
#else
|
||||
static double ps3[5] = {
|
||||
#endif
|
||||
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
|
||||
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
|
||||
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
|
||||
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
|
||||
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
|
||||
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
|
||||
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
|
||||
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
|
||||
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
|
||||
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double ps2[5] = {
|
||||
#else
|
||||
static double ps2[5] = {
|
||||
#endif
|
||||
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
|
||||
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
|
||||
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
|
||||
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
|
||||
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static double pone(double x)
|
||||
#else
|
||||
static double pone(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const double *p,*q;
|
||||
#else
|
||||
double *p,*q;
|
||||
#endif
|
||||
double z,r,s;
|
||||
int32_t ix;
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x40200000) {p = pr8; q= ps8;}
|
||||
else if(ix>=0x40122E8B){p = pr5; q= ps5;}
|
||||
else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
|
||||
else if(ix>=0x40000000){p = pr2; q= ps2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
|
||||
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
|
||||
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
|
||||
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
|
||||
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qs8[6] = {
|
||||
#else
|
||||
static double qs8[6] = {
|
||||
#endif
|
||||
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
|
||||
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
|
||||
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
|
||||
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
|
||||
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
|
||||
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
|
||||
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
|
||||
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
|
||||
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
|
||||
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
|
||||
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qs5[6] = {
|
||||
#else
|
||||
static double qs5[6] = {
|
||||
#endif
|
||||
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
|
||||
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
|
||||
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
|
||||
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
|
||||
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
|
||||
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double qr3[6] = {
|
||||
#else
|
||||
static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
|
||||
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
|
||||
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
|
||||
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
|
||||
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
|
||||
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qs3[6] = {
|
||||
#else
|
||||
static double qs3[6] = {
|
||||
#endif
|
||||
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
|
||||
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
|
||||
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
|
||||
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
|
||||
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
|
||||
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
|
||||
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
|
||||
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
|
||||
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
|
||||
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
|
||||
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const double qs2[6] = {
|
||||
#else
|
||||
static double qs2[6] = {
|
||||
#endif
|
||||
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
|
||||
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
|
||||
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
|
||||
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
|
||||
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
|
||||
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static double qone(double x)
|
||||
#else
|
||||
static double qone(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const double *p,*q;
|
||||
#else
|
||||
double *p,*q;
|
||||
#endif
|
||||
double s,r,z;
|
||||
int32_t ix;
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x40200000) {p = qr8; q= qs8;}
|
||||
else if(ix>=0x40122E8B){p = qr5; q= qs5;}
|
||||
else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
|
||||
else if(ix>=0x40000000){p = qr2; q= qs2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return (.375 + r/s)/x;
|
||||
}
|
282
programs/develop/libraries/menuetlibc/src/libm/e_jn.c
Executable file
282
programs/develop/libraries/menuetlibc/src/libm/e_jn.c
Executable file
@@ -0,0 +1,282 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_jn.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_jn.c,v 1.6 1994/08/18 23:05:37 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* __ieee754_jn(n, x), __ieee754_yn(n, x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
* Note 2. About jn(n,x), yn(n,x)
|
||||
* For n=0, j0(x) is called,
|
||||
* for n=1, j1(x) is called,
|
||||
* for n<x, forward recursion us used starting
|
||||
* from values of j0(x) and j1(x).
|
||||
* for n>x, a continued fraction approximation to
|
||||
* j(n,x)/j(n-1,x) is evaluated and then backward
|
||||
* recursion is used starting from a supposed value
|
||||
* for j(n,x). The resulting value of j(0,x) is
|
||||
* compared with the actual value to correct the
|
||||
* supposed value of j(n,x).
|
||||
*
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
||||
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero = 0.00000000000000000000e+00;
|
||||
#else
|
||||
static double zero = 0.00000000000000000000e+00;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_jn(int n, double x)
|
||||
#else
|
||||
double __ieee754_jn(n,x)
|
||||
int n; double x;
|
||||
#endif
|
||||
{
|
||||
int32_t i,hx,ix,lx, sgn;
|
||||
double a, b, temp, di;
|
||||
double z, w;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
* Thus, J(-n,x) = J(n,-x)
|
||||
*/
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if J(n,NaN) is NaN */
|
||||
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
|
||||
if(n<0){
|
||||
n = -n;
|
||||
x = -x;
|
||||
hx ^= 0x80000000;
|
||||
}
|
||||
if(n==0) return(__ieee754_j0(x));
|
||||
if(n==1) return(__ieee754_j1(x));
|
||||
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabs(x);
|
||||
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if((double)n<=x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if(ix>=0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(n&3) {
|
||||
case 0: temp = cos(x)+sin(x); break;
|
||||
case 1: temp = -cos(x)+sin(x); break;
|
||||
case 2: temp = -cos(x)-sin(x); break;
|
||||
case 3: temp = cos(x)-sin(x); break;
|
||||
}
|
||||
b = invsqrtpi*temp/sqrt(x);
|
||||
} else {
|
||||
a = __ieee754_j0(x);
|
||||
b = __ieee754_j1(x);
|
||||
for(i=1;i<n;i++){
|
||||
temp = b;
|
||||
b = b*((double)(i+i)/x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if(ix<0x3e100000) { /* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if(n>33) /* underflow */
|
||||
b = zero;
|
||||
else {
|
||||
temp = x*0.5; b = temp;
|
||||
for (a=one,i=2;i<=n;i++) {
|
||||
a *= (double)i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b/a;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
double t,v;
|
||||
double q0,q1,h,tmp; int32_t k,m;
|
||||
w = (n+n)/(double)x; h = 2.0/(double)x;
|
||||
q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
|
||||
while(q1<1.0e9) {
|
||||
k += 1; z += h;
|
||||
tmp = z*q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n+n;
|
||||
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two/x;
|
||||
tmp = tmp*__ieee754_log(fabs(v*tmp));
|
||||
if(tmp<7.09782712893383973096e+02) {
|
||||
for(i=n-1,di=(double)(i+i);i>0;i--){
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b/x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
} else {
|
||||
for(i=n-1,di=(double)(i+i);i>0;i--){
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b/x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if(b>1e100) {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
b = (t*__ieee754_j0(x)/b);
|
||||
}
|
||||
}
|
||||
if(sgn==1) return -b; else return b;
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_yn(int n, double x)
|
||||
#else
|
||||
double __ieee754_yn(n,x)
|
||||
int n; double x;
|
||||
#endif
|
||||
{
|
||||
int32_t i,hx,ix,lx;
|
||||
int32_t sign;
|
||||
double a, b, temp;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if Y(n,NaN) is NaN */
|
||||
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
|
||||
if((ix|lx)==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
sign = 1;
|
||||
if(n<0){
|
||||
n = -n;
|
||||
sign = 1 - ((n&1)<<2);
|
||||
}
|
||||
if(n==0) return(__ieee754_y0(x));
|
||||
if(n==1) return(sign*__ieee754_y1(x));
|
||||
if(ix==0x7ff00000) return zero;
|
||||
if(ix>=0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(n&3) {
|
||||
case 0: temp = sin(x)-cos(x); break;
|
||||
case 1: temp = -sin(x)-cos(x); break;
|
||||
case 2: temp = -sin(x)+cos(x); break;
|
||||
case 3: temp = sin(x)+cos(x); break;
|
||||
}
|
||||
b = invsqrtpi*temp/sqrt(x);
|
||||
} else {
|
||||
u_int32_t high;
|
||||
a = __ieee754_y0(x);
|
||||
b = __ieee754_y1(x);
|
||||
/* quit if b is -inf */
|
||||
GET_HIGH_WORD(high,b);
|
||||
for(i=1;i<n&&high!=0xfff00000;i++){
|
||||
temp = b;
|
||||
b = ((double)(i+i)/x)*b - a;
|
||||
GET_HIGH_WORD(high,b);
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
if(sign>0) return b; else return -b;
|
||||
}
|
37
programs/develop/libraries/menuetlibc/src/libm/e_lgamma.c
Executable file
37
programs/develop/libraries/menuetlibc/src/libm/e_lgamma.c
Executable file
@@ -0,0 +1,37 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_lgamma.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_lgamma.c,v 1.4 1994/08/10 20:31:05 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_lgamma(x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call __ieee754_lgamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_lgamma(double x)
|
||||
#else
|
||||
double __ieee754_lgamma(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
return __ieee754_lgamma_r(x,&signgam);
|
||||
}
|
7
programs/develop/libraries/menuetlibc/src/libm/e_log.s
Executable file
7
programs/develop/libraries/menuetlibc/src/libm/e_log.s
Executable file
@@ -0,0 +1,7 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_log)
|
||||
fldln2
|
||||
fldl 4(%esp)
|
||||
fyl2x
|
||||
ret
|
6
programs/develop/libraries/menuetlibc/src/libm/e_log10.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/e_log10.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_log10)
|
||||
fldlg2
|
||||
fldl 4(%esp)
|
||||
fyl2x
|
||||
ret
|
309
programs/develop/libraries/menuetlibc/src/libm/e_pow.c
Executable file
309
programs/develop/libraries/menuetlibc/src/libm/e_pow.c
Executable file
@@ -0,0 +1,309 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_pow.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_pow.c,v 1.6 1994/09/13 00:40:33 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_pow(x,y) return x**y
|
||||
*
|
||||
* n
|
||||
* Method: Let x = 2 * (1+f)
|
||||
* 1. Compute and return log2(x) in two pieces:
|
||||
* log2(x) = w1 + w2,
|
||||
* where w1 has 53-24 = 29 bit trailing zeros.
|
||||
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
||||
* arithmetic, where |y'|<=0.5.
|
||||
* 3. Return x**y = 2**n*exp(y'*log2)
|
||||
*
|
||||
* Special cases:
|
||||
* 1. (anything) ** 0 is 1
|
||||
* 2. (anything) ** 1 is itself
|
||||
* 3. (anything) ** NAN is NAN
|
||||
* 4. NAN ** (anything except 0) is NAN
|
||||
* 5. +-(|x| > 1) ** +INF is +INF
|
||||
* 6. +-(|x| > 1) ** -INF is +0
|
||||
* 7. +-(|x| < 1) ** +INF is +0
|
||||
* 8. +-(|x| < 1) ** -INF is +INF
|
||||
* 9. +-1 ** +-INF is NAN
|
||||
* 10. +0 ** (+anything except 0, NAN) is +0
|
||||
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
||||
* 12. +0 ** (-anything except 0, NAN) is +INF
|
||||
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
||||
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
||||
* 15. +INF ** (+anything except 0,NAN) is +INF
|
||||
* 16. +INF ** (-anything except 0,NAN) is +0
|
||||
* 17. -INF ** (anything) = -0 ** (-anything)
|
||||
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
||||
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
||||
*
|
||||
* Accuracy:
|
||||
* pow(x,y) returns x**y nearly rounded. In particular
|
||||
* pow(integer,integer)
|
||||
* always returns the correct integer provided it is
|
||||
* representable.
|
||||
*
|
||||
* Constants :
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
bp[] = {1.0, 1.5,},
|
||||
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
||||
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two = 2.0,
|
||||
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
||||
huge = 1.0e300,
|
||||
tiny = 1.0e-300,
|
||||
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
||||
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
||||
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
||||
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
||||
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
||||
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
||||
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
||||
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||||
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||||
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||||
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
||||
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||||
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
||||
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
||||
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
||||
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
||||
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
||||
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
||||
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
||||
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
||||
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_pow(double x, double y)
|
||||
#else
|
||||
double __ieee754_pow(x,y)
|
||||
double x, y;
|
||||
#endif
|
||||
{
|
||||
double z,ax,z_h,z_l,p_h,p_l;
|
||||
double y1,t1,t2,r,s,t,u,v,w;
|
||||
int32_t i,j,k,yisint,n;
|
||||
int32_t hx,hy,ix,iy;
|
||||
u_int32_t lx,ly;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
EXTRACT_WORDS(hy,ly,y);
|
||||
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
||||
|
||||
/* y==zero: x**0 = 1 */
|
||||
if((iy|ly)==0) return one;
|
||||
|
||||
/* +-NaN return x+y */
|
||||
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
||||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
||||
return x+y;
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
* yisint = 1 ... y is an odd int
|
||||
* yisint = 2 ... y is an even int
|
||||
*/
|
||||
yisint = 0;
|
||||
if(hx<0) {
|
||||
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
||||
else if(iy>=0x3ff00000) {
|
||||
k = (iy>>20)-0x3ff; /* exponent */
|
||||
if(k>20) {
|
||||
j = ly>>(52-k);
|
||||
if((j<<(52-k))==ly) yisint = 2-(j&1);
|
||||
} else if(ly==0) {
|
||||
j = iy>>(20-k);
|
||||
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* special value of y */
|
||||
if(ly==0) {
|
||||
if (iy==0x7ff00000) { /* y is +-inf */
|
||||
if(((ix-0x3ff00000)|lx)==0)
|
||||
return y - y; /* inf**+-1 is NaN */
|
||||
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
|
||||
return (hy>=0)? y: zero;
|
||||
else /* (|x|<1)**-,+inf = inf,0 */
|
||||
return (hy<0)?-y: zero;
|
||||
}
|
||||
if(iy==0x3ff00000) { /* y is +-1 */
|
||||
if(hy<0) return one/x; else return x;
|
||||
}
|
||||
if(hy==0x40000000) return x*x; /* y is 2 */
|
||||
if(hy==0x3fe00000) { /* y is 0.5 */
|
||||
if(hx>=0) /* x >= +0 */
|
||||
return sqrt(x);
|
||||
}
|
||||
}
|
||||
|
||||
ax = fabs(x);
|
||||
/* special value of x */
|
||||
if(lx==0) {
|
||||
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
||||
z = ax; /*x is +-0,+-inf,+-1*/
|
||||
if(hy<0) z = one/z; /* z = (1/|x|) */
|
||||
if(hx<0) {
|
||||
if(((ix-0x3ff00000)|yisint)==0) {
|
||||
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
||||
} else if(yisint==1)
|
||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||||
}
|
||||
return z;
|
||||
}
|
||||
}
|
||||
|
||||
/* (x<0)**(non-int) is NaN */
|
||||
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
|
||||
|
||||
/* |y| is huge */
|
||||
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
||||
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
||||
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
||||
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
||||
}
|
||||
/* over/underflow if x is not close to one */
|
||||
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
||||
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
||||
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
||||
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
||||
t = x-1; /* t has 20 trailing zeros */
|
||||
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
||||
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
||||
v = t*ivln2_l-w*ivln2;
|
||||
t1 = u+v;
|
||||
SET_LOW_WORD(t1,0);
|
||||
t2 = v-(t1-u);
|
||||
} else {
|
||||
double s2,s_h,s_l,t_h,t_l;
|
||||
n = 0;
|
||||
/* take care subnormal number */
|
||||
if(ix<0x00100000)
|
||||
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
|
||||
n += ((ix)>>20)-0x3ff;
|
||||
j = ix&0x000fffff;
|
||||
/* determine interval */
|
||||
ix = j|0x3ff00000; /* normalize ix */
|
||||
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
||||
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
||||
else {k=0;n+=1;ix -= 0x00100000;}
|
||||
SET_HIGH_WORD(ax,ix);
|
||||
|
||||
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
||||
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
||||
v = one/(ax+bp[k]);
|
||||
s = u*v;
|
||||
s_h = s;
|
||||
SET_LOW_WORD(s_h,0);
|
||||
/* t_h=ax+bp[k] High */
|
||||
t_h = zero;
|
||||
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
|
||||
t_l = ax - (t_h-bp[k]);
|
||||
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
||||
/* compute log(ax) */
|
||||
s2 = s*s;
|
||||
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
||||
r += s_l*(s_h+s);
|
||||
s2 = s_h*s_h;
|
||||
t_h = 3.0+s2+r;
|
||||
SET_LOW_WORD(t_h,0);
|
||||
t_l = r-((t_h-3.0)-s2);
|
||||
/* u+v = s*(1+...) */
|
||||
u = s_h*t_h;
|
||||
v = s_l*t_h+t_l*s;
|
||||
/* 2/(3log2)*(s+...) */
|
||||
p_h = u+v;
|
||||
SET_LOW_WORD(p_h,0);
|
||||
p_l = v-(p_h-u);
|
||||
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
||||
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
||||
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
||||
t = (double)n;
|
||||
t1 = (((z_h+z_l)+dp_h[k])+t);
|
||||
SET_LOW_WORD(t1,0);
|
||||
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
||||
}
|
||||
|
||||
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
||||
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
|
||||
s = -one;/* (-ve)**(odd int) */
|
||||
|
||||
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
||||
y1 = y;
|
||||
SET_LOW_WORD(y1,0);
|
||||
p_l = (y-y1)*t1+y*t2;
|
||||
p_h = y1*t1;
|
||||
z = p_l+p_h;
|
||||
EXTRACT_WORDS(j,i,z);
|
||||
if (j>=0x40900000) { /* z >= 1024 */
|
||||
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
||||
return s*huge*huge; /* overflow */
|
||||
else {
|
||||
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
||||
}
|
||||
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
||||
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
||||
return s*tiny*tiny; /* underflow */
|
||||
else {
|
||||
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
||||
}
|
||||
}
|
||||
/*
|
||||
* compute 2**(p_h+p_l)
|
||||
*/
|
||||
i = j&0x7fffffff;
|
||||
k = (i>>20)-0x3ff;
|
||||
n = 0;
|
||||
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
||||
n = j+(0x00100000>>(k+1));
|
||||
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
||||
t = zero;
|
||||
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
|
||||
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
||||
if(j<0) n = -n;
|
||||
p_h -= t;
|
||||
}
|
||||
t = p_l+p_h;
|
||||
SET_LOW_WORD(t,0);
|
||||
u = t*lg2_h;
|
||||
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
||||
z = u+v;
|
||||
w = v-(z-u);
|
||||
t = z*z;
|
||||
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
r = (z*t1)/(t1-two)-(w+z*w);
|
||||
z = one-(r-z);
|
||||
GET_HIGH_WORD(j,z);
|
||||
j += (n<<20);
|
||||
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
|
||||
else SET_HIGH_WORD(z,j);
|
||||
return s*z;
|
||||
}
|
159
programs/develop/libraries/menuetlibc/src/libm/e_rem_pi.c
Executable file
159
programs/develop/libraries/menuetlibc/src/libm/e_rem_pi.c
Executable file
@@ -0,0 +1,159 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_rem_pio2.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_rem_pio2.c,v 1.5 1994/08/18 23:05:56 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_rem_pio2(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2()
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const int32_t two_over_pi[] = {
|
||||
#else
|
||||
static int32_t two_over_pi[] = {
|
||||
#endif
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
||||
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
||||
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
||||
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
||||
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
||||
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
||||
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const int32_t npio2_hw[] = {
|
||||
#else
|
||||
static int32_t npio2_hw[] = {
|
||||
#endif
|
||||
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
|
||||
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
|
||||
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
|
||||
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
|
||||
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
|
||||
0x404858EB, 0x404921FB,
|
||||
};
|
||||
|
||||
/*
|
||||
* invpio2: 53 bits of 2/pi
|
||||
* pio2_1: first 33 bit of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 33 bit of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 33 bit of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
||||
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
||||
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
||||
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
||||
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
||||
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
|
||||
#ifdef __STDC__
|
||||
int32_t __ieee754_rem_pio2(double x, double *y)
|
||||
#else
|
||||
int32_t __ieee754_rem_pio2(x,y)
|
||||
double x,y[];
|
||||
#endif
|
||||
{
|
||||
double z,w,t,r,fn;
|
||||
double tx[3];
|
||||
int32_t e0,i,j,nx,n,ix,hx;
|
||||
u_int32_t low;
|
||||
|
||||
GET_HIGH_WORD(hx,x); /* high word of x */
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
|
||||
{y[0] = x; y[1] = 0; return 0;}
|
||||
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
|
||||
t = fabs(x);
|
||||
n = (int32_t) (t*invpio2+half);
|
||||
fn = (double)n;
|
||||
r = t-fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round good to 85 bit */
|
||||
if(n<32&&ix!=npio2_hw[n-1]) {
|
||||
y[0] = r-w; /* quick check no cancellation */
|
||||
} else {
|
||||
u_int32_t high;
|
||||
j = ix>>20;
|
||||
y[0] = r-w;
|
||||
GET_HIGH_WORD(high,y[0]);
|
||||
i = j-((high>>20)&0x7ff);
|
||||
if(i>16) { /* 2nd iteration needed, good to 118 */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t-w;
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
GET_HIGH_WORD(high,y[0]);
|
||||
i = j-((high>>20)&0x7ff);
|
||||
if(i>49) { /* 3rd iteration need, 151 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn*pio2_3;
|
||||
r = t-w;
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r-y[0])-w;
|
||||
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
||||
else return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(ix>=0x7ff00000) { /* x is inf or NaN */
|
||||
y[0]=y[1]=x-x; return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,ilogb(x)-23) */
|
||||
GET_LOW_WORD(low,x);
|
||||
SET_LOW_WORD(z,low);
|
||||
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
|
||||
SET_HIGH_WORD(z, ix - ((int32_t)(e0<<20)));
|
||||
for(i=0;i<2;i++) {
|
||||
tx[i] = (double)((int32_t)(z));
|
||||
z = (z-tx[i])*two24;
|
||||
}
|
||||
tx[2] = z;
|
||||
nx = 3;
|
||||
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
||||
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
|
||||
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
||||
return n;
|
||||
}
|
11
programs/develop/libraries/menuetlibc/src/libm/e_remain.s
Executable file
11
programs/develop/libraries/menuetlibc/src/libm/e_remain.s
Executable file
@@ -0,0 +1,11 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_remainder)
|
||||
fldl 12(%esp)
|
||||
fldl 4(%esp)
|
||||
1: fprem1
|
||||
fstsw %ax
|
||||
sahf
|
||||
jp 1b
|
||||
fstpl %st(1)
|
||||
ret
|
6
programs/develop/libraries/menuetlibc/src/libm/e_scalb.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/e_scalb.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_scalb)
|
||||
fldl 12(%esp)
|
||||
fldl 4(%esp)
|
||||
fscale
|
||||
ret
|
87
programs/develop/libraries/menuetlibc/src/libm/e_sinh.c
Executable file
87
programs/develop/libraries/menuetlibc/src/libm/e_sinh.c
Executable file
@@ -0,0 +1,87 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)e_sinh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_sinh.c,v 1.5 1994/08/18 23:06:03 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_sinh(x)
|
||||
* Method :
|
||||
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
|
||||
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
|
||||
* 2.
|
||||
* E + E/(E+1)
|
||||
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
|
||||
* 2
|
||||
*
|
||||
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
|
||||
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
|
||||
* ln2ovft < x : sinh(x) := x*shuge (overflow)
|
||||
*
|
||||
* Special cases:
|
||||
* sinh(x) is |x| if x is +INF, -INF, or NaN.
|
||||
* only sinh(0)=0 is exact for finite x.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one = 1.0, shuge = 1.0e307;
|
||||
#else
|
||||
static double one = 1.0, shuge = 1.0e307;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_sinh(double x)
|
||||
#else
|
||||
double __ieee754_sinh(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double t,w,h;
|
||||
int32_t ix,jx;
|
||||
u_int32_t lx;
|
||||
|
||||
/* High word of |x|. */
|
||||
GET_HIGH_WORD(jx,x);
|
||||
ix = jx&0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7ff00000) return x+x;
|
||||
|
||||
h = 0.5;
|
||||
if (jx<0) h = -h;
|
||||
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
|
||||
if (ix < 0x40360000) { /* |x|<22 */
|
||||
if (ix<0x3e300000) /* |x|<2**-28 */
|
||||
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
|
||||
t = expm1(fabs(x));
|
||||
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
|
||||
return h*(t+t/(t+one));
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
|
||||
if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
GET_LOW_WORD(lx,x);
|
||||
if (ix<0x408633CE || (ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d)) {
|
||||
w = __ieee754_exp(0.5*fabs(x));
|
||||
t = h*w;
|
||||
return t*w;
|
||||
}
|
||||
|
||||
/* |x| > overflowthresold, sinh(x) overflow */
|
||||
return x*shuge;
|
||||
}
|
6
programs/develop/libraries/menuetlibc/src/libm/e_sqrt.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/e_sqrt.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_sqrt)
|
||||
fldl 4(%esp)
|
||||
fsqrt
|
||||
ret
|
90
programs/develop/libraries/menuetlibc/src/libm/ef_acos.c
Executable file
90
programs/develop/libraries/menuetlibc/src/libm/ef_acos.c
Executable file
@@ -0,0 +1,90 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_acosf.c -- float version of e_acos.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_acosf.c,v 1.2 1994/08/18 23:04:53 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
one = 1.0000000000e+00, /* 0x3F800000 */
|
||||
pi = 3.1415925026e+00, /* 0x40490fda */
|
||||
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
|
||||
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
|
||||
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
|
||||
pS1 = -3.2556581497e-01, /* 0xbea6b090 */
|
||||
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
|
||||
pS3 = -4.0055535734e-02, /* 0xbd241146 */
|
||||
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
|
||||
pS5 = 3.4793309169e-05, /* 0x3811ef08 */
|
||||
qS1 = -2.4033949375e+00, /* 0xc019d139 */
|
||||
qS2 = 2.0209457874e+00, /* 0x4001572d */
|
||||
qS3 = -6.8828397989e-01, /* 0xbf303361 */
|
||||
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_acosf(float x)
|
||||
#else
|
||||
float __ieee754_acosf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float z,p,q,r,w,s,c,df;
|
||||
int32_t hx,ix;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix==0x3f800000) { /* |x|==1 */
|
||||
if(hx>0) return 0.0; /* acos(1) = 0 */
|
||||
else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */
|
||||
} else if(ix>0x3f800000) { /* |x| >= 1 */
|
||||
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
||||
}
|
||||
if(ix<0x3f000000) { /* |x| < 0.5 */
|
||||
if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
||||
z = x*x;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
r = p/q;
|
||||
return pio2_hi - (x - (pio2_lo-x*r));
|
||||
} else if (hx<0) { /* x < -0.5 */
|
||||
z = (one+x)*(float)0.5;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
s = sqrtf(z);
|
||||
r = p/q;
|
||||
w = r*s-pio2_lo;
|
||||
return pi - (float)2.0*(s+w);
|
||||
} else { /* x > 0.5 */
|
||||
int32_t idf;
|
||||
z = (one-x)*(float)0.5;
|
||||
s = sqrtf(z);
|
||||
df = s;
|
||||
GET_FLOAT_WORD(idf,df);
|
||||
SET_FLOAT_WORD(df,idf&0xfffff000);
|
||||
c = (z-df*df)/(s+df);
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
r = p/q;
|
||||
w = r*s+c;
|
||||
return (float)2.0*(df+w);
|
||||
}
|
||||
}
|
58
programs/develop/libraries/menuetlibc/src/libm/ef_acosh.c
Executable file
58
programs/develop/libraries/menuetlibc/src/libm/ef_acosh.c
Executable file
@@ -0,0 +1,58 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_acoshf.c -- float version of e_acosh.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_acoshf.c,v 1.2 1994/08/18 23:04:57 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
one = 1.0,
|
||||
ln2 = 6.9314718246e-01; /* 0x3f317218 */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_acoshf(float x)
|
||||
#else
|
||||
float __ieee754_acoshf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float t;
|
||||
int32_t hx;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
if(hx<0x3f800000) { /* x < 1 */
|
||||
return (x-x)/(x-x);
|
||||
} else if(hx >=0x4d800000) { /* x > 2**28 */
|
||||
if(hx >=0x7f800000) { /* x is inf of NaN */
|
||||
return x+x;
|
||||
} else
|
||||
return __ieee754_logf(x)+ln2; /* acosh(huge)=log(2x) */
|
||||
} else if (hx==0x3f800000) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
|
||||
t=x*x;
|
||||
return __ieee754_logf((float)2.0*x-one/(x+sqrtf(t-one)));
|
||||
} else { /* 1<x<2 */
|
||||
t = x-one;
|
||||
return log1pf(t+sqrtf((float)2.0*t+t*t));
|
||||
}
|
||||
}
|
93
programs/develop/libraries/menuetlibc/src/libm/ef_asin.c
Executable file
93
programs/develop/libraries/menuetlibc/src/libm/ef_asin.c
Executable file
@@ -0,0 +1,93 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_asinf.c -- float version of e_asin.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_asinf.c,v 1.2 1994/08/18 23:05:05 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
one = 1.0000000000e+00, /* 0x3F800000 */
|
||||
huge = 1.000e+30,
|
||||
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
|
||||
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
|
||||
pio4_hi = 7.8539818525e-01, /* 0x3f490fdb */
|
||||
/* coefficient for R(x^2) */
|
||||
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
|
||||
pS1 = -3.2556581497e-01, /* 0xbea6b090 */
|
||||
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
|
||||
pS3 = -4.0055535734e-02, /* 0xbd241146 */
|
||||
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
|
||||
pS5 = 3.4793309169e-05, /* 0x3811ef08 */
|
||||
qS1 = -2.4033949375e+00, /* 0xc019d139 */
|
||||
qS2 = 2.0209457874e+00, /* 0x4001572d */
|
||||
qS3 = -6.8828397989e-01, /* 0xbf303361 */
|
||||
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_asinf(float x)
|
||||
#else
|
||||
float __ieee754_asinf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float t,w,p,q,c,r,s;
|
||||
int32_t hx,ix;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix==0x3f800000) {
|
||||
/* asin(1)=+-pi/2 with inexact */
|
||||
return x*pio2_hi+x*pio2_lo;
|
||||
} else if(ix> 0x3f800000) { /* |x|>= 1 */
|
||||
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
||||
} else if (ix<0x3f000000) { /* |x|<0.5 */
|
||||
if(ix<0x32000000) { /* if |x| < 2**-27 */
|
||||
if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
||||
} else
|
||||
t = x*x;
|
||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
||||
w = p/q;
|
||||
return x+x*w;
|
||||
}
|
||||
/* 1> |x|>= 0.5 */
|
||||
w = one-fabsf(x);
|
||||
t = w*(float)0.5;
|
||||
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
||||
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
||||
s = sqrtf(t);
|
||||
if(ix>=0x3F79999A) { /* if |x| > 0.975 */
|
||||
w = p/q;
|
||||
t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo);
|
||||
} else {
|
||||
int32_t iw;
|
||||
w = s;
|
||||
GET_FLOAT_WORD(iw,w);
|
||||
SET_FLOAT_WORD(w,iw&0xfffff000);
|
||||
c = (t-w*w)/(s+w);
|
||||
r = p/q;
|
||||
p = (float)2.0*s*r-(pio2_lo-(float)2.0*c);
|
||||
q = pio4_hi-(float)2.0*w;
|
||||
t = pio4_hi-(p-q);
|
||||
}
|
||||
if(hx>0) return t; else return -t;
|
||||
}
|
6
programs/develop/libraries/menuetlibc/src/libm/ef_atan2.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/ef_atan2.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_atan2f)
|
||||
flds 4(%esp)
|
||||
flds 8(%esp)
|
||||
fpatan
|
||||
ret
|
59
programs/develop/libraries/menuetlibc/src/libm/ef_atanh.c
Executable file
59
programs/develop/libraries/menuetlibc/src/libm/ef_atanh.c
Executable file
@@ -0,0 +1,59 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_atanhf.c -- float version of e_atanh.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_atanhf.c,v 1.2 1994/08/18 23:05:14 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float one = 1.0, huge = 1e30;
|
||||
#else
|
||||
static float one = 1.0, huge = 1e30;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float zero = 0.0;
|
||||
#else
|
||||
static float zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_atanhf(float x)
|
||||
#else
|
||||
float __ieee754_atanhf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float t;
|
||||
int32_t hx,ix;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if (ix>0x3f800000) /* |x|>1 */
|
||||
return (x-x)/(x-x);
|
||||
if(ix==0x3f800000)
|
||||
return x/zero;
|
||||
if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */
|
||||
SET_FLOAT_WORD(x,ix);
|
||||
if(ix<0x3f000000) { /* x < 0.5 */
|
||||
t = x+x;
|
||||
t = (float)0.5*log1pf(t+t*x/(one-x));
|
||||
} else
|
||||
t = (float)0.5*log1pf((x+x)/(one-x));
|
||||
if(hx>=0) return t; else return -t;
|
||||
}
|
72
programs/develop/libraries/menuetlibc/src/libm/ef_cosh.c
Executable file
72
programs/develop/libraries/menuetlibc/src/libm/ef_cosh.c
Executable file
@@ -0,0 +1,72 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_coshf.c -- float version of e_cosh.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_coshf.c,v 1.2 1994/08/18 23:05:17 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float one = 1.0, half=0.5, huge = 1.0e30;
|
||||
#else
|
||||
static float one = 1.0, half=0.5, huge = 1.0e30;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_coshf(float x)
|
||||
#else
|
||||
float __ieee754_coshf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float t,w;
|
||||
int32_t ix;
|
||||
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7f800000) return x*x;
|
||||
|
||||
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
|
||||
if(ix<0x3eb17218) {
|
||||
t = expm1f(fabsf(x));
|
||||
w = one+t;
|
||||
if (ix<0x24000000) return w; /* cosh(tiny) = 1 */
|
||||
return one+(t*t)/(w+w);
|
||||
}
|
||||
|
||||
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
|
||||
if (ix < 0x41b00000) {
|
||||
t = __ieee754_expf(fabsf(x));
|
||||
return half*t+half/t;
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
|
||||
if (ix < 0x42b17180) return half*__ieee754_expf(fabsf(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
if (ix<=0x42b2d4fc) {
|
||||
w = __ieee754_expf(half*fabsf(x));
|
||||
t = half*w;
|
||||
return t*w;
|
||||
}
|
||||
|
||||
/* |x| > overflowthresold, cosh(x) overflow */
|
||||
return huge*huge;
|
||||
}
|
14
programs/develop/libraries/menuetlibc/src/libm/ef_exp.s
Executable file
14
programs/develop/libraries/menuetlibc/src/libm/ef_exp.s
Executable file
@@ -0,0 +1,14 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_expf)
|
||||
flds 4(%esp)
|
||||
fldl2e
|
||||
fmulp
|
||||
fstl %st(1)
|
||||
frndint
|
||||
fstl %st(2)
|
||||
fsubrp
|
||||
f2xm1
|
||||
fld1
|
||||
faddp
|
||||
fscale
|
||||
ret
|
11
programs/develop/libraries/menuetlibc/src/libm/ef_fmod.s
Executable file
11
programs/develop/libraries/menuetlibc/src/libm/ef_fmod.s
Executable file
@@ -0,0 +1,11 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_fmodf)
|
||||
flds 8(%esp)
|
||||
flds 4(%esp)
|
||||
1: fprem
|
||||
fstsw %ax
|
||||
sahf
|
||||
jp 1b
|
||||
fstpl %st(1)
|
||||
ret
|
40
programs/develop/libraries/menuetlibc/src/libm/ef_gamma.c
Executable file
40
programs/develop/libraries/menuetlibc/src/libm/ef_gamma.c
Executable file
@@ -0,0 +1,40 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_gammaf.c -- float version of e_gamma.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_gammaf.c,v 1.1 1994/08/10 20:30:53 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_gammaf(x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call __ieee754_gammaf_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_gammaf(float x)
|
||||
#else
|
||||
float __ieee754_gammaf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
return __ieee754_gammaf_r(x,&signgam);
|
||||
}
|
88
programs/develop/libraries/menuetlibc/src/libm/ef_hypot.c
Executable file
88
programs/develop/libraries/menuetlibc/src/libm/ef_hypot.c
Executable file
@@ -0,0 +1,88 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_hypotf.c -- float version of e_hypot.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_hypotf.c,v 1.2 1994/08/18 23:05:26 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_hypotf(float x, float y)
|
||||
#else
|
||||
float __ieee754_hypot(x,y)
|
||||
float x, y;
|
||||
#endif
|
||||
{
|
||||
float a=x,b=y,t1,t2,y1,y2,w;
|
||||
int32_t j,k,ha,hb;
|
||||
|
||||
GET_FLOAT_WORD(ha,x);
|
||||
ha &= 0x7fffffff;
|
||||
GET_FLOAT_WORD(hb,y);
|
||||
hb &= 0x7fffffff;
|
||||
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
|
||||
SET_FLOAT_WORD(a,ha); /* a <- |a| */
|
||||
SET_FLOAT_WORD(b,hb); /* b <- |b| */
|
||||
if((ha-hb)>0xf000000) {return a+b;} /* x/y > 2**30 */
|
||||
k=0;
|
||||
if(ha > 0x58800000) { /* a>2**50 */
|
||||
if(ha >= 0x7f800000) { /* Inf or NaN */
|
||||
w = a+b; /* for sNaN */
|
||||
if(ha == 0x7f800000) w = a;
|
||||
if(hb == 0x7f800000) w = b;
|
||||
return w;
|
||||
}
|
||||
/* scale a and b by 2**-60 */
|
||||
ha -= 0x5d800000; hb -= 0x5d800000; k += 60;
|
||||
SET_FLOAT_WORD(a,ha);
|
||||
SET_FLOAT_WORD(b,hb);
|
||||
}
|
||||
if(hb < 0x26800000) { /* b < 2**-50 */
|
||||
if(hb <= 0x007fffff) { /* subnormal b or 0 */
|
||||
if(hb==0) return a;
|
||||
SET_FLOAT_WORD(t1,0x3f000000); /* t1=2^126 */
|
||||
b *= t1;
|
||||
a *= t1;
|
||||
k -= 126;
|
||||
} else { /* scale a and b by 2^60 */
|
||||
ha += 0x5d800000; /* a *= 2^60 */
|
||||
hb += 0x5d800000; /* b *= 2^60 */
|
||||
k -= 60;
|
||||
SET_FLOAT_WORD(a,ha);
|
||||
SET_FLOAT_WORD(b,hb);
|
||||
}
|
||||
}
|
||||
/* medium size a and b */
|
||||
w = a-b;
|
||||
if (w>b) {
|
||||
SET_FLOAT_WORD(t1,ha&0xfffff000);
|
||||
t2 = a-t1;
|
||||
w = sqrtf(t1*t1-(b*(-b)-t2*(a+t1)));
|
||||
} else {
|
||||
a = a+a;
|
||||
SET_FLOAT_WORD(y1,hb&0xfffff000);
|
||||
y2 = b - y1;
|
||||
SET_FLOAT_WORD(t1,ha+0x00800000);
|
||||
t2 = a - t1;
|
||||
w = sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if(k!=0) {
|
||||
SET_FLOAT_WORD(t1,0x3f800000+(k<<23));
|
||||
return t1*w;
|
||||
} else return w;
|
||||
}
|
445
programs/develop/libraries/menuetlibc/src/libm/ef_j0.c
Executable file
445
programs/develop/libraries/menuetlibc/src/libm/ef_j0.c
Executable file
@@ -0,0 +1,445 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_j0f.c -- float version of e_j0.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_j0f.c,v 1.2 1994/08/18 23:05:32 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static float pzerof(float), qzerof(float);
|
||||
#else
|
||||
static float pzerof(), qzerof();
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
huge = 1e30,
|
||||
one = 1.0,
|
||||
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
||||
tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
||||
/* R0/S0 on [0, 2.00] */
|
||||
R02 = 1.5625000000e-02, /* 0x3c800000 */
|
||||
R03 = -1.8997929874e-04, /* 0xb947352e */
|
||||
R04 = 1.8295404516e-06, /* 0x35f58e88 */
|
||||
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
|
||||
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
|
||||
S02 = 1.1692678527e-04, /* 0x38f53697 */
|
||||
S03 = 5.1354652442e-07, /* 0x3509daa6 */
|
||||
S04 = 1.1661400734e-09; /* 0x30a045e8 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float zero = 0.0;
|
||||
#else
|
||||
static float zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_j0f(float x)
|
||||
#else
|
||||
float __ieee754_j0f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float z, s,c,ss,cc,r,u,v;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) return one/(x*x);
|
||||
x = fabsf(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sinf(x);
|
||||
c = cosf(x);
|
||||
ss = s-c;
|
||||
cc = s+c;
|
||||
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
||||
z = -cosf(x+x);
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<0x39000000) { /* |x| < 2**-13 */
|
||||
if(huge+x>one) { /* raise inexact if x != 0 */
|
||||
if(ix<0x32000000) return one; /* |x|<2**-27 */
|
||||
else return one - (float)0.25*x*x;
|
||||
}
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
||||
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
|
||||
if(ix < 0x3F800000) { /* |x| < 1.00 */
|
||||
return one + z*((float)-0.25+(r/s));
|
||||
} else {
|
||||
u = (float)0.5*x;
|
||||
return((one+u)*(one-u)+z*(r/s));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
|
||||
u01 = 1.7666645348e-01, /* 0x3e34e80d */
|
||||
u02 = -1.3818567619e-02, /* 0xbc626746 */
|
||||
u03 = 3.4745343146e-04, /* 0x39b62a69 */
|
||||
u04 = -3.8140706238e-06, /* 0xb67ff53c */
|
||||
u05 = 1.9559013964e-08, /* 0x32a802ba */
|
||||
u06 = -3.9820518410e-11, /* 0xae2f21eb */
|
||||
v01 = 1.2730483897e-02, /* 0x3c509385 */
|
||||
v02 = 7.6006865129e-05, /* 0x389f65e0 */
|
||||
v03 = 2.5915085189e-07, /* 0x348b216c */
|
||||
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_y0f(float x)
|
||||
#else
|
||||
float __ieee754_y0f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float z, s,c,ss,cc,u,v;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
||||
* where x0 = x-pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) + cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
s = sinf(x);
|
||||
c = cosf(x);
|
||||
ss = s-c;
|
||||
cc = s+c;
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
||||
z = -cosf(x+x);
|
||||
if ((s*c)<zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
|
||||
else {
|
||||
u = pzerof(x); v = qzerof(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<=0x32000000) { /* x < 2**-27 */
|
||||
return(u00 + tpi*__ieee754_logf(x));
|
||||
}
|
||||
z = x*x;
|
||||
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
|
||||
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
|
||||
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
-7.0312500000e-02, /* 0xbd900000 */
|
||||
-8.0816707611e+00, /* 0xc1014e86 */
|
||||
-2.5706311035e+02, /* 0xc3808814 */
|
||||
-2.4852163086e+03, /* 0xc51b5376 */
|
||||
-5.2530439453e+03, /* 0xc5a4285a */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float pS8[5] = {
|
||||
#else
|
||||
static float pS8[5] = {
|
||||
#endif
|
||||
1.1653436279e+02, /* 0x42e91198 */
|
||||
3.8337448730e+03, /* 0x456f9beb */
|
||||
4.0597855469e+04, /* 0x471e95db */
|
||||
1.1675296875e+05, /* 0x47e4087c */
|
||||
4.7627726562e+04, /* 0x473a0bba */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
-1.1412546255e-11, /* 0xad48c58a */
|
||||
-7.0312492549e-02, /* 0xbd8fffff */
|
||||
-4.1596107483e+00, /* 0xc0851b88 */
|
||||
-6.7674766541e+01, /* 0xc287597b */
|
||||
-3.3123129272e+02, /* 0xc3a59d9b */
|
||||
-3.4643338013e+02, /* 0xc3ad3779 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float pS5[5] = {
|
||||
#else
|
||||
static float pS5[5] = {
|
||||
#endif
|
||||
6.0753936768e+01, /* 0x42730408 */
|
||||
1.0512523193e+03, /* 0x44836813 */
|
||||
5.9789707031e+03, /* 0x45bad7c4 */
|
||||
9.6254453125e+03, /* 0x461665c8 */
|
||||
2.4060581055e+03, /* 0x451660ee */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#else
|
||||
static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
-2.5470459075e-09, /* 0xb12f081b */
|
||||
-7.0311963558e-02, /* 0xbd8fffb8 */
|
||||
-2.4090321064e+00, /* 0xc01a2d95 */
|
||||
-2.1965976715e+01, /* 0xc1afba52 */
|
||||
-5.8079170227e+01, /* 0xc2685112 */
|
||||
-3.1447946548e+01, /* 0xc1fb9565 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float pS3[5] = {
|
||||
#else
|
||||
static float pS3[5] = {
|
||||
#endif
|
||||
3.5856033325e+01, /* 0x420f6c94 */
|
||||
3.6151397705e+02, /* 0x43b4c1ca */
|
||||
1.1936077881e+03, /* 0x44953373 */
|
||||
1.1279968262e+03, /* 0x448cffe6 */
|
||||
1.7358093262e+02, /* 0x432d94b8 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
-8.8753431271e-08, /* 0xb3be98b7 */
|
||||
-7.0303097367e-02, /* 0xbd8ffb12 */
|
||||
-1.4507384300e+00, /* 0xbfb9b1cc */
|
||||
-7.6356959343e+00, /* 0xc0f4579f */
|
||||
-1.1193166733e+01, /* 0xc1331736 */
|
||||
-3.2336456776e+00, /* 0xc04ef40d */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float pS2[5] = {
|
||||
#else
|
||||
static float pS2[5] = {
|
||||
#endif
|
||||
2.2220300674e+01, /* 0x41b1c32d */
|
||||
1.3620678711e+02, /* 0x430834f0 */
|
||||
2.7047027588e+02, /* 0x43873c32 */
|
||||
1.5387539673e+02, /* 0x4319e01a */
|
||||
1.4657617569e+01, /* 0x416a859a */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static float pzerof(float x)
|
||||
#else
|
||||
static float pzerof(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const float *p,*q;
|
||||
#else
|
||||
float *p,*q;
|
||||
#endif
|
||||
float z,r,s;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x41000000) {p = pR8; q= pS8;}
|
||||
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
|
||||
else if(ix>=0x4036db68){p = pR3; q= pS3;}
|
||||
else if(ix>=0x40000000){p = pR2; q= pS2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
7.3242187500e-02, /* 0x3d960000 */
|
||||
1.1768206596e+01, /* 0x413c4a93 */
|
||||
5.5767340088e+02, /* 0x440b6b19 */
|
||||
8.8591972656e+03, /* 0x460a6cca */
|
||||
3.7014625000e+04, /* 0x471096a0 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qS8[6] = {
|
||||
#else
|
||||
static float qS8[6] = {
|
||||
#endif
|
||||
1.6377603149e+02, /* 0x4323c6aa */
|
||||
8.0983447266e+03, /* 0x45fd12c2 */
|
||||
1.4253829688e+05, /* 0x480b3293 */
|
||||
8.0330925000e+05, /* 0x49441ed4 */
|
||||
8.4050156250e+05, /* 0x494d3359 */
|
||||
-3.4389928125e+05, /* 0xc8a7eb69 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
1.8408595828e-11, /* 0x2da1ec79 */
|
||||
7.3242180049e-02, /* 0x3d95ffff */
|
||||
5.8356351852e+00, /* 0x40babd86 */
|
||||
1.3511157227e+02, /* 0x43071c90 */
|
||||
1.0272437744e+03, /* 0x448067cd */
|
||||
1.9899779053e+03, /* 0x44f8bf4b */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qS5[6] = {
|
||||
#else
|
||||
static float qS5[6] = {
|
||||
#endif
|
||||
8.2776611328e+01, /* 0x42a58da0 */
|
||||
2.0778142090e+03, /* 0x4501dd07 */
|
||||
1.8847289062e+04, /* 0x46933e94 */
|
||||
5.6751113281e+04, /* 0x475daf1d */
|
||||
3.5976753906e+04, /* 0x470c88c1 */
|
||||
-5.3543427734e+03, /* 0xc5a752be */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#else
|
||||
static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
4.3774099900e-09, /* 0x3196681b */
|
||||
7.3241114616e-02, /* 0x3d95ff70 */
|
||||
3.3442313671e+00, /* 0x405607e3 */
|
||||
4.2621845245e+01, /* 0x422a7cc5 */
|
||||
1.7080809021e+02, /* 0x432acedf */
|
||||
1.6673394775e+02, /* 0x4326bbe4 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qS3[6] = {
|
||||
#else
|
||||
static float qS3[6] = {
|
||||
#endif
|
||||
4.8758872986e+01, /* 0x42430916 */
|
||||
7.0968920898e+02, /* 0x44316c1c */
|
||||
3.7041481934e+03, /* 0x4567825f */
|
||||
6.4604252930e+03, /* 0x45c9e367 */
|
||||
2.5163337402e+03, /* 0x451d4557 */
|
||||
-1.4924745178e+02, /* 0xc3153f59 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
1.5044444979e-07, /* 0x342189db */
|
||||
7.3223426938e-02, /* 0x3d95f62a */
|
||||
1.9981917143e+00, /* 0x3fffc4bf */
|
||||
1.4495602608e+01, /* 0x4167edfd */
|
||||
3.1666231155e+01, /* 0x41fd5471 */
|
||||
1.6252708435e+01, /* 0x4182058c */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qS2[6] = {
|
||||
#else
|
||||
static float qS2[6] = {
|
||||
#endif
|
||||
3.0365585327e+01, /* 0x41f2ecb8 */
|
||||
2.6934811401e+02, /* 0x4386ac8f */
|
||||
8.4478375244e+02, /* 0x44533229 */
|
||||
8.8293585205e+02, /* 0x445cbbe5 */
|
||||
2.1266638184e+02, /* 0x4354aa98 */
|
||||
-5.3109550476e+00, /* 0xc0a9f358 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static float qzerof(float x)
|
||||
#else
|
||||
static float qzerof(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const float *p,*q;
|
||||
#else
|
||||
float *p,*q;
|
||||
#endif
|
||||
float s,r,z;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x41000000) {p = qR8; q= qS8;}
|
||||
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
|
||||
else if(ix>=0x4036db68){p = qR3; q= qS3;}
|
||||
else if(ix>=0x40000000){p = qR2; q= qS2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return (-(float).125 + r/s)/x;
|
||||
}
|
445
programs/develop/libraries/menuetlibc/src/libm/ef_j1.c
Executable file
445
programs/develop/libraries/menuetlibc/src/libm/ef_j1.c
Executable file
@@ -0,0 +1,445 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_j1f.c -- float version of e_j1.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_j1f.c,v 1.2 1994/08/18 23:05:35 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static float ponef(float), qonef(float);
|
||||
#else
|
||||
static float ponef(), qonef();
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
huge = 1e30,
|
||||
one = 1.0,
|
||||
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
||||
tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
||||
/* R0/S0 on [0,2] */
|
||||
r00 = -6.2500000000e-02, /* 0xbd800000 */
|
||||
r01 = 1.4070566976e-03, /* 0x3ab86cfd */
|
||||
r02 = -1.5995563444e-05, /* 0xb7862e36 */
|
||||
r03 = 4.9672799207e-08, /* 0x335557d2 */
|
||||
s01 = 1.9153760746e-02, /* 0x3c9ce859 */
|
||||
s02 = 1.8594678841e-04, /* 0x3942fab6 */
|
||||
s03 = 1.1771846857e-06, /* 0x359dffc2 */
|
||||
s04 = 5.0463624390e-09, /* 0x31ad6446 */
|
||||
s05 = 1.2354227016e-11; /* 0x2d59567e */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float zero = 0.0;
|
||||
#else
|
||||
static float zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_j1f(float x)
|
||||
#else
|
||||
float __ieee754_j1f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float z, s,c,ss,cc,r,u,v,y;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) return one/x;
|
||||
y = fabsf(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sinf(y);
|
||||
c = cosf(y);
|
||||
ss = -s-c;
|
||||
cc = s-c;
|
||||
if(ix<0x7f000000) { /* make sure y+y not overflow */
|
||||
z = cosf(y+y);
|
||||
if ((s*c)>zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/*
|
||||
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
|
||||
else {
|
||||
u = ponef(y); v = qonef(y);
|
||||
z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
|
||||
}
|
||||
if(hx<0) return -z;
|
||||
else return z;
|
||||
}
|
||||
if(ix<0x32000000) { /* |x|<2**-27 */
|
||||
if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(r00+z*(r01+z*(r02+z*r03)));
|
||||
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
|
||||
r *= x;
|
||||
return(x*(float)0.5+r/s);
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float U0[5] = {
|
||||
#else
|
||||
static float U0[5] = {
|
||||
#endif
|
||||
-1.9605709612e-01, /* 0xbe48c331 */
|
||||
5.0443872809e-02, /* 0x3d4e9e3c */
|
||||
-1.9125689287e-03, /* 0xbafaaf2a */
|
||||
2.3525259166e-05, /* 0x37c5581c */
|
||||
-9.1909917899e-08, /* 0xb3c56003 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float V0[5] = {
|
||||
#else
|
||||
static float V0[5] = {
|
||||
#endif
|
||||
1.9916731864e-02, /* 0x3ca3286a */
|
||||
2.0255257550e-04, /* 0x3954644b */
|
||||
1.3560879779e-06, /* 0x35b602d4 */
|
||||
6.2274145840e-09, /* 0x31d5f8eb */
|
||||
1.6655924903e-11, /* 0x2d9281cf */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_y1f(float x)
|
||||
#else
|
||||
float __ieee754_y1f(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float z, s,c,ss,cc,u,v;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
||||
if(ix>=0x7f800000) return one/(x+x*x);
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sinf(x);
|
||||
c = cosf(x);
|
||||
ss = -s-c;
|
||||
cc = s-c;
|
||||
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
||||
z = cosf(x+x);
|
||||
if ((s*c)>zero) cc = z/ss;
|
||||
else ss = z/cc;
|
||||
}
|
||||
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
||||
* where x0 = x-3pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (cos(x) + sin(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
|
||||
else {
|
||||
u = ponef(x); v = qonef(x);
|
||||
z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix<=0x24800000) { /* x < 2**-54 */
|
||||
return(-tpi/x);
|
||||
}
|
||||
z = x*x;
|
||||
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
|
||||
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
|
||||
return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
1.1718750000e-01, /* 0x3df00000 */
|
||||
1.3239480972e+01, /* 0x4153d4ea */
|
||||
4.1205184937e+02, /* 0x43ce06a3 */
|
||||
3.8747453613e+03, /* 0x45722bed */
|
||||
7.9144794922e+03, /* 0x45f753d6 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float ps8[5] = {
|
||||
#else
|
||||
static float ps8[5] = {
|
||||
#endif
|
||||
1.1420736694e+02, /* 0x42e46a2c */
|
||||
3.6509309082e+03, /* 0x45642ee5 */
|
||||
3.6956207031e+04, /* 0x47105c35 */
|
||||
9.7602796875e+04, /* 0x47bea166 */
|
||||
3.0804271484e+04, /* 0x46f0a88b */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
1.3199052094e-11, /* 0x2d68333f */
|
||||
1.1718749255e-01, /* 0x3defffff */
|
||||
6.8027510643e+00, /* 0x40d9b023 */
|
||||
1.0830818176e+02, /* 0x42d89dca */
|
||||
5.1763616943e+02, /* 0x440168b7 */
|
||||
5.2871520996e+02, /* 0x44042dc6 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float ps5[5] = {
|
||||
#else
|
||||
static float ps5[5] = {
|
||||
#endif
|
||||
5.9280597687e+01, /* 0x426d1f55 */
|
||||
9.9140142822e+02, /* 0x4477d9b1 */
|
||||
5.3532670898e+03, /* 0x45a74a23 */
|
||||
7.8446904297e+03, /* 0x45f52586 */
|
||||
1.5040468750e+03, /* 0x44bc0180 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float pr3[6] = {
|
||||
#else
|
||||
static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
3.0250391081e-09, /* 0x314fe10d */
|
||||
1.1718686670e-01, /* 0x3defffab */
|
||||
3.9329774380e+00, /* 0x407bb5e7 */
|
||||
3.5119403839e+01, /* 0x420c7a45 */
|
||||
9.1055007935e+01, /* 0x42b61c2a */
|
||||
4.8559066772e+01, /* 0x42423c7c */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float ps3[5] = {
|
||||
#else
|
||||
static float ps3[5] = {
|
||||
#endif
|
||||
3.4791309357e+01, /* 0x420b2a4d */
|
||||
3.3676245117e+02, /* 0x43a86198 */
|
||||
1.0468714600e+03, /* 0x4482dbe3 */
|
||||
8.9081134033e+02, /* 0x445eb3ed */
|
||||
1.0378793335e+02, /* 0x42cf936c */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
1.0771083225e-07, /* 0x33e74ea8 */
|
||||
1.1717621982e-01, /* 0x3deffa16 */
|
||||
2.3685150146e+00, /* 0x401795c0 */
|
||||
1.2242610931e+01, /* 0x4143e1bc */
|
||||
1.7693971634e+01, /* 0x418d8d41 */
|
||||
5.0735230446e+00, /* 0x40a25a4d */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float ps2[5] = {
|
||||
#else
|
||||
static float ps2[5] = {
|
||||
#endif
|
||||
2.1436485291e+01, /* 0x41ab7dec */
|
||||
1.2529022980e+02, /* 0x42fa9499 */
|
||||
2.3227647400e+02, /* 0x436846c7 */
|
||||
1.1767937469e+02, /* 0x42eb5bd7 */
|
||||
8.3646392822e+00, /* 0x4105d590 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static float ponef(float x)
|
||||
#else
|
||||
static float ponef(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const float *p,*q;
|
||||
#else
|
||||
float *p,*q;
|
||||
#endif
|
||||
float z,r,s;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x41000000) {p = pr8; q= ps8;}
|
||||
else if(ix>=0x40f71c58){p = pr5; q= ps5;}
|
||||
else if(ix>=0x4036db68){p = pr3; q= ps3;}
|
||||
else if(ix>=0x40000000){p = pr2; q= ps2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return one+ r/s;
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#else
|
||||
static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
#endif
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
-1.0253906250e-01, /* 0xbdd20000 */
|
||||
-1.6271753311e+01, /* 0xc1822c8d */
|
||||
-7.5960174561e+02, /* 0xc43de683 */
|
||||
-1.1849806641e+04, /* 0xc639273a */
|
||||
-4.8438511719e+04, /* 0xc73d3683 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qs8[6] = {
|
||||
#else
|
||||
static float qs8[6] = {
|
||||
#endif
|
||||
1.6139537048e+02, /* 0x43216537 */
|
||||
7.8253862305e+03, /* 0x45f48b17 */
|
||||
1.3387534375e+05, /* 0x4802bcd6 */
|
||||
7.1965775000e+05, /* 0x492fb29c */
|
||||
6.6660125000e+05, /* 0x4922be94 */
|
||||
-2.9449025000e+05, /* 0xc88fcb48 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#else
|
||||
static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
#endif
|
||||
-2.0897993405e-11, /* 0xadb7d219 */
|
||||
-1.0253904760e-01, /* 0xbdd1fffe */
|
||||
-8.0564479828e+00, /* 0xc100e736 */
|
||||
-1.8366960144e+02, /* 0xc337ab6b */
|
||||
-1.3731937256e+03, /* 0xc4aba633 */
|
||||
-2.6124443359e+03, /* 0xc523471c */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qs5[6] = {
|
||||
#else
|
||||
static float qs5[6] = {
|
||||
#endif
|
||||
8.1276550293e+01, /* 0x42a28d98 */
|
||||
1.9917987061e+03, /* 0x44f8f98f */
|
||||
1.7468484375e+04, /* 0x468878f8 */
|
||||
4.9851425781e+04, /* 0x4742bb6d */
|
||||
2.7948074219e+04, /* 0x46da5826 */
|
||||
-4.7191835938e+03, /* 0xc5937978 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float qr3[6] = {
|
||||
#else
|
||||
static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
#endif
|
||||
-5.0783124372e-09, /* 0xb1ae7d4f */
|
||||
-1.0253783315e-01, /* 0xbdd1ff5b */
|
||||
-4.6101160049e+00, /* 0xc0938612 */
|
||||
-5.7847221375e+01, /* 0xc267638e */
|
||||
-2.2824453735e+02, /* 0xc3643e9a */
|
||||
-2.1921012878e+02, /* 0xc35b35cb */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qs3[6] = {
|
||||
#else
|
||||
static float qs3[6] = {
|
||||
#endif
|
||||
4.7665153503e+01, /* 0x423ea91e */
|
||||
6.7386511230e+02, /* 0x4428775e */
|
||||
3.3801528320e+03, /* 0x45534272 */
|
||||
5.5477290039e+03, /* 0x45ad5dd5 */
|
||||
1.9031191406e+03, /* 0x44ede3d0 */
|
||||
-1.3520118713e+02, /* 0xc3073381 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#else
|
||||
static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
#endif
|
||||
-1.7838172539e-07, /* 0xb43f8932 */
|
||||
-1.0251704603e-01, /* 0xbdd1f475 */
|
||||
-2.7522056103e+00, /* 0xc0302423 */
|
||||
-1.9663616180e+01, /* 0xc19d4f16 */
|
||||
-4.2325313568e+01, /* 0xc2294d1f */
|
||||
-2.1371921539e+01, /* 0xc1aaf9b2 */
|
||||
};
|
||||
#ifdef __STDC__
|
||||
static const float qs2[6] = {
|
||||
#else
|
||||
static float qs2[6] = {
|
||||
#endif
|
||||
2.9533363342e+01, /* 0x41ec4454 */
|
||||
2.5298155212e+02, /* 0x437cfb47 */
|
||||
7.5750280762e+02, /* 0x443d602e */
|
||||
7.3939318848e+02, /* 0x4438d92a */
|
||||
1.5594900513e+02, /* 0x431bf2f2 */
|
||||
-4.9594988823e+00, /* 0xc09eb437 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static float qonef(float x)
|
||||
#else
|
||||
static float qonef(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
#ifdef __STDC__
|
||||
const float *p,*q;
|
||||
#else
|
||||
float *p,*q;
|
||||
#endif
|
||||
float s,r,z;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
if(ix>=0x40200000) {p = qr8; q= qs8;}
|
||||
else if(ix>=0x40f71c58){p = qr5; q= qs5;}
|
||||
else if(ix>=0x4036db68){p = qr3; q= qs3;}
|
||||
else if(ix>=0x40000000){p = qr2; q= qs2;}
|
||||
z = one/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return ((float).375 + r/s)/x;
|
||||
}
|
213
programs/develop/libraries/menuetlibc/src/libm/ef_jn.c
Executable file
213
programs/develop/libraries/menuetlibc/src/libm/ef_jn.c
Executable file
@@ -0,0 +1,213 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_jnf.c -- float version of e_jn.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_jnf.c,v 1.2 1994/08/18 23:05:39 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
||||
two = 2.0000000000e+00, /* 0x40000000 */
|
||||
one = 1.0000000000e+00; /* 0x3F800000 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float zero = 0.0000000000e+00;
|
||||
#else
|
||||
static float zero = 0.0000000000e+00;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_jnf(int n, float x)
|
||||
#else
|
||||
float __ieee754_jnf(n,x)
|
||||
int n; float x;
|
||||
#endif
|
||||
{
|
||||
int32_t i,hx,ix, sgn;
|
||||
float a, b, temp, di;
|
||||
float z, w;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
* Thus, J(-n,x) = J(n,-x)
|
||||
*/
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if J(n,NaN) is NaN */
|
||||
if(ix>0x7f800000) return x+x;
|
||||
if(n<0){
|
||||
n = -n;
|
||||
x = -x;
|
||||
hx ^= 0x80000000;
|
||||
}
|
||||
if(n==0) return(__ieee754_j0f(x));
|
||||
if(n==1) return(__ieee754_j1f(x));
|
||||
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabsf(x);
|
||||
if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if((float)n<=x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
a = __ieee754_j0f(x);
|
||||
b = __ieee754_j1f(x);
|
||||
for(i=1;i<n;i++){
|
||||
temp = b;
|
||||
b = b*((float)(i+i)/x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
} else {
|
||||
if(ix<0x30800000) { /* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if(n>33) /* underflow */
|
||||
b = zero;
|
||||
else {
|
||||
temp = x*(float)0.5; b = temp;
|
||||
for (a=one,i=2;i<=n;i++) {
|
||||
a *= (float)i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b/a;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
float t,v;
|
||||
float q0,q1,h,tmp; int32_t k,m;
|
||||
w = (n+n)/(float)x; h = (float)2.0/(float)x;
|
||||
q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
|
||||
while(q1<(float)1.0e9) {
|
||||
k += 1; z += h;
|
||||
tmp = z*q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n+n;
|
||||
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two/x;
|
||||
tmp = tmp*__ieee754_logf(fabsf(v*tmp));
|
||||
if(tmp<(float)8.8721679688e+01) {
|
||||
for(i=n-1,di=(float)(i+i);i>0;i--){
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b/x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
} else {
|
||||
for(i=n-1,di=(float)(i+i);i>0;i--){
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b/x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if(b>(float)1e10) {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
b = (t*__ieee754_j0f(x)/b);
|
||||
}
|
||||
}
|
||||
if(sgn==1) return -b; else return b;
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_ynf(int n, float x)
|
||||
#else
|
||||
float __ieee754_ynf(n,x)
|
||||
int n; float x;
|
||||
#endif
|
||||
{
|
||||
int32_t i,hx,ix,ib;
|
||||
int32_t sign;
|
||||
float a, b, temp;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
/* if Y(n,NaN) is NaN */
|
||||
if(ix>0x7f800000) return x+x;
|
||||
if(ix==0) return -one/zero;
|
||||
if(hx<0) return zero/zero;
|
||||
sign = 1;
|
||||
if(n<0){
|
||||
n = -n;
|
||||
sign = 1 - ((n&1)<<2);
|
||||
}
|
||||
if(n==0) return(__ieee754_y0f(x));
|
||||
if(n==1) return(sign*__ieee754_y1f(x));
|
||||
if(ix==0x7f800000) return zero;
|
||||
|
||||
a = __ieee754_y0f(x);
|
||||
b = __ieee754_y1f(x);
|
||||
/* quit if b is -inf */
|
||||
GET_FLOAT_WORD(ib,b);
|
||||
for(i=1;i<n&&ib!=0xff800000;i++){
|
||||
temp = b;
|
||||
b = ((float)(i+i)/x)*b - a;
|
||||
GET_FLOAT_WORD(ib,b);
|
||||
a = temp;
|
||||
}
|
||||
if(sign>0) return b; else return -b;
|
||||
}
|
40
programs/develop/libraries/menuetlibc/src/libm/ef_lgamm.c
Executable file
40
programs/develop/libraries/menuetlibc/src/libm/ef_lgamm.c
Executable file
@@ -0,0 +1,40 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_lgammaf.c -- float version of e_lgamma.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_lgammaf.c,v 1.1 1994/08/10 20:31:08 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_lgammaf(x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call __ieee754_lgammaf_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_lgammaf(float x)
|
||||
#else
|
||||
float __ieee754_lgammaf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
return __ieee754_lgammaf_r(x,&signgam);
|
||||
}
|
7
programs/develop/libraries/menuetlibc/src/libm/ef_log.s
Executable file
7
programs/develop/libraries/menuetlibc/src/libm/ef_log.s
Executable file
@@ -0,0 +1,7 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_logf)
|
||||
fldln2
|
||||
flds 4(%esp)
|
||||
fyl2x
|
||||
ret
|
7
programs/develop/libraries/menuetlibc/src/libm/ef_log10.s
Executable file
7
programs/develop/libraries/menuetlibc/src/libm/ef_log10.s
Executable file
@@ -0,0 +1,7 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_log10f)
|
||||
.globl __ieee754_log10f
|
||||
fldlg2
|
||||
flds 4(%esp)
|
||||
fyl2x
|
||||
ret
|
254
programs/develop/libraries/menuetlibc/src/libm/ef_pow.c
Executable file
254
programs/develop/libraries/menuetlibc/src/libm/ef_pow.c
Executable file
@@ -0,0 +1,254 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_powf.c -- float version of e_pow.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_powf.c,v 1.2 1994/08/18 23:05:54 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
bp[] = {1.0, 1.5,},
|
||||
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
|
||||
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two = 2.0,
|
||||
two24 = 16777216.0, /* 0x4b800000 */
|
||||
huge = 1.0e30,
|
||||
tiny = 1.0e-30,
|
||||
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
||||
L1 = 6.0000002384e-01, /* 0x3f19999a */
|
||||
L2 = 4.2857143283e-01, /* 0x3edb6db7 */
|
||||
L3 = 3.3333334327e-01, /* 0x3eaaaaab */
|
||||
L4 = 2.7272811532e-01, /* 0x3e8ba305 */
|
||||
L5 = 2.3066075146e-01, /* 0x3e6c3255 */
|
||||
L6 = 2.0697501302e-01, /* 0x3e53f142 */
|
||||
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
|
||||
P2 = -2.7777778450e-03, /* 0xbb360b61 */
|
||||
P3 = 6.6137559770e-05, /* 0x388ab355 */
|
||||
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
|
||||
P5 = 4.1381369442e-08, /* 0x3331bb4c */
|
||||
lg2 = 6.9314718246e-01, /* 0x3f317218 */
|
||||
lg2_h = 6.93145752e-01, /* 0x3f317200 */
|
||||
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
|
||||
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
|
||||
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
|
||||
cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
|
||||
cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
|
||||
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
|
||||
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
|
||||
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_powf(float x, float y)
|
||||
#else
|
||||
float __ieee754_powf(x,y)
|
||||
float x, y;
|
||||
#endif
|
||||
{
|
||||
float z,ax,z_h,z_l,p_h,p_l;
|
||||
float y1,t1,t2,r,s,t,u,v,w;
|
||||
int32_t i,j,k,yisint,n;
|
||||
int32_t hx,hy,ix,iy,is;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
GET_FLOAT_WORD(hy,y);
|
||||
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
||||
|
||||
/* y==zero: x**0 = 1 */
|
||||
if(iy==0) return one;
|
||||
|
||||
/* +-NaN return x+y */
|
||||
if(ix > 0x7f800000 ||
|
||||
iy > 0x7f800000)
|
||||
return x+y;
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
* yisint = 1 ... y is an odd int
|
||||
* yisint = 2 ... y is an even int
|
||||
*/
|
||||
yisint = 0;
|
||||
if(hx<0) {
|
||||
if(iy>=0x4b800000) yisint = 2; /* even integer y */
|
||||
else if(iy>=0x3f800000) {
|
||||
k = (iy>>23)-0x7f; /* exponent */
|
||||
j = iy>>(23-k);
|
||||
if((j<<(23-k))==iy) yisint = 2-(j&1);
|
||||
}
|
||||
}
|
||||
|
||||
/* special value of y */
|
||||
if (iy==0x7f800000) { /* y is +-inf */
|
||||
if (ix==0x3f800000)
|
||||
return y - y; /* inf**+-1 is NaN */
|
||||
else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
|
||||
return (hy>=0)? y: zero;
|
||||
else /* (|x|<1)**-,+inf = inf,0 */
|
||||
return (hy<0)?-y: zero;
|
||||
}
|
||||
if(iy==0x3f800000) { /* y is +-1 */
|
||||
if(hy<0) return one/x; else return x;
|
||||
}
|
||||
if(hy==0x40000000) return x*x; /* y is 2 */
|
||||
if(hy==0x3f000000) { /* y is 0.5 */
|
||||
if(hx>=0) /* x >= +0 */
|
||||
return sqrtf(x);
|
||||
}
|
||||
|
||||
ax = fabsf(x);
|
||||
/* special value of x */
|
||||
if(ix==0x7f800000||ix==0||ix==0x3f800000){
|
||||
z = ax; /*x is +-0,+-inf,+-1*/
|
||||
if(hy<0) z = one/z; /* z = (1/|x|) */
|
||||
if(hx<0) {
|
||||
if(((ix-0x3f800000)|yisint)==0) {
|
||||
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
||||
} else if(yisint==1)
|
||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
/* (x<0)**(non-int) is NaN */
|
||||
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
|
||||
|
||||
/* |y| is huge */
|
||||
if(iy>0x4d000000) { /* if |y| > 2**27 */
|
||||
/* over/underflow if x is not close to one */
|
||||
if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
|
||||
if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
|
||||
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
||||
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
||||
t = x-1; /* t has 20 trailing zeros */
|
||||
w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
|
||||
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
|
||||
v = t*ivln2_l-w*ivln2;
|
||||
t1 = u+v;
|
||||
GET_FLOAT_WORD(is,t1);
|
||||
SET_FLOAT_WORD(t1,is&0xfffff000);
|
||||
t2 = v-(t1-u);
|
||||
} else {
|
||||
float s2,s_h,s_l,t_h,t_l;
|
||||
n = 0;
|
||||
/* take care subnormal number */
|
||||
if(ix<0x00800000)
|
||||
{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
|
||||
n += ((ix)>>23)-0x7f;
|
||||
j = ix&0x007fffff;
|
||||
/* determine interval */
|
||||
ix = j|0x3f800000; /* normalize ix */
|
||||
if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
|
||||
else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
|
||||
else {k=0;n+=1;ix -= 0x00800000;}
|
||||
SET_FLOAT_WORD(ax,ix);
|
||||
|
||||
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
||||
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
||||
v = one/(ax+bp[k]);
|
||||
s = u*v;
|
||||
s_h = s;
|
||||
GET_FLOAT_WORD(is,s_h);
|
||||
SET_FLOAT_WORD(s_h,is&0xfffff000);
|
||||
/* t_h=ax+bp[k] High */
|
||||
SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21));
|
||||
t_l = ax - (t_h-bp[k]);
|
||||
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
||||
/* compute log(ax) */
|
||||
s2 = s*s;
|
||||
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
||||
r += s_l*(s_h+s);
|
||||
s2 = s_h*s_h;
|
||||
t_h = (float)3.0+s2+r;
|
||||
GET_FLOAT_WORD(is,t_h);
|
||||
SET_FLOAT_WORD(t_h,is&0xfffff000);
|
||||
t_l = r-((t_h-(float)3.0)-s2);
|
||||
/* u+v = s*(1+...) */
|
||||
u = s_h*t_h;
|
||||
v = s_l*t_h+t_l*s;
|
||||
/* 2/(3log2)*(s+...) */
|
||||
p_h = u+v;
|
||||
GET_FLOAT_WORD(is,p_h);
|
||||
SET_FLOAT_WORD(p_h,is&0xfffff000);
|
||||
p_l = v-(p_h-u);
|
||||
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
||||
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
||||
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
||||
t = (float)n;
|
||||
t1 = (((z_h+z_l)+dp_h[k])+t);
|
||||
GET_FLOAT_WORD(is,t1);
|
||||
SET_FLOAT_WORD(t1,is&0xfffff000);
|
||||
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
||||
}
|
||||
|
||||
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
||||
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
|
||||
s = -one; /* (-ve)**(odd int) */
|
||||
|
||||
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
||||
GET_FLOAT_WORD(is,y);
|
||||
SET_FLOAT_WORD(y1,is&0xfffff000);
|
||||
p_l = (y-y1)*t1+y*t2;
|
||||
p_h = y1*t1;
|
||||
z = p_l+p_h;
|
||||
GET_FLOAT_WORD(j,z);
|
||||
if (j>0x43000000) /* if z > 128 */
|
||||
return s*huge*huge; /* overflow */
|
||||
else if (j==0x43000000) { /* if z == 128 */
|
||||
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
||||
}
|
||||
else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */
|
||||
return s*tiny*tiny; /* underflow */
|
||||
else if (j==0xc3160000){ /* z == -150 */
|
||||
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
||||
}
|
||||
/*
|
||||
* compute 2**(p_h+p_l)
|
||||
*/
|
||||
i = j&0x7fffffff;
|
||||
k = (i>>23)-0x7f;
|
||||
n = 0;
|
||||
if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
|
||||
n = j+(0x00800000>>(k+1));
|
||||
k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
|
||||
SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
|
||||
n = ((n&0x007fffff)|0x00800000)>>(23-k);
|
||||
if(j<0) n = -n;
|
||||
p_h -= t;
|
||||
}
|
||||
t = p_l+p_h;
|
||||
GET_FLOAT_WORD(is,t);
|
||||
SET_FLOAT_WORD(t,is&0xfffff000);
|
||||
u = t*lg2_h;
|
||||
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
||||
z = u+v;
|
||||
w = v-(z-u);
|
||||
t = z*z;
|
||||
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
r = (z*t1)/(t1-two)-(w+z*w);
|
||||
z = one-(r-z);
|
||||
GET_FLOAT_WORD(j,z);
|
||||
j += (n<<23);
|
||||
if((j>>23)<=0) z = scalbnf(z,n); /* subnormal output */
|
||||
else SET_FLOAT_WORD(z,j);
|
||||
return s*z;
|
||||
}
|
172
programs/develop/libraries/menuetlibc/src/libm/ef_rem_p.c
Executable file
172
programs/develop/libraries/menuetlibc/src/libm/ef_rem_p.c
Executable file
@@ -0,0 +1,172 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_rem_pio2f.c -- float version of e_rem_pio2.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_rem_pio2f.c,v 1.2 1994/08/18 23:05:58 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_rem_pio2f(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2f()
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const int32_t two_over_pi[] = {
|
||||
#else
|
||||
static int32_t two_over_pi[] = {
|
||||
#endif
|
||||
0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
|
||||
0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
|
||||
0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
|
||||
0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
|
||||
0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
|
||||
0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
|
||||
0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
|
||||
0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
|
||||
0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
|
||||
0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
|
||||
0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
|
||||
0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
|
||||
0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
|
||||
0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
|
||||
0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
|
||||
0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
|
||||
0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
|
||||
0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
|
||||
0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
|
||||
0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
|
||||
0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
|
||||
0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
|
||||
};
|
||||
|
||||
/* This array is like the one in e_rem_pio2.c, but the numbers are
|
||||
single precision and the last 8 bits are forced to 0. */
|
||||
#ifdef __STDC__
|
||||
static const int32_t npio2_hw[] = {
|
||||
#else
|
||||
static int32_t npio2_hw[] = {
|
||||
#endif
|
||||
0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
|
||||
0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
|
||||
0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
|
||||
0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
|
||||
0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
|
||||
0x4242c700, 0x42490f00
|
||||
};
|
||||
|
||||
/*
|
||||
* invpio2: 24 bits of 2/pi
|
||||
* pio2_1: first 17 bit of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 17 bit of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 17 bit of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
zero = 0.0000000000e+00, /* 0x00000000 */
|
||||
half = 5.0000000000e-01, /* 0x3f000000 */
|
||||
two8 = 2.5600000000e+02, /* 0x43800000 */
|
||||
invpio2 = 6.3661980629e-01, /* 0x3f22f984 */
|
||||
pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */
|
||||
pio2_1t = 1.0804334124e-05, /* 0x37354443 */
|
||||
pio2_2 = 1.0804273188e-05, /* 0x37354400 */
|
||||
pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */
|
||||
pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */
|
||||
pio2_3t = 6.1232342629e-17; /* 0x248d3132 */
|
||||
|
||||
#ifdef __STDC__
|
||||
int32_t __ieee754_rem_pio2f(float x, float *y)
|
||||
#else
|
||||
int32_t __ieee754_rem_pio2f(x,y)
|
||||
float x,y[];
|
||||
#endif
|
||||
{
|
||||
float z,w,t,r,fn;
|
||||
float tx[3];
|
||||
int32_t e0,i,j,nx,n,ix,hx;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */
|
||||
{y[0] = x; y[1] = 0; return 0;}
|
||||
if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
|
||||
t = fabsf(x);
|
||||
n = (int32_t) (t*invpio2+half);
|
||||
fn = (float)n;
|
||||
r = t-fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round good to 40 bit */
|
||||
if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) {
|
||||
y[0] = r-w; /* quick check no cancellation */
|
||||
} else {
|
||||
u_int32_t high;
|
||||
j = ix>>23;
|
||||
y[0] = r-w;
|
||||
GET_FLOAT_WORD(high,y[0]);
|
||||
i = j-((high>>23)&0xff);
|
||||
if(i>8) { /* 2nd iteration needed, good to 57 */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t-w;
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
GET_FLOAT_WORD(high,y[0]);
|
||||
i = j-((high>>23)&0xff);
|
||||
if(i>25) { /* 3rd iteration need, 74 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn*pio2_3;
|
||||
r = t-w;
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r-y[0])-w;
|
||||
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
||||
else return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(ix>=0x7f800000) { /* x is inf or NaN */
|
||||
y[0]=y[1]=x-x; return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,ilogb(x)-7) */
|
||||
e0 = (ix>>23)-134; /* e0 = ilogb(z)-7; */
|
||||
SET_FLOAT_WORD(z, ix - ((int32_t)(e0<<23)));
|
||||
for(i=0;i<2;i++) {
|
||||
tx[i] = (float)((int32_t)(z));
|
||||
z = (z-tx[i])*two8;
|
||||
}
|
||||
tx[2] = z;
|
||||
nx = 3;
|
||||
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
||||
n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
|
||||
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
||||
return n;
|
||||
}
|
11
programs/develop/libraries/menuetlibc/src/libm/ef_remai.s
Executable file
11
programs/develop/libraries/menuetlibc/src/libm/ef_remai.s
Executable file
@@ -0,0 +1,11 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(__ieee754_remainderf)
|
||||
flds 8(%esp)
|
||||
flds 4(%esp)
|
||||
1: fprem1
|
||||
fstsw %ax
|
||||
sahf
|
||||
jp 1b
|
||||
fstpl %st(1)
|
||||
ret
|
6
programs/develop/libraries/menuetlibc/src/libm/ef_scalb.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/ef_scalb.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_scalbf)
|
||||
flds 8(%esp)
|
||||
flds 4(%esp)
|
||||
fscale
|
||||
ret
|
69
programs/develop/libraries/menuetlibc/src/libm/ef_sinh.c
Executable file
69
programs/develop/libraries/menuetlibc/src/libm/ef_sinh.c
Executable file
@@ -0,0 +1,69 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_sinhf.c -- float version of e_sinh.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_sinhf.c,v 1.2 1994/08/18 23:06:04 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float one = 1.0, shuge = 1.0e37;
|
||||
#else
|
||||
static float one = 1.0, shuge = 1.0e37;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_sinhf(float x)
|
||||
#else
|
||||
float __ieee754_sinhf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float t,w,h;
|
||||
int32_t ix,jx;
|
||||
|
||||
GET_FLOAT_WORD(jx,x);
|
||||
ix = jx&0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7f800000) return x+x;
|
||||
|
||||
h = 0.5;
|
||||
if (jx<0) h = -h;
|
||||
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
|
||||
if (ix < 0x41b00000) { /* |x|<22 */
|
||||
if (ix<0x31800000) /* |x|<2**-28 */
|
||||
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
|
||||
t = expm1f(fabsf(x));
|
||||
if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one));
|
||||
return h*(t+t/(t+one));
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
|
||||
if (ix < 0x42b17180) return h*__ieee754_expf(fabsf(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
if (ix<=0x42b2d4fc) {
|
||||
w = __ieee754_expf((float)0.5*fabsf(x));
|
||||
t = h*w;
|
||||
return t*w;
|
||||
}
|
||||
|
||||
/* |x| > overflowthresold, sinh(x) overflow */
|
||||
return x*shuge;
|
||||
}
|
8
programs/develop/libraries/menuetlibc/src/libm/ef_sinh.s
Executable file
8
programs/develop/libraries/menuetlibc/src/libm/ef_sinh.s
Executable file
@@ -0,0 +1,8 @@
|
||||
.file "ef_sinh.c"
|
||||
.text
|
||||
.align 4
|
||||
_one:
|
||||
.long 1065353216
|
||||
.align 4
|
||||
_shuge:
|
||||
.long 2096152002
|
5
programs/develop/libraries/menuetlibc/src/libm/ef_sqrt.s
Executable file
5
programs/develop/libraries/menuetlibc/src/libm/ef_sqrt.s
Executable file
@@ -0,0 +1,5 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(__ieee754_sqrtf)
|
||||
flds 4(%esp)
|
||||
fsqrt
|
||||
ret
|
36
programs/develop/libraries/menuetlibc/src/libm/er_gamma.c
Executable file
36
programs/develop/libraries/menuetlibc/src/libm/er_gamma.c
Executable file
@@ -0,0 +1,36 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)er_gamma.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_gamma_r.c,v 1.4 1994/08/10 20:30:52 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_gamma_r(x, signgamp)
|
||||
* Reentrant version of the logarithm of the Gamma function
|
||||
* with user provide pointer for the sign of Gamma(x).
|
||||
*
|
||||
* Method: See __ieee754_lgamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_gamma_r(double x, int *signgamp)
|
||||
#else
|
||||
double __ieee754_gamma_r(x,signgamp)
|
||||
double x; int *signgamp;
|
||||
#endif
|
||||
{
|
||||
return __ieee754_lgamma_r(x,signgamp);
|
||||
}
|
313
programs/develop/libraries/menuetlibc/src/libm/er_lgamm.c
Executable file
313
programs/develop/libraries/menuetlibc/src/libm/er_lgamm.c
Executable file
@@ -0,0 +1,313 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)er_lgamma.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_lgamma_r.c,v 1.5 1994/08/10 20:31:07 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_lgamma_r(x, signgamp)
|
||||
* Reentrant version of the logarithm of the Gamma function
|
||||
* with user provide pointer for the sign of Gamma(x).
|
||||
*
|
||||
* Method:
|
||||
* 1. Argument Reduction for 0 < x <= 8
|
||||
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
||||
* reduce x to a number in [1.5,2.5] by
|
||||
* lgamma(1+s) = log(s) + lgamma(s)
|
||||
* for example,
|
||||
* lgamma(7.3) = log(6.3) + lgamma(6.3)
|
||||
* = log(6.3*5.3) + lgamma(5.3)
|
||||
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
||||
* 2. Polynomial approximation of lgamma around its
|
||||
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
||||
* Let z = x-ymin;
|
||||
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
||||
* where
|
||||
* poly(z) is a 14 degree polynomial.
|
||||
* 2. Rational approximation in the primary interval [2,3]
|
||||
* We use the following approximation:
|
||||
* s = x-2.0;
|
||||
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
||||
* with accuracy
|
||||
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
|
||||
* Our algorithms are based on the following observation
|
||||
*
|
||||
* zeta(2)-1 2 zeta(3)-1 3
|
||||
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
||||
* 2 3
|
||||
*
|
||||
* where Euler = 0.5771... is the Euler constant, which is very
|
||||
* close to 0.5.
|
||||
*
|
||||
* 3. For x>=8, we have
|
||||
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
||||
* (better formula:
|
||||
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
||||
* Let z = 1/x, then we approximation
|
||||
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
||||
* by
|
||||
* 3 5 11
|
||||
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
||||
* where
|
||||
* |w - f(z)| < 2**-58.74
|
||||
*
|
||||
* 4. For negative x, since (G is gamma function)
|
||||
* -x*G(-x)*G(x) = pi/sin(pi*x),
|
||||
* we have
|
||||
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
|
||||
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
|
||||
* Hence, for x<0, signgam = sign(sin(pi*x)) and
|
||||
* lgamma(x) = log(|Gamma(x)|)
|
||||
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
|
||||
* Note: one should avoid compute pi*(-x) directly in the
|
||||
* computation of sin(pi*(-x)).
|
||||
*
|
||||
* 5. Special Cases
|
||||
* lgamma(2+s) ~ s*(1-Euler) for tiny s
|
||||
* lgamma(1)=lgamma(2)=0
|
||||
* lgamma(x) ~ -log(x) for tiny x
|
||||
* lgamma(0) = lgamma(inf) = inf
|
||||
* lgamma(-integer) = +-inf
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
|
||||
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
|
||||
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
|
||||
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
|
||||
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
|
||||
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
|
||||
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
|
||||
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
|
||||
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
|
||||
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
|
||||
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
|
||||
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
|
||||
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
|
||||
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
|
||||
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
|
||||
/* tt = -(tail of tf) */
|
||||
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
|
||||
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
|
||||
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
|
||||
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
|
||||
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
|
||||
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
|
||||
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
|
||||
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
|
||||
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
|
||||
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
|
||||
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
|
||||
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
|
||||
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
|
||||
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
|
||||
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
|
||||
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
|
||||
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
|
||||
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
|
||||
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
|
||||
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
|
||||
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
|
||||
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
|
||||
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
|
||||
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
|
||||
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
|
||||
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
|
||||
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
|
||||
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
|
||||
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
|
||||
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
|
||||
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
|
||||
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
|
||||
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
|
||||
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
|
||||
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
|
||||
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
|
||||
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
|
||||
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
|
||||
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
|
||||
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
|
||||
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
|
||||
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
|
||||
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
|
||||
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
|
||||
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero= 0.00000000000000000000e+00;
|
||||
#else
|
||||
static double zero= 0.00000000000000000000e+00;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static double sin_pi(double x)
|
||||
#else
|
||||
static double sin_pi(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double y,z;
|
||||
int n,ix;
|
||||
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
|
||||
y = -x; /* x is assume negative */
|
||||
|
||||
/*
|
||||
* argument reduction, make sure inexact flag not raised if input
|
||||
* is an integer
|
||||
*/
|
||||
z = floor(y);
|
||||
if(z!=y) { /* inexact anyway */
|
||||
y *= 0.5;
|
||||
y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */
|
||||
n = (int) (y*4.0);
|
||||
} else {
|
||||
if(ix>=0x43400000) {
|
||||
y = zero; n = 0; /* y must be even */
|
||||
} else {
|
||||
if(ix<0x43300000) z = y+two52; /* exact */
|
||||
GET_LOW_WORD(n,z);
|
||||
n &= 1;
|
||||
y = n;
|
||||
n<<= 2;
|
||||
}
|
||||
}
|
||||
switch (n) {
|
||||
case 0: y = __kernel_sin(pi*y,zero,0); break;
|
||||
case 1:
|
||||
case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
|
||||
case 3:
|
||||
case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
|
||||
case 5:
|
||||
case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
|
||||
default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
|
||||
}
|
||||
return -y;
|
||||
}
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_lgamma_r(double x, int *signgamp)
|
||||
#else
|
||||
double __ieee754_lgamma_r(x,signgamp)
|
||||
double x; int *signgamp;
|
||||
#endif
|
||||
{
|
||||
double t,y,z,nadj,p,p1,p2,p3,q,r,w;
|
||||
int i,hx,lx,ix;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
|
||||
/* purge off +-inf, NaN, +-0, and negative arguments */
|
||||
*signgamp = 1;
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7ff00000) return x*x;
|
||||
if((ix|lx)==0) return one/zero;
|
||||
if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
|
||||
if(hx<0) {
|
||||
*signgamp = -1;
|
||||
return -__ieee754_log(-x);
|
||||
} else return -__ieee754_log(x);
|
||||
}
|
||||
if(hx<0) {
|
||||
if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
|
||||
return one/zero;
|
||||
t = sin_pi(x);
|
||||
if(t==zero) return one/zero; /* -integer */
|
||||
nadj = __ieee754_log(pi/fabs(t*x));
|
||||
if(t<zero) *signgamp = -1;
|
||||
x = -x;
|
||||
}
|
||||
|
||||
/* purge off 1 and 2 */
|
||||
if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
|
||||
/* for x < 2.0 */
|
||||
else if(ix<0x40000000) {
|
||||
if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
|
||||
r = -__ieee754_log(x);
|
||||
if(ix>=0x3FE76944) {y = one-x; i= 0;}
|
||||
else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
|
||||
else {y = x; i=2;}
|
||||
} else {
|
||||
r = zero;
|
||||
if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
|
||||
else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
|
||||
else {y=x-one;i=2;}
|
||||
}
|
||||
switch(i) {
|
||||
case 0:
|
||||
z = y*y;
|
||||
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
|
||||
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
|
||||
p = y*p1+p2;
|
||||
r += (p-0.5*y); break;
|
||||
case 1:
|
||||
z = y*y;
|
||||
w = z*y;
|
||||
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
|
||||
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
|
||||
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
|
||||
p = z*p1-(tt-w*(p2+y*p3));
|
||||
r += (tf + p); break;
|
||||
case 2:
|
||||
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
|
||||
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
|
||||
r += (-0.5*y + p1/p2);
|
||||
}
|
||||
}
|
||||
else if(ix<0x40200000) { /* x < 8.0 */
|
||||
i = (int)x;
|
||||
t = zero;
|
||||
y = x-(double)i;
|
||||
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
|
||||
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
|
||||
r = half*y+p/q;
|
||||
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
switch(i) {
|
||||
case 7: z *= (y+6.0); /* FALLTHRU */
|
||||
case 6: z *= (y+5.0); /* FALLTHRU */
|
||||
case 5: z *= (y+4.0); /* FALLTHRU */
|
||||
case 4: z *= (y+3.0); /* FALLTHRU */
|
||||
case 3: z *= (y+2.0); /* FALLTHRU */
|
||||
r += __ieee754_log(z); break;
|
||||
}
|
||||
/* 8.0 <= x < 2**58 */
|
||||
} else if (ix < 0x43900000) {
|
||||
t = __ieee754_log(x);
|
||||
z = one/x;
|
||||
y = z*z;
|
||||
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
|
||||
r = (x-half)*(t-one)+w;
|
||||
} else
|
||||
/* 2**58 <= x <= inf */
|
||||
r = x*(__ieee754_log(x)-one);
|
||||
if(hx<0) r = nadj - r;
|
||||
return r;
|
||||
}
|
39
programs/develop/libraries/menuetlibc/src/libm/erf_gamm.c
Executable file
39
programs/develop/libraries/menuetlibc/src/libm/erf_gamm.c
Executable file
@@ -0,0 +1,39 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_gammaf_r.c -- float version of e_gamma_r.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_gammaf_r.c,v 1.1 1994/08/10 20:30:54 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __ieee754_gammaf_r(x, signgamp)
|
||||
* Reentrant version of the logarithm of the Gamma function
|
||||
* with user provide pointer for the sign of Gamma(x).
|
||||
*
|
||||
* Method: See __ieee754_lgammaf_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_gammaf_r(float x, int *signgamp)
|
||||
#else
|
||||
float __ieee754_gammaf_r(x,signgamp)
|
||||
float x; int *signgamp;
|
||||
#endif
|
||||
{
|
||||
return __ieee754_lgammaf_r(x,signgamp);
|
||||
}
|
249
programs/develop/libraries/menuetlibc/src/libm/erf_lgam.c
Executable file
249
programs/develop/libraries/menuetlibc/src/libm/erf_lgam.c
Executable file
@@ -0,0 +1,249 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* e_lgammaf_r.c -- float version of e_lgamma_r.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: e_lgammaf_r.c,v 1.1 1994/08/10 20:31:09 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
two23= 8.3886080000e+06, /* 0x4b000000 */
|
||||
half= 5.0000000000e-01, /* 0x3f000000 */
|
||||
one = 1.0000000000e+00, /* 0x3f800000 */
|
||||
pi = 3.1415927410e+00, /* 0x40490fdb */
|
||||
a0 = 7.7215664089e-02, /* 0x3d9e233f */
|
||||
a1 = 3.2246702909e-01, /* 0x3ea51a66 */
|
||||
a2 = 6.7352302372e-02, /* 0x3d89f001 */
|
||||
a3 = 2.0580807701e-02, /* 0x3ca89915 */
|
||||
a4 = 7.3855509982e-03, /* 0x3bf2027e */
|
||||
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
|
||||
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
|
||||
a7 = 5.1006977446e-04, /* 0x3a05b634 */
|
||||
a8 = 2.2086278477e-04, /* 0x39679767 */
|
||||
a9 = 1.0801156895e-04, /* 0x38e28445 */
|
||||
a10 = 2.5214456400e-05, /* 0x37d383a2 */
|
||||
a11 = 4.4864096708e-05, /* 0x383c2c75 */
|
||||
tc = 1.4616321325e+00, /* 0x3fbb16c3 */
|
||||
tf = -1.2148628384e-01, /* 0xbdf8cdcd */
|
||||
/* tt = -(tail of tf) */
|
||||
tt = 6.6971006518e-09, /* 0x31e61c52 */
|
||||
t0 = 4.8383611441e-01, /* 0x3ef7b95e */
|
||||
t1 = -1.4758771658e-01, /* 0xbe17213c */
|
||||
t2 = 6.4624942839e-02, /* 0x3d845a15 */
|
||||
t3 = -3.2788541168e-02, /* 0xbd064d47 */
|
||||
t4 = 1.7970675603e-02, /* 0x3c93373d */
|
||||
t5 = -1.0314224288e-02, /* 0xbc28fcfe */
|
||||
t6 = 6.1005386524e-03, /* 0x3bc7e707 */
|
||||
t7 = -3.6845202558e-03, /* 0xbb7177fe */
|
||||
t8 = 2.2596477065e-03, /* 0x3b141699 */
|
||||
t9 = -1.4034647029e-03, /* 0xbab7f476 */
|
||||
t10 = 8.8108185446e-04, /* 0x3a66f867 */
|
||||
t11 = -5.3859531181e-04, /* 0xba0d3085 */
|
||||
t12 = 3.1563205994e-04, /* 0x39a57b6b */
|
||||
t13 = -3.1275415677e-04, /* 0xb9a3f927 */
|
||||
t14 = 3.3552918467e-04, /* 0x39afe9f7 */
|
||||
u0 = -7.7215664089e-02, /* 0xbd9e233f */
|
||||
u1 = 6.3282704353e-01, /* 0x3f2200f4 */
|
||||
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
|
||||
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
|
||||
u4 = 2.2896373272e-01, /* 0x3e6a7578 */
|
||||
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
|
||||
v1 = 2.4559779167e+00, /* 0x401d2ebe */
|
||||
v2 = 2.1284897327e+00, /* 0x4008392d */
|
||||
v3 = 7.6928514242e-01, /* 0x3f44efdf */
|
||||
v4 = 1.0422264785e-01, /* 0x3dd572af */
|
||||
v5 = 3.2170924824e-03, /* 0x3b52d5db */
|
||||
s0 = -7.7215664089e-02, /* 0xbd9e233f */
|
||||
s1 = 2.1498242021e-01, /* 0x3e5c245a */
|
||||
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
|
||||
s3 = 1.4635047317e-01, /* 0x3e15dce6 */
|
||||
s4 = 2.6642270386e-02, /* 0x3cda40e4 */
|
||||
s5 = 1.8402845599e-03, /* 0x3af135b4 */
|
||||
s6 = 3.1947532989e-05, /* 0x3805ff67 */
|
||||
r1 = 1.3920053244e+00, /* 0x3fb22d3b */
|
||||
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
|
||||
r3 = 1.7193385959e-01, /* 0x3e300f6e */
|
||||
r4 = 1.8645919859e-02, /* 0x3c98bf54 */
|
||||
r5 = 7.7794247773e-04, /* 0x3a4beed6 */
|
||||
r6 = 7.3266842264e-06, /* 0x36f5d7bd */
|
||||
w0 = 4.1893854737e-01, /* 0x3ed67f1d */
|
||||
w1 = 8.3333335817e-02, /* 0x3daaaaab */
|
||||
w2 = -2.7777778450e-03, /* 0xbb360b61 */
|
||||
w3 = 7.9365057172e-04, /* 0x3a500cfd */
|
||||
w4 = -5.9518753551e-04, /* 0xba1c065c */
|
||||
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
|
||||
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float zero= 0.0000000000e+00;
|
||||
#else
|
||||
static float zero= 0.0000000000e+00;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static float sin_pif(float x)
|
||||
#else
|
||||
static float sin_pif(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float y,z;
|
||||
int n,ix;
|
||||
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
|
||||
y = -x; /* x is assume negative */
|
||||
|
||||
/*
|
||||
* argument reduction, make sure inexact flag not raised if input
|
||||
* is an integer
|
||||
*/
|
||||
z = floorf(y);
|
||||
if(z!=y) { /* inexact anyway */
|
||||
y *= (float)0.5;
|
||||
y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */
|
||||
n = (int) (y*(float)4.0);
|
||||
} else {
|
||||
if(ix>=0x4b800000) {
|
||||
y = zero; n = 0; /* y must be even */
|
||||
} else {
|
||||
if(ix<0x4b000000) z = y+two23; /* exact */
|
||||
GET_FLOAT_WORD(n,z);
|
||||
n &= 1;
|
||||
y = n;
|
||||
n<<= 2;
|
||||
}
|
||||
}
|
||||
switch (n) {
|
||||
case 0: y = __kernel_sinf(pi*y,zero,0); break;
|
||||
case 1:
|
||||
case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break;
|
||||
case 3:
|
||||
case 4: y = __kernel_sinf(pi*(one-y),zero,0); break;
|
||||
case 5:
|
||||
case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
|
||||
default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
|
||||
}
|
||||
return -y;
|
||||
}
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
float __ieee754_lgammaf_r(float x, int *signgamp)
|
||||
#else
|
||||
float __ieee754_lgammaf_r(x,signgamp)
|
||||
float x; int *signgamp;
|
||||
#endif
|
||||
{
|
||||
float t,y,z,nadj,p,p1,p2,p3,q,r,w;
|
||||
int i,hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
|
||||
/* purge off +-inf, NaN, +-0, and negative arguments */
|
||||
*signgamp = 1;
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) return x*x;
|
||||
if(ix==0) return one/zero;
|
||||
if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */
|
||||
if(hx<0) {
|
||||
*signgamp = -1;
|
||||
return -__ieee754_logf(-x);
|
||||
} else return -__ieee754_logf(x);
|
||||
}
|
||||
if(hx<0) {
|
||||
if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
|
||||
return one/zero;
|
||||
t = sin_pif(x);
|
||||
if(t==zero) return one/zero; /* -integer */
|
||||
nadj = __ieee754_logf(pi/fabsf(t*x));
|
||||
if(t<zero) *signgamp = -1;
|
||||
x = -x;
|
||||
}
|
||||
|
||||
/* purge off 1 and 2 */
|
||||
if (ix==0x3f800000||ix==0x40000000) r = 0;
|
||||
/* for x < 2.0 */
|
||||
else if(ix<0x40000000) {
|
||||
if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
|
||||
r = -__ieee754_logf(x);
|
||||
if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
|
||||
else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
|
||||
else {y = x; i=2;}
|
||||
} else {
|
||||
r = zero;
|
||||
if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
|
||||
else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
|
||||
else {y=x-one;i=2;}
|
||||
}
|
||||
switch(i) {
|
||||
case 0:
|
||||
z = y*y;
|
||||
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
|
||||
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
|
||||
p = y*p1+p2;
|
||||
r += (p-(float)0.5*y); break;
|
||||
case 1:
|
||||
z = y*y;
|
||||
w = z*y;
|
||||
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
|
||||
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
|
||||
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
|
||||
p = z*p1-(tt-w*(p2+y*p3));
|
||||
r += (tf + p); break;
|
||||
case 2:
|
||||
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
|
||||
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
|
||||
r += (-(float)0.5*y + p1/p2);
|
||||
}
|
||||
}
|
||||
else if(ix<0x41000000) { /* x < 8.0 */
|
||||
i = (int)x;
|
||||
t = zero;
|
||||
y = x-(float)i;
|
||||
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
|
||||
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
|
||||
r = half*y+p/q;
|
||||
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
switch(i) {
|
||||
case 7: z *= (y+(float)6.0); /* FALLTHRU */
|
||||
case 6: z *= (y+(float)5.0); /* FALLTHRU */
|
||||
case 5: z *= (y+(float)4.0); /* FALLTHRU */
|
||||
case 4: z *= (y+(float)3.0); /* FALLTHRU */
|
||||
case 3: z *= (y+(float)2.0); /* FALLTHRU */
|
||||
r += __ieee754_logf(z); break;
|
||||
}
|
||||
/* 8.0 <= x < 2**58 */
|
||||
} else if (ix < 0x5c800000) {
|
||||
t = __ieee754_logf(x);
|
||||
z = one/x;
|
||||
y = z*z;
|
||||
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
|
||||
r = (x-half)*(t-one)+w;
|
||||
} else
|
||||
/* 2**58 <= x <= inf */
|
||||
r = x*(__ieee754_logf(x)-one);
|
||||
if(hx<0) r = nadj - r;
|
||||
return r;
|
||||
}
|
97
programs/develop/libraries/menuetlibc/src/libm/k_cos.c
Executable file
97
programs/develop/libraries/menuetlibc/src/libm/k_cos.c
Executable file
@@ -0,0 +1,97 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)k_cos.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_cos.c,v 1.6 1994/08/18 23:06:08 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* __kernel_cos( x, y )
|
||||
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
||||
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
||||
* [0,pi/4]
|
||||
* 4 14
|
||||
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
* where the remez error is
|
||||
*
|
||||
* | 2 4 6 8 10 12 14 | -58
|
||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
* | |
|
||||
*
|
||||
* 4 6 8 10 12 14
|
||||
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
* cos(x) = 1 - x*x/2 + r
|
||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
* ~ cos(x) - x*y,
|
||||
* a correction term is necessary in cos(x) and hence
|
||||
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||
* For better accuracy when x > 0.3, let qx = |x|/4 with
|
||||
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
||||
* Then
|
||||
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
||||
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
||||
* magnitude of the latter is at least a quarter of x*x/2,
|
||||
* thus, reducing the rounding error in the subtraction.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
||||
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
||||
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
||||
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
||||
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
||||
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __kernel_cos(double x, double y)
|
||||
#else
|
||||
double __kernel_cos(x, y)
|
||||
double x,y;
|
||||
#endif
|
||||
{
|
||||
double a,hz,z,r,qx;
|
||||
int32_t ix;
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff; /* ix = |x|'s high word*/
|
||||
if(ix<0x3e400000) { /* if x < 2**27 */
|
||||
if(((int)x)==0) return one; /* generate inexact */
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
||||
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
||||
return one - (0.5*z - (z*r - x*y));
|
||||
else {
|
||||
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
||||
qx = 0.28125;
|
||||
} else {
|
||||
INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
|
||||
}
|
||||
hz = 0.5*z-qx;
|
||||
a = one-qx;
|
||||
return a - (hz - (z*r-x*y));
|
||||
}
|
||||
}
|
321
programs/develop/libraries/menuetlibc/src/libm/k_rem_pi.c
Executable file
321
programs/develop/libraries/menuetlibc/src/libm/k_rem_pi.c
Executable file
@@ -0,0 +1,321 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)k_rem_pio2.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_rem_pio2.c,v 1.5 1994/08/18 23:06:11 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
||||
* double x[],y[]; int e0,nx,prec; int ipio2[];
|
||||
*
|
||||
* __kernel_rem_pio2 return the last three digits of N with
|
||||
* y = x - N*pi/2
|
||||
* so that |y| < pi/2.
|
||||
*
|
||||
* The method is to compute the integer (mod 8) and fraction parts of
|
||||
* (2/pi)*x without doing the full multiplication. In general we
|
||||
* skip the part of the product that are known to be a huge integer (
|
||||
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||
* independent of the exponent of the input.
|
||||
*
|
||||
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
||||
*
|
||||
* Input parameters:
|
||||
* x[] The input value (must be positive) is broken into nx
|
||||
* pieces of 24-bit integers in double precision format.
|
||||
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
* match x's up to 24 bits.
|
||||
*
|
||||
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||
* e0 = ilogb(z)-23
|
||||
* z = scalbn(z,-e0)
|
||||
* for i = 0,1,2
|
||||
* x[i] = floor(z)
|
||||
* z = (z-x[i])*2**24
|
||||
*
|
||||
*
|
||||
* y[] ouput result in an array of double precision numbers.
|
||||
* The dimension of y[] is:
|
||||
* 24-bit precision 1
|
||||
* 53-bit precision 2
|
||||
* 64-bit precision 2
|
||||
* 113-bit precision 3
|
||||
* The actual value is the sum of them. Thus for 113-bit
|
||||
* precison, one may have to do something like:
|
||||
*
|
||||
* long double t,w,r_head, r_tail;
|
||||
* t = (long double)y[2] + (long double)y[1];
|
||||
* w = (long double)y[0];
|
||||
* r_head = t+w;
|
||||
* r_tail = w - (r_head - t);
|
||||
*
|
||||
* e0 The exponent of x[0]
|
||||
*
|
||||
* nx dimension of x[]
|
||||
*
|
||||
* prec an integer indicating the precision:
|
||||
* 0 24 bits (single)
|
||||
* 1 53 bits (double)
|
||||
* 2 64 bits (extended)
|
||||
* 3 113 bits (quad)
|
||||
*
|
||||
* ipio2[]
|
||||
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
* bit of 2/pi after binary point. The corresponding
|
||||
* floating value is
|
||||
*
|
||||
* ipio2[i] * 2^(-24(i+1)).
|
||||
*
|
||||
* External function:
|
||||
* double scalbn(), floor();
|
||||
*
|
||||
*
|
||||
* Here is the description of some local variables:
|
||||
*
|
||||
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
* in the computation. The recommended value is 2,3,4,
|
||||
* 6 for single, double, extended,and quad.
|
||||
*
|
||||
* jz local integer variable indicating the number of
|
||||
* terms of ipio2[] used.
|
||||
*
|
||||
* jx nx - 1
|
||||
*
|
||||
* jv index for pointing to the suitable ipio2[] for the
|
||||
* computation. In general, we want
|
||||
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
||||
* is an integer. Thus
|
||||
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
||||
* Hence jv = max(0,(e0-3)/24).
|
||||
*
|
||||
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||
*
|
||||
* q[] double array with integral value, representing the
|
||||
* 24-bits chunk of the product of x and 2/pi.
|
||||
*
|
||||
* q0 the corresponding exponent of q[0]. Note that the
|
||||
* exponent for q[i] would be q0-24*i.
|
||||
*
|
||||
* PIo2[] double precision array, obtained by cutting pi/2
|
||||
* into 24 bits chunks.
|
||||
*
|
||||
* f[] ipio2[] in floating point
|
||||
*
|
||||
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||
*
|
||||
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
||||
*
|
||||
* ih integer. If >0 it indicates q[] is >= 0.5, hence
|
||||
* it also indicates the *sign* of the result.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
|
||||
#else
|
||||
static int init_jk[] = {2,3,4,6};
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double PIo2[] = {
|
||||
#else
|
||||
static double PIo2[] = {
|
||||
#endif
|
||||
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
||||
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
||||
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
||||
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
||||
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
||||
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
||||
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
||||
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
||||
|
||||
#ifdef __STDC__
|
||||
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
|
||||
#else
|
||||
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
||||
double x[], y[]; int e0,nx,prec; int32_t ipio2[];
|
||||
#endif
|
||||
{
|
||||
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
||||
double z,fw,f[20],fq[20],q[20];
|
||||
|
||||
/* initialize jk*/
|
||||
jk = init_jk[prec];
|
||||
jp = jk;
|
||||
|
||||
/* determine jx,jv,q0, note that 3>q0 */
|
||||
jx = nx-1;
|
||||
jv = (e0-3)/24; if(jv<0) jv=0;
|
||||
q0 = e0-24*(jv+1);
|
||||
|
||||
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||
j = jv-jx; m = jx+jk;
|
||||
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
|
||||
|
||||
/* compute q[0],q[1],...q[jk] */
|
||||
for (i=0;i<=jk;i++) {
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
|
||||
}
|
||||
|
||||
jz = jk;
|
||||
recompute:
|
||||
/* distill q[] into iq[] reversingly */
|
||||
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
||||
fw = (double)((int32_t)(twon24* z));
|
||||
iq[i] = (int32_t)(z-two24*fw);
|
||||
z = q[j-1]+fw;
|
||||
}
|
||||
|
||||
/* compute n */
|
||||
z = scalbn(z,q0); /* actual value of z */
|
||||
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
|
||||
n = (int32_t) z;
|
||||
z -= (double)n;
|
||||
ih = 0;
|
||||
if(q0>0) { /* need iq[jz-1] to determine n */
|
||||
i = (iq[jz-1]>>(24-q0)); n += i;
|
||||
iq[jz-1] -= i<<(24-q0);
|
||||
ih = iq[jz-1]>>(23-q0);
|
||||
}
|
||||
else if(q0==0) ih = iq[jz-1]>>23;
|
||||
else if(z>=0.5) ih=2;
|
||||
|
||||
if(ih>0) { /* q > 0.5 */
|
||||
n += 1; carry = 0;
|
||||
for(i=0;i<jz ;i++) { /* compute 1-q */
|
||||
j = iq[i];
|
||||
if(carry==0) {
|
||||
if(j!=0) {
|
||||
carry = 1; iq[i] = 0x1000000- j;
|
||||
}
|
||||
} else iq[i] = 0xffffff - j;
|
||||
}
|
||||
if(q0>0) { /* rare case: chance is 1 in 12 */
|
||||
switch(q0) {
|
||||
case 1:
|
||||
iq[jz-1] &= 0x7fffff; break;
|
||||
case 2:
|
||||
iq[jz-1] &= 0x3fffff; break;
|
||||
}
|
||||
}
|
||||
if(ih==2) {
|
||||
z = one - z;
|
||||
if(carry!=0) z -= scalbn(one,q0);
|
||||
}
|
||||
}
|
||||
|
||||
/* check if recomputation is needed */
|
||||
if(z==zero) {
|
||||
j = 0;
|
||||
for (i=jz-1;i>=jk;i--) j |= iq[i];
|
||||
if(j==0) { /* need recomputation */
|
||||
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
||||
|
||||
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
||||
f[jx+i] = (double) ipio2[jv+i];
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
goto recompute;
|
||||
}
|
||||
}
|
||||
|
||||
/* chop off zero terms */
|
||||
if(z==0.0) {
|
||||
jz -= 1; q0 -= 24;
|
||||
while(iq[jz]==0) { jz--; q0-=24;}
|
||||
} else { /* break z into 24-bit if necessary */
|
||||
z = scalbn(z,-q0);
|
||||
if(z>=two24) {
|
||||
fw = (double)((int32_t)(twon24*z));
|
||||
iq[jz] = (int32_t)(z-two24*fw);
|
||||
jz += 1; q0 += 24;
|
||||
iq[jz] = (int32_t) fw;
|
||||
} else iq[jz] = (int32_t) z ;
|
||||
}
|
||||
|
||||
/* convert integer "bit" chunk to floating-point value */
|
||||
fw = scalbn(one,q0);
|
||||
for(i=jz;i>=0;i--) {
|
||||
q[i] = fw*(double)iq[i]; fw*=twon24;
|
||||
}
|
||||
|
||||
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||
for(i=jz;i>=0;i--) {
|
||||
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
||||
fq[jz-i] = fw;
|
||||
}
|
||||
|
||||
/* compress fq[] into y[] */
|
||||
switch(prec) {
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
fw = fq[0]-fw;
|
||||
for (i=1;i<=jz;i++) fw += fq[i];
|
||||
y[1] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 3: /* painful */
|
||||
for (i=jz;i>0;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (i=jz;i>1;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
||||
if(ih==0) {
|
||||
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
||||
}
|
||||
}
|
||||
return n&7;
|
||||
}
|
80
programs/develop/libraries/menuetlibc/src/libm/k_sin.c
Executable file
80
programs/develop/libraries/menuetlibc/src/libm/k_sin.c
Executable file
@@ -0,0 +1,80 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)k_sin.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_sin.c,v 1.6 1994/08/18 23:06:14 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __kernel_sin( x, y, iy)
|
||||
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
||||
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||
* [0,pi/4]
|
||||
* 3 13
|
||||
* sin(x) ~ x + S1*x + ... + S6*x
|
||||
* where
|
||||
*
|
||||
* |sin(x) 2 4 6 8 10 12 | -58
|
||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||
* ~ sin(x) + (1-x*x/2)*y
|
||||
* For better accuracy, let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||
* then 3 2
|
||||
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
||||
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
||||
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
||||
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
||||
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||||
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __kernel_sin(double x, double y, int iy)
|
||||
#else
|
||||
double __kernel_sin(x, y, iy)
|
||||
double x,y; int iy; /* iy=0 if y is zero */
|
||||
#endif
|
||||
{
|
||||
double z,r,v;
|
||||
int32_t ix;
|
||||
GET_HIGH_WORD(ix,x);
|
||||
ix &= 0x7fffffff; /* high word of x */
|
||||
if(ix<0x3e400000) /* |x| < 2**-27 */
|
||||
{if((int)x==0) return x;} /* generate inexact */
|
||||
z = x*x;
|
||||
v = z*x;
|
||||
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
|
||||
if(iy==0) return x+v*(S1+z*r);
|
||||
else return x-((z*(half*y-v*r)-y)-v*S1);
|
||||
}
|
783
programs/develop/libraries/menuetlibc/src/libm/k_standa.c
Executable file
783
programs/develop/libraries/menuetlibc/src/libm/k_standa.c
Executable file
@@ -0,0 +1,783 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)k_standard.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_standard.c,v 1.4 1994/08/10 20:31:44 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include <errno.h>
|
||||
|
||||
#ifndef _USE_WRITE
|
||||
#include <stdio.h> /* fputs(), stderr */
|
||||
#define WRITE2(u,v) fputs(u, stderr)
|
||||
#else /* !defined(_USE_WRITE) */
|
||||
#include <unistd.h> /* write */
|
||||
#define WRITE2(u,v) write(2, u, v)
|
||||
#undef fflush
|
||||
#endif /* !defined(_USE_WRITE) */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero = 0.0; /* used as const */
|
||||
#else
|
||||
static double zero = 0.0; /* used as const */
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Standard conformance (non-IEEE) on exception cases.
|
||||
* Mapping:
|
||||
* 1 -- acos(|x|>1)
|
||||
* 2 -- asin(|x|>1)
|
||||
* 3 -- atan2(+-0,+-0)
|
||||
* 4 -- hypot overflow
|
||||
* 5 -- cosh overflow
|
||||
* 6 -- exp overflow
|
||||
* 7 -- exp underflow
|
||||
* 8 -- y0(0)
|
||||
* 9 -- y0(-ve)
|
||||
* 10-- y1(0)
|
||||
* 11-- y1(-ve)
|
||||
* 12-- yn(0)
|
||||
* 13-- yn(-ve)
|
||||
* 14-- lgamma(finite) overflow
|
||||
* 15-- lgamma(-integer)
|
||||
* 16-- log(0)
|
||||
* 17-- log(x<0)
|
||||
* 18-- log10(0)
|
||||
* 19-- log10(x<0)
|
||||
* 20-- pow(0.0,0.0)
|
||||
* 21-- pow(x,y) overflow
|
||||
* 22-- pow(x,y) underflow
|
||||
* 23-- pow(0,negative)
|
||||
* 24-- pow(neg,non-integral)
|
||||
* 25-- sinh(finite) overflow
|
||||
* 26-- sqrt(negative)
|
||||
* 27-- fmod(x,0)
|
||||
* 28-- remainder(x,0)
|
||||
* 29-- acosh(x<1)
|
||||
* 30-- atanh(|x|>1)
|
||||
* 31-- atanh(|x|=1)
|
||||
* 32-- scalb overflow
|
||||
* 33-- scalb underflow
|
||||
* 34-- j0(|x|>X_TLOSS)
|
||||
* 35-- y0(x>X_TLOSS)
|
||||
* 36-- j1(|x|>X_TLOSS)
|
||||
* 37-- y1(x>X_TLOSS)
|
||||
* 38-- jn(|x|>X_TLOSS, n)
|
||||
* 39-- yn(x>X_TLOSS, n)
|
||||
* 40-- gamma(finite) overflow
|
||||
* 41-- gamma(-integer)
|
||||
* 42-- pow(NaN,0.0)
|
||||
*/
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double __kernel_standard(double x, double y, int type)
|
||||
#else
|
||||
double __kernel_standard(x,y,type)
|
||||
double x,y; int type;
|
||||
#endif
|
||||
{
|
||||
struct exception exc;
|
||||
#ifndef HUGE_VAL /* this is the only routine that uses HUGE_VAL */
|
||||
#define HUGE_VAL inf
|
||||
double inf = 0.0;
|
||||
|
||||
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
|
||||
#endif
|
||||
|
||||
#ifdef _USE_WRITE
|
||||
(void) fflush(stdout);
|
||||
#endif
|
||||
exc.arg1 = x;
|
||||
exc.arg2 = y;
|
||||
switch(type) {
|
||||
case 1:
|
||||
case 101:
|
||||
/* acos(|x|>1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "acos" : "acosf";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if(_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("acos: DOMAIN error\n", 19);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
case 102:
|
||||
/* asin(|x|>1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "asin" : "asinf";
|
||||
exc.retval = zero;
|
||||
if(_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if(_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("asin: DOMAIN error\n", 19);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
case 103:
|
||||
/* atan2(+-0,+-0) */
|
||||
exc.arg1 = y;
|
||||
exc.arg2 = x;
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "atan2" : "atan2f";
|
||||
exc.retval = zero;
|
||||
if(_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if(_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("atan2: DOMAIN error\n", 20);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
case 104:
|
||||
/* hypot(finite,finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "hypot" : "hypotf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE_VAL;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 5:
|
||||
case 105:
|
||||
/* cosh(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "cosh" : "coshf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE_VAL;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 6:
|
||||
case 106:
|
||||
/* exp(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "exp" : "expf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE_VAL;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 7:
|
||||
case 107:
|
||||
/* exp(finite) underflow */
|
||||
exc.type = UNDERFLOW;
|
||||
exc.name = type < 100 ? "exp" : "expf";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 8:
|
||||
case 108:
|
||||
/* y0(0) = -inf */
|
||||
exc.type = DOMAIN; /* should be SING for IEEE */
|
||||
exc.name = type < 100 ? "y0" : "y0f";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("y0: DOMAIN error\n", 17);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 9:
|
||||
case 109:
|
||||
/* y0(x<0) = NaN */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "y0" : "y0f";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("y0: DOMAIN error\n", 17);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 10:
|
||||
case 110:
|
||||
/* y1(0) = -inf */
|
||||
exc.type = DOMAIN; /* should be SING for IEEE */
|
||||
exc.name = type < 100 ? "y1" : "y1f";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("y1: DOMAIN error\n", 17);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 11:
|
||||
case 111:
|
||||
/* y1(x<0) = NaN */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "y1" : "y1f";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("y1: DOMAIN error\n", 17);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 12:
|
||||
case 112:
|
||||
/* yn(n,0) = -inf */
|
||||
exc.type = DOMAIN; /* should be SING for IEEE */
|
||||
exc.name = type < 100 ? "yn" : "ynf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("yn: DOMAIN error\n", 17);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 13:
|
||||
case 113:
|
||||
/* yn(x<0) = NaN */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "yn" : "ynf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("yn: DOMAIN error\n", 17);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 14:
|
||||
case 114:
|
||||
/* lgamma(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "lgamma" : "lgammaf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE_VAL;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 15:
|
||||
case 115:
|
||||
/* lgamma(-integer) or lgamma(0) */
|
||||
exc.type = SING;
|
||||
exc.name = type < 100 ? "lgamma" : "lgammaf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE_VAL;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("lgamma: SING error\n", 19);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 16:
|
||||
case 116:
|
||||
/* log(0) */
|
||||
exc.type = SING;
|
||||
exc.name = type < 100 ? "log" : "logf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("log: SING error\n", 16);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 17:
|
||||
case 117:
|
||||
/* log(x<0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "log" : "logf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("log: DOMAIN error\n", 18);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 18:
|
||||
case 118:
|
||||
/* log10(0) */
|
||||
exc.type = SING;
|
||||
exc.name = type < 100 ? "log10" : "log10f";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("log10: SING error\n", 18);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 19:
|
||||
case 119:
|
||||
/* log10(x<0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "log10" : "log10f";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE_VAL;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("log10: DOMAIN error\n", 20);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 20:
|
||||
case 120:
|
||||
/* pow(0.0,0.0) */
|
||||
/* error only if _LIB_VERSION == _SVID_ */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "pow" : "powf";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
|
||||
else if (!matherr(&exc)) {
|
||||
(void) WRITE2("pow(0,0): DOMAIN error\n", 23);
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 21:
|
||||
case 121:
|
||||
/* pow(x,y) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "pow" : "powf";
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
exc.retval = HUGE_VAL;
|
||||
y *= 0.5;
|
||||
if(x<zero&&rint(y)!=y) exc.retval = -HUGE_VAL;
|
||||
} else {
|
||||
exc.retval = HUGE_VAL;
|
||||
y *= 0.5;
|
||||
if(x<zero&&rint(y)!=y) exc.retval = -HUGE_VAL;
|
||||
}
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 22:
|
||||
case 122:
|
||||
/* pow(x,y) underflow */
|
||||
exc.type = UNDERFLOW;
|
||||
exc.name = type < 100 ? "pow" : "powf";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 23:
|
||||
case 123:
|
||||
/* 0**neg */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "pow" : "powf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = zero;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("pow(0,neg): DOMAIN error\n", 25);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 24:
|
||||
case 124:
|
||||
/* neg**non-integral */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "pow" : "powf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = zero;
|
||||
else
|
||||
exc.retval = zero/zero; /* X/Open allow NaN */
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("neg**non-integral: DOMAIN error\n", 32);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 25:
|
||||
case 125:
|
||||
/* sinh(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "sinh" : "sinhf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = ( (x>zero) ? HUGE_VAL: -HUGE_VAL);
|
||||
else
|
||||
exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL);
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 26:
|
||||
case 126:
|
||||
/* sqrt(x<0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "sqrt" : "sqrtf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = zero;
|
||||
else
|
||||
exc.retval = zero/zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("sqrt: DOMAIN error\n", 19);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 27:
|
||||
case 127:
|
||||
/* fmod(x,0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "fmod" : "fmodf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = x;
|
||||
else
|
||||
exc.retval = zero/zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("fmod: DOMAIN error\n", 20);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 28:
|
||||
case 128:
|
||||
/* remainder(x,0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "remainder" : "remainderf";
|
||||
exc.retval = zero/zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("remainder: DOMAIN error\n", 24);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 29:
|
||||
case 129:
|
||||
/* acosh(x<1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "acosh" : "acoshf";
|
||||
exc.retval = zero/zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("acosh: DOMAIN error\n", 20);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 30:
|
||||
case 130:
|
||||
/* atanh(|x|>1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "atanh" : "atanhf";
|
||||
exc.retval = zero/zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("atanh: DOMAIN error\n", 20);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 31:
|
||||
case 131:
|
||||
/* atanh(|x|=1) */
|
||||
exc.type = SING;
|
||||
exc.name = type < 100 ? "atanh" : "atanhf";
|
||||
exc.retval = x/zero; /* sign(x)*inf */
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("atanh: SING error\n", 18);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 32:
|
||||
case 132:
|
||||
/* scalb overflow; SVID also returns +-HUGE_VAL */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "scalb" : "scalbf";
|
||||
exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 33:
|
||||
case 133:
|
||||
/* scalb underflow */
|
||||
exc.type = UNDERFLOW;
|
||||
exc.name = type < 100 ? "scalb" : "scalbf";
|
||||
exc.retval = copysign(zero,x);
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 34:
|
||||
case 134:
|
||||
/* j0(|x|>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = type < 100 ? "j0" : "j0f";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2(exc.name, 2);
|
||||
(void) WRITE2(": TLOSS error\n", 14);
|
||||
}
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 35:
|
||||
case 135:
|
||||
/* y0(x>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = type < 100 ? "y0" : "y0f";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2(exc.name, 2);
|
||||
(void) WRITE2(": TLOSS error\n", 14);
|
||||
}
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 36:
|
||||
case 136:
|
||||
/* j1(|x|>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = type < 100 ? "j1" : "j1f";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2(exc.name, 2);
|
||||
(void) WRITE2(": TLOSS error\n", 14);
|
||||
}
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 37:
|
||||
case 137:
|
||||
/* y1(x>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = type < 100 ? "y1" : "y1f";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2(exc.name, 2);
|
||||
(void) WRITE2(": TLOSS error\n", 14);
|
||||
}
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 38:
|
||||
case 138:
|
||||
/* jn(|x|>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = type < 100 ? "jn" : "jnf";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2(exc.name, 2);
|
||||
(void) WRITE2(": TLOSS error\n", 14);
|
||||
}
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 39:
|
||||
case 139:
|
||||
/* yn(x>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = type < 100 ? "yn" : "ynf";
|
||||
exc.retval = zero;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2(exc.name, 2);
|
||||
(void) WRITE2(": TLOSS error\n", 14);
|
||||
}
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 40:
|
||||
case 140:
|
||||
/* gamma(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = type < 100 ? "gamma" : "gammaf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE_VAL;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = ERANGE;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = ERANGE;
|
||||
}
|
||||
break;
|
||||
case 41:
|
||||
case 141:
|
||||
/* gamma(-integer) or gamma(0) */
|
||||
exc.type = SING;
|
||||
exc.name = type < 100 ? "gamma" : "gammaf";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE_VAL;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
if (_LIB_VERSION == _POSIX_)
|
||||
errno = EDOM;
|
||||
else if (!matherr(&exc)) {
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
(void) WRITE2("gamma: SING error\n", 18);
|
||||
}
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
case 42:
|
||||
case 142:
|
||||
/* pow(NaN,0.0) */
|
||||
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = type < 100 ? "pow" : "powf";
|
||||
exc.retval = x;
|
||||
if (_LIB_VERSION == _IEEE_ ||
|
||||
_LIB_VERSION == _POSIX_) exc.retval = 1.0;
|
||||
else if (!matherr(&exc)) {
|
||||
errno = EDOM;
|
||||
}
|
||||
break;
|
||||
}
|
||||
return exc.retval;
|
||||
}
|
132
programs/develop/libraries/menuetlibc/src/libm/k_tan.c
Executable file
132
programs/develop/libraries/menuetlibc/src/libm/k_tan.c
Executable file
@@ -0,0 +1,132 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)k_tan.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_tan.c,v 1.6 1994/08/18 23:06:16 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* __kernel_tan( x, y, k )
|
||||
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input k indicates whether tan (if k=1) or
|
||||
* -1/tan (if k= -1) is returned.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
||||
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
||||
* [0,0.67434]
|
||||
* 3 27
|
||||
* tan(x) ~ x + T1*x + ... + T13*x
|
||||
* where
|
||||
*
|
||||
* |tan(x) 2 4 26 | -59.2
|
||||
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
||||
* ~ tan(x) + (1+x*x)*y
|
||||
* Therefore, for better accuracy in computing tan(x+y), let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
||||
* then
|
||||
* 3 2
|
||||
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
||||
*
|
||||
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
||||
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
||||
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
|
||||
T[] = {
|
||||
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
|
||||
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
|
||||
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
|
||||
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
|
||||
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
|
||||
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
|
||||
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
|
||||
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
|
||||
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
|
||||
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
|
||||
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
|
||||
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
|
||||
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
double __kernel_tan(double x, double y, int iy)
|
||||
#else
|
||||
double __kernel_tan(x, y, iy)
|
||||
double x,y; int iy;
|
||||
#endif
|
||||
{
|
||||
double z,r,v,w,s;
|
||||
int32_t ix,hx;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff; /* high word of |x| */
|
||||
if(ix<0x3e300000) /* x < 2**-28 */
|
||||
{if((int)x==0) { /* generate inexact */
|
||||
u_int32_t low;
|
||||
GET_LOW_WORD(low,x);
|
||||
if(((ix|low)|(iy+1))==0) return one/fabs(x);
|
||||
else return (iy==1)? x: -one/x;
|
||||
}
|
||||
}
|
||||
if(ix>=0x3FE59428) { /* |x|>=0.6744 */
|
||||
if(hx<0) {x = -x; y = -y;}
|
||||
z = pio4-x;
|
||||
w = pio4lo-y;
|
||||
x = z+w; y = 0.0;
|
||||
}
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* Break x^5*(T[1]+x^2*T[2]+...) into
|
||||
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
||||
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
||||
*/
|
||||
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
|
||||
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
|
||||
s = z*x;
|
||||
r = y + z*(s*(r+v)+y);
|
||||
r += T[0]*s;
|
||||
w = x+r;
|
||||
if(ix>=0x3FE59428) {
|
||||
v = (double)iy;
|
||||
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
|
||||
}
|
||||
if(iy==1) return w;
|
||||
else { /* if allow error up to 2 ulp,
|
||||
simply return -1.0/(x+r) here */
|
||||
/* compute -1.0/(x+r) accurately */
|
||||
double a,t;
|
||||
z = w;
|
||||
SET_LOW_WORD(z,0);
|
||||
v = r-(z - x); /* z+v = r+x */
|
||||
t = a = -1.0/w; /* a = -1.0/w */
|
||||
SET_LOW_WORD(t,0);
|
||||
s = 1.0+t*z;
|
||||
return t+a*(s+t*v);
|
||||
}
|
||||
}
|
65
programs/develop/libraries/menuetlibc/src/libm/kf_cos.c
Executable file
65
programs/develop/libraries/menuetlibc/src/libm/kf_cos.c
Executable file
@@ -0,0 +1,65 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* k_cosf.c -- float version of k_cos.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_cosf.c,v 1.2 1994/08/18 23:06:10 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
one = 1.0000000000e+00, /* 0x3f800000 */
|
||||
C1 = 4.1666667908e-02, /* 0x3d2aaaab */
|
||||
C2 = -1.3888889225e-03, /* 0xbab60b61 */
|
||||
C3 = 2.4801587642e-05, /* 0x37d00d01 */
|
||||
C4 = -2.7557314297e-07, /* 0xb493f27c */
|
||||
C5 = 2.0875723372e-09, /* 0x310f74f6 */
|
||||
C6 = -1.1359647598e-11; /* 0xad47d74e */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __kernel_cosf(float x, float y)
|
||||
#else
|
||||
float __kernel_cosf(x, y)
|
||||
float x,y;
|
||||
#endif
|
||||
{
|
||||
float a,hz,z,r,qx;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff; /* ix = |x|'s high word*/
|
||||
if(ix<0x32000000) { /* if x < 2**27 */
|
||||
if(((int)x)==0) return one; /* generate inexact */
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
||||
if(ix < 0x3e99999a) /* if |x| < 0.3 */
|
||||
return one - ((float)0.5*z - (z*r - x*y));
|
||||
else {
|
||||
if(ix > 0x3f480000) { /* x > 0.78125 */
|
||||
qx = (float)0.28125;
|
||||
} else {
|
||||
SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */
|
||||
}
|
||||
hz = (float)0.5*z-qx;
|
||||
a = one-qx;
|
||||
return a - (hz - (z*r-x*y));
|
||||
}
|
||||
}
|
214
programs/develop/libraries/menuetlibc/src/libm/kf_rem_p.c
Executable file
214
programs/develop/libraries/menuetlibc/src/libm/kf_rem_p.c
Executable file
@@ -0,0 +1,214 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* k_rem_pio2f.c -- float version of k_rem_pio2.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_rem_pio2f.c,v 1.2 1994/08/18 23:06:12 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* In the float version, the input parameter x contains 8 bit
|
||||
integers, not 24 bit integers. 113 bit precision is not supported. */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const int init_jk[] = {4,7,9}; /* initial value for jk */
|
||||
#else
|
||||
static int init_jk[] = {4,7,9};
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float PIo2[] = {
|
||||
#else
|
||||
static float PIo2[] = {
|
||||
#endif
|
||||
1.5703125000e+00, /* 0x3fc90000 */
|
||||
4.5776367188e-04, /* 0x39f00000 */
|
||||
2.5987625122e-05, /* 0x37da0000 */
|
||||
7.5437128544e-08, /* 0x33a20000 */
|
||||
6.0026650317e-11, /* 0x2e840000 */
|
||||
7.3896444519e-13, /* 0x2b500000 */
|
||||
5.3845816694e-15, /* 0x27c20000 */
|
||||
5.6378512969e-18, /* 0x22d00000 */
|
||||
8.3009228831e-20, /* 0x1fc40000 */
|
||||
3.2756352257e-22, /* 0x1bc60000 */
|
||||
6.3331015649e-25, /* 0x17440000 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two8 = 2.5600000000e+02, /* 0x43800000 */
|
||||
twon8 = 3.9062500000e-03; /* 0x3b800000 */
|
||||
|
||||
#ifdef __STDC__
|
||||
int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const int32_t *ipio2)
|
||||
#else
|
||||
int __kernel_rem_pio2f(x,y,e0,nx,prec,ipio2)
|
||||
float x[], y[]; int e0,nx,prec; int32_t ipio2[];
|
||||
#endif
|
||||
{
|
||||
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
||||
float z,fw,f[20],fq[20],q[20];
|
||||
|
||||
/* initialize jk*/
|
||||
jk = init_jk[prec];
|
||||
jp = jk;
|
||||
|
||||
/* determine jx,jv,q0, note that 3>q0 */
|
||||
jx = nx-1;
|
||||
jv = (e0-3)/8; if(jv<0) jv=0;
|
||||
q0 = e0-8*(jv+1);
|
||||
|
||||
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||
j = jv-jx; m = jx+jk;
|
||||
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j];
|
||||
|
||||
/* compute q[0],q[1],...q[jk] */
|
||||
for (i=0;i<=jk;i++) {
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
|
||||
}
|
||||
|
||||
jz = jk;
|
||||
recompute:
|
||||
/* distill q[] into iq[] reversingly */
|
||||
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
||||
fw = (float)((int32_t)(twon8* z));
|
||||
iq[i] = (int32_t)(z-two8*fw);
|
||||
z = q[j-1]+fw;
|
||||
}
|
||||
|
||||
/* compute n */
|
||||
z = scalbnf(z,q0); /* actual value of z */
|
||||
z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */
|
||||
n = (int32_t) z;
|
||||
z -= (float)n;
|
||||
ih = 0;
|
||||
if(q0>0) { /* need iq[jz-1] to determine n */
|
||||
i = (iq[jz-1]>>(8-q0)); n += i;
|
||||
iq[jz-1] -= i<<(8-q0);
|
||||
ih = iq[jz-1]>>(7-q0);
|
||||
}
|
||||
else if(q0==0) ih = iq[jz-1]>>8;
|
||||
else if(z>=(float)0.5) ih=2;
|
||||
|
||||
if(ih>0) { /* q > 0.5 */
|
||||
n += 1; carry = 0;
|
||||
for(i=0;i<jz ;i++) { /* compute 1-q */
|
||||
j = iq[i];
|
||||
if(carry==0) {
|
||||
if(j!=0) {
|
||||
carry = 1; iq[i] = 0x100- j;
|
||||
}
|
||||
} else iq[i] = 0xff - j;
|
||||
}
|
||||
if(q0>0) { /* rare case: chance is 1 in 12 */
|
||||
switch(q0) {
|
||||
case 1:
|
||||
iq[jz-1] &= 0x7f; break;
|
||||
case 2:
|
||||
iq[jz-1] &= 0x3f; break;
|
||||
}
|
||||
}
|
||||
if(ih==2) {
|
||||
z = one - z;
|
||||
if(carry!=0) z -= scalbnf(one,q0);
|
||||
}
|
||||
}
|
||||
|
||||
/* check if recomputation is needed */
|
||||
if(z==zero) {
|
||||
j = 0;
|
||||
for (i=jz-1;i>=jk;i--) j |= iq[i];
|
||||
if(j==0) { /* need recomputation */
|
||||
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
||||
|
||||
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
||||
f[jx+i] = (float) ipio2[jv+i];
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
goto recompute;
|
||||
}
|
||||
}
|
||||
|
||||
/* chop off zero terms */
|
||||
if(z==(float)0.0) {
|
||||
jz -= 1; q0 -= 8;
|
||||
while(iq[jz]==0) { jz--; q0-=8;}
|
||||
} else { /* break z into 8-bit if necessary */
|
||||
z = scalbnf(z,-q0);
|
||||
if(z>=two8) {
|
||||
fw = (float)((int32_t)(twon8*z));
|
||||
iq[jz] = (int32_t)(z-two8*fw);
|
||||
jz += 1; q0 += 8;
|
||||
iq[jz] = (int32_t) fw;
|
||||
} else iq[jz] = (int32_t) z ;
|
||||
}
|
||||
|
||||
/* convert integer "bit" chunk to floating-point value */
|
||||
fw = scalbnf(one,q0);
|
||||
for(i=jz;i>=0;i--) {
|
||||
q[i] = fw*(float)iq[i]; fw*=twon8;
|
||||
}
|
||||
|
||||
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||
for(i=jz;i>=0;i--) {
|
||||
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
||||
fq[jz-i] = fw;
|
||||
}
|
||||
|
||||
/* compress fq[] into y[] */
|
||||
switch(prec) {
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
fw = fq[0]-fw;
|
||||
for (i=1;i<=jz;i++) fw += fq[i];
|
||||
y[1] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 3: /* painful */
|
||||
for (i=jz;i>0;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (i=jz;i>1;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
||||
if(ih==0) {
|
||||
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
||||
}
|
||||
}
|
||||
return n&7;
|
||||
}
|
55
programs/develop/libraries/menuetlibc/src/libm/kf_sin.c
Executable file
55
programs/develop/libraries/menuetlibc/src/libm/kf_sin.c
Executable file
@@ -0,0 +1,55 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* k_sinf.c -- float version of k_sin.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_sinf.c,v 1.2 1994/08/18 23:06:15 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
half = 5.0000000000e-01,/* 0x3f000000 */
|
||||
S1 = -1.6666667163e-01, /* 0xbe2aaaab */
|
||||
S2 = 8.3333337680e-03, /* 0x3c088889 */
|
||||
S3 = -1.9841270114e-04, /* 0xb9500d01 */
|
||||
S4 = 2.7557314297e-06, /* 0x3638ef1b */
|
||||
S5 = -2.5050759689e-08, /* 0xb2d72f34 */
|
||||
S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */
|
||||
|
||||
#ifdef __STDC__
|
||||
float __kernel_sinf(float x, float y, int iy)
|
||||
#else
|
||||
float __kernel_sinf(x, y, iy)
|
||||
float x,y; int iy; /* iy=0 if y is zero */
|
||||
#endif
|
||||
{
|
||||
float z,r,v;
|
||||
int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff; /* high word of x */
|
||||
if(ix<0x32000000) /* |x| < 2**-27 */
|
||||
{if((int)x==0) return x;} /* generate inexact */
|
||||
z = x*x;
|
||||
v = z*x;
|
||||
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
|
||||
if(iy==0) return x+v*(S1+z*r);
|
||||
else return x-((z*(half*y-v*r)-y)-v*S1);
|
||||
}
|
102
programs/develop/libraries/menuetlibc/src/libm/kf_tan.c
Executable file
102
programs/develop/libraries/menuetlibc/src/libm/kf_tan.c
Executable file
@@ -0,0 +1,102 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* k_tanf.c -- float version of k_tan.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: k_tanf.c,v 1.2 1994/08/18 23:06:18 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
one = 1.0000000000e+00, /* 0x3f800000 */
|
||||
pio4 = 7.8539812565e-01, /* 0x3f490fda */
|
||||
pio4lo= 3.7748947079e-08, /* 0x33222168 */
|
||||
T[] = {
|
||||
3.3333334327e-01, /* 0x3eaaaaab */
|
||||
1.3333334029e-01, /* 0x3e088889 */
|
||||
5.3968254477e-02, /* 0x3d5d0dd1 */
|
||||
2.1869488060e-02, /* 0x3cb327a4 */
|
||||
8.8632395491e-03, /* 0x3c11371f */
|
||||
3.5920790397e-03, /* 0x3b6b6916 */
|
||||
1.4562094584e-03, /* 0x3abede48 */
|
||||
5.8804126456e-04, /* 0x3a1a26c8 */
|
||||
2.4646313977e-04, /* 0x398137b9 */
|
||||
7.8179444245e-05, /* 0x38a3f445 */
|
||||
7.1407252108e-05, /* 0x3895c07a */
|
||||
-1.8558637748e-05, /* 0xb79bae5f */
|
||||
2.5907305826e-05, /* 0x37d95384 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
float __kernel_tanf(float x, float y, int iy)
|
||||
#else
|
||||
float __kernel_tanf(x, y, iy)
|
||||
float x,y; int iy;
|
||||
#endif
|
||||
{
|
||||
float z,r,v,w,s;
|
||||
int32_t ix,hx;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff; /* high word of |x| */
|
||||
if(ix<0x31800000) /* x < 2**-28 */
|
||||
{if((int)x==0) { /* generate inexact */
|
||||
if((ix|(iy+1))==0) return one/fabsf(x);
|
||||
else return (iy==1)? x: -one/x;
|
||||
}
|
||||
}
|
||||
if(ix>=0x3f2ca140) { /* |x|>=0.6744 */
|
||||
if(hx<0) {x = -x; y = -y;}
|
||||
z = pio4-x;
|
||||
w = pio4lo-y;
|
||||
x = z+w; y = 0.0;
|
||||
}
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* Break x^5*(T[1]+x^2*T[2]+...) into
|
||||
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
||||
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
||||
*/
|
||||
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
|
||||
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
|
||||
s = z*x;
|
||||
r = y + z*(s*(r+v)+y);
|
||||
r += T[0]*s;
|
||||
w = x+r;
|
||||
if(ix>=0x3f2ca140) {
|
||||
v = (float)iy;
|
||||
return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r)));
|
||||
}
|
||||
if(iy==1) return w;
|
||||
else { /* if allow error up to 2 ulp,
|
||||
simply return -1.0/(x+r) here */
|
||||
/* compute -1.0/(x+r) accurately */
|
||||
float a,t;
|
||||
int32_t i;
|
||||
z = w;
|
||||
GET_FLOAT_WORD(i,z);
|
||||
SET_FLOAT_WORD(z,i&0xfffff000);
|
||||
v = r-(z - x); /* z+v = r+x */
|
||||
t = a = -(float)1.0/w; /* a = -1.0/w */
|
||||
GET_FLOAT_WORD(i,t);
|
||||
SET_FLOAT_WORD(t,i&0xfffff000);
|
||||
s = (float)1.0+t*z;
|
||||
return t+a*(s+t*v);
|
||||
}
|
||||
}
|
228
programs/develop/libraries/menuetlibc/src/libm/math-pri.h
Executable file
228
programs/develop/libraries/menuetlibc/src/libm/math-pri.h
Executable file
@@ -0,0 +1,228 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $Id: math_private.h,v 1.2 1994/08/18 23:06:19 jtc Exp $
|
||||
*/
|
||||
|
||||
#ifndef _MATH_PRIVATE_H_
|
||||
#define _MATH_PRIVATE_H_
|
||||
|
||||
#include <machine/endian.h>
|
||||
|
||||
#if !defined(__NetBSD__) && !defined(__FreeBSD__)
|
||||
typedef int int32_t;
|
||||
typedef unsigned int u_int32_t;
|
||||
#endif
|
||||
|
||||
/* The original fdlibm code used statements like:
|
||||
n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||||
ix0 = *(n0+(int*)&x); * high word of x *
|
||||
ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||||
to dig two 32 bit words out of the 64 bit IEEE floating point
|
||||
value. That is non-ANSI, and, moreover, the gcc instruction
|
||||
scheduler gets it wrong. We instead use the following macros.
|
||||
Unlike the original code, we determine the endianness at compile
|
||||
time, not at run time; I don't see much benefit to selecting
|
||||
endianness at run time. */
|
||||
|
||||
/* A union which permits us to convert between a double and two 32 bit
|
||||
ints. */
|
||||
|
||||
#if BYTE_ORDER == BIG_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t msw;
|
||||
u_int32_t lsw;
|
||||
} parts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t lsw;
|
||||
u_int32_t msw;
|
||||
} parts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
/* Get two 32 bit ints from a double. */
|
||||
|
||||
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix0) = ew_u.parts.msw; \
|
||||
(ix1) = ew_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the more significant 32 bit int from a double. */
|
||||
|
||||
#define GET_HIGH_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gh_u; \
|
||||
gh_u.value = (d); \
|
||||
(i) = gh_u.parts.msw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the less significant 32 bit int from a double. */
|
||||
|
||||
#define GET_LOW_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gl_u; \
|
||||
gl_u.value = (d); \
|
||||
(i) = gl_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from two 32 bit ints. */
|
||||
|
||||
#define INSERT_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.parts.msw = (ix0); \
|
||||
iw_u.parts.lsw = (ix1); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the more significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_HIGH_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sh_u; \
|
||||
sh_u.value = (d); \
|
||||
sh_u.parts.msw = (v); \
|
||||
(d) = sh_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the less significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_LOW_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sl_u; \
|
||||
sl_u.value = (d); \
|
||||
sl_u.parts.lsw = (v); \
|
||||
(d) = sl_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* A union which permits us to convert between a float and a 32 bit
|
||||
int. */
|
||||
|
||||
typedef union
|
||||
{
|
||||
float value;
|
||||
/* FIXME: Assumes 32 bit int. */
|
||||
unsigned int word;
|
||||
} ieee_float_shape_type;
|
||||
|
||||
/* Get a 32 bit int from a float. */
|
||||
|
||||
#define GET_FLOAT_WORD(i,d) \
|
||||
do { \
|
||||
ieee_float_shape_type gf_u; \
|
||||
gf_u.value = (d); \
|
||||
(i) = gf_u.word; \
|
||||
} while (0)
|
||||
|
||||
/* Set a float from a 32 bit int. */
|
||||
|
||||
#define SET_FLOAT_WORD(d,i) \
|
||||
do { \
|
||||
ieee_float_shape_type sf_u; \
|
||||
sf_u.word = (i); \
|
||||
(d) = sf_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* ieee style elementary functions */
|
||||
extern double __ieee754_sqrt __P((double));
|
||||
extern double __ieee754_acos __P((double));
|
||||
extern double __ieee754_acosh __P((double));
|
||||
extern double __ieee754_log __P((double));
|
||||
extern double __ieee754_atanh __P((double));
|
||||
extern double __ieee754_asin __P((double));
|
||||
extern double __ieee754_atan2 __P((double,double));
|
||||
extern double __ieee754_exp __P((double));
|
||||
extern double __ieee754_cosh __P((double));
|
||||
extern double __ieee754_fmod __P((double,double));
|
||||
extern double __ieee754_pow __P((double,double));
|
||||
extern double __ieee754_lgamma_r __P((double,int *));
|
||||
extern double __ieee754_gamma_r __P((double,int *));
|
||||
extern double __ieee754_lgamma __P((double));
|
||||
extern double __ieee754_gamma __P((double));
|
||||
extern double __ieee754_log10 __P((double));
|
||||
extern double __ieee754_sinh __P((double));
|
||||
extern double __ieee754_hypot __P((double,double));
|
||||
extern double __ieee754_j0 __P((double));
|
||||
extern double __ieee754_j1 __P((double));
|
||||
extern double __ieee754_y0 __P((double));
|
||||
extern double __ieee754_y1 __P((double));
|
||||
extern double __ieee754_jn __P((int,double));
|
||||
extern double __ieee754_yn __P((int,double));
|
||||
extern double __ieee754_remainder __P((double,double));
|
||||
extern int __ieee754_rem_pio2 __P((double,double*));
|
||||
extern double __ieee754_scalb __P((double,double));
|
||||
|
||||
/* fdlibm kernel function */
|
||||
extern double __kernel_standard __P((double,double,int));
|
||||
extern double __kernel_sin __P((double,double,int));
|
||||
extern double __kernel_cos __P((double,double));
|
||||
extern double __kernel_tan __P((double,double,int));
|
||||
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));
|
||||
|
||||
|
||||
/* ieee style elementary float functions */
|
||||
extern float __ieee754_sqrtf __P((float));
|
||||
extern float __ieee754_acosf __P((float));
|
||||
extern float __ieee754_acoshf __P((float));
|
||||
extern float __ieee754_logf __P((float));
|
||||
extern float __ieee754_atanhf __P((float));
|
||||
extern float __ieee754_asinf __P((float));
|
||||
extern float __ieee754_atan2f __P((float,float));
|
||||
extern float __ieee754_expf __P((float));
|
||||
extern float __ieee754_coshf __P((float));
|
||||
extern float __ieee754_fmodf __P((float,float));
|
||||
extern float __ieee754_powf __P((float,float));
|
||||
extern float __ieee754_lgammaf_r __P((float,int *));
|
||||
extern float __ieee754_gammaf_r __P((float,int *));
|
||||
extern float __ieee754_lgammaf __P((float));
|
||||
extern float __ieee754_gammaf __P((float));
|
||||
extern float __ieee754_log10f __P((float));
|
||||
extern float __ieee754_sinhf __P((float));
|
||||
extern float __ieee754_hypotf __P((float,float));
|
||||
extern float __ieee754_j0f __P((float));
|
||||
extern float __ieee754_j1f __P((float));
|
||||
extern float __ieee754_y0f __P((float));
|
||||
extern float __ieee754_y1f __P((float));
|
||||
extern float __ieee754_jnf __P((int,float));
|
||||
extern float __ieee754_ynf __P((int,float));
|
||||
extern float __ieee754_remainderf __P((float,float));
|
||||
extern int __ieee754_rem_pio2f __P((float,float*));
|
||||
extern float __ieee754_scalbf __P((float,float));
|
||||
|
||||
/* float versions of fdlibm kernel functions */
|
||||
extern float __kernel_sinf __P((float,float,int));
|
||||
extern float __kernel_cosf __P((float,float));
|
||||
extern float __kernel_tanf __P((float,float,int));
|
||||
extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int*));
|
||||
|
||||
#endif /* _MATH_PRIVATE_H_ */
|
228
programs/develop/libraries/menuetlibc/src/libm/math_pri.h
Executable file
228
programs/develop/libraries/menuetlibc/src/libm/math_pri.h
Executable file
@@ -0,0 +1,228 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $Id: math_private.h,v 1.2 1994/08/18 23:06:19 jtc Exp $
|
||||
*/
|
||||
|
||||
#ifndef _MATH_PRIVATE_H_
|
||||
#define _MATH_PRIVATE_H_
|
||||
|
||||
#include <machine/endian.h>
|
||||
|
||||
#if !defined(__NetBSD__) && !defined(__FreeBSD__)
|
||||
typedef int int32_t;
|
||||
typedef unsigned int u_int32_t;
|
||||
#endif
|
||||
|
||||
/* The original fdlibm code used statements like:
|
||||
n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||||
ix0 = *(n0+(int*)&x); * high word of x *
|
||||
ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||||
to dig two 32 bit words out of the 64 bit IEEE floating point
|
||||
value. That is non-ANSI, and, moreover, the gcc instruction
|
||||
scheduler gets it wrong. We instead use the following macros.
|
||||
Unlike the original code, we determine the endianness at compile
|
||||
time, not at run time; I don't see much benefit to selecting
|
||||
endianness at run time. */
|
||||
|
||||
/* A union which permits us to convert between a double and two 32 bit
|
||||
ints. */
|
||||
|
||||
#if BYTE_ORDER == BIG_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t msw;
|
||||
u_int32_t lsw;
|
||||
} parts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t lsw;
|
||||
u_int32_t msw;
|
||||
} parts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
/* Get two 32 bit ints from a double. */
|
||||
|
||||
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix0) = ew_u.parts.msw; \
|
||||
(ix1) = ew_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the more significant 32 bit int from a double. */
|
||||
|
||||
#define GET_HIGH_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gh_u; \
|
||||
gh_u.value = (d); \
|
||||
(i) = gh_u.parts.msw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the less significant 32 bit int from a double. */
|
||||
|
||||
#define GET_LOW_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gl_u; \
|
||||
gl_u.value = (d); \
|
||||
(i) = gl_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from two 32 bit ints. */
|
||||
|
||||
#define INSERT_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.parts.msw = (ix0); \
|
||||
iw_u.parts.lsw = (ix1); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the more significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_HIGH_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sh_u; \
|
||||
sh_u.value = (d); \
|
||||
sh_u.parts.msw = (v); \
|
||||
(d) = sh_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the less significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_LOW_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sl_u; \
|
||||
sl_u.value = (d); \
|
||||
sl_u.parts.lsw = (v); \
|
||||
(d) = sl_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* A union which permits us to convert between a float and a 32 bit
|
||||
int. */
|
||||
|
||||
typedef union
|
||||
{
|
||||
float value;
|
||||
/* FIXME: Assumes 32 bit int. */
|
||||
unsigned int word;
|
||||
} ieee_float_shape_type;
|
||||
|
||||
/* Get a 32 bit int from a float. */
|
||||
|
||||
#define GET_FLOAT_WORD(i,d) \
|
||||
do { \
|
||||
ieee_float_shape_type gf_u; \
|
||||
gf_u.value = (d); \
|
||||
(i) = gf_u.word; \
|
||||
} while (0)
|
||||
|
||||
/* Set a float from a 32 bit int. */
|
||||
|
||||
#define SET_FLOAT_WORD(d,i) \
|
||||
do { \
|
||||
ieee_float_shape_type sf_u; \
|
||||
sf_u.word = (i); \
|
||||
(d) = sf_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* ieee style elementary functions */
|
||||
extern double __ieee754_sqrt __P((double));
|
||||
extern double __ieee754_acos __P((double));
|
||||
extern double __ieee754_acosh __P((double));
|
||||
extern double __ieee754_log __P((double));
|
||||
extern double __ieee754_atanh __P((double));
|
||||
extern double __ieee754_asin __P((double));
|
||||
extern double __ieee754_atan2 __P((double,double));
|
||||
extern double __ieee754_exp __P((double));
|
||||
extern double __ieee754_cosh __P((double));
|
||||
extern double __ieee754_fmod __P((double,double));
|
||||
extern double __ieee754_pow __P((double,double));
|
||||
extern double __ieee754_lgamma_r __P((double,int *));
|
||||
extern double __ieee754_gamma_r __P((double,int *));
|
||||
extern double __ieee754_lgamma __P((double));
|
||||
extern double __ieee754_gamma __P((double));
|
||||
extern double __ieee754_log10 __P((double));
|
||||
extern double __ieee754_sinh __P((double));
|
||||
extern double __ieee754_hypot __P((double,double));
|
||||
extern double __ieee754_j0 __P((double));
|
||||
extern double __ieee754_j1 __P((double));
|
||||
extern double __ieee754_y0 __P((double));
|
||||
extern double __ieee754_y1 __P((double));
|
||||
extern double __ieee754_jn __P((int,double));
|
||||
extern double __ieee754_yn __P((int,double));
|
||||
extern double __ieee754_remainder __P((double,double));
|
||||
extern int __ieee754_rem_pio2 __P((double,double*));
|
||||
extern double __ieee754_scalb __P((double,double));
|
||||
|
||||
/* fdlibm kernel function */
|
||||
extern double __kernel_standard __P((double,double,int));
|
||||
extern double __kernel_sin __P((double,double,int));
|
||||
extern double __kernel_cos __P((double,double));
|
||||
extern double __kernel_tan __P((double,double,int));
|
||||
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));
|
||||
|
||||
|
||||
/* ieee style elementary float functions */
|
||||
extern float __ieee754_sqrtf __P((float));
|
||||
extern float __ieee754_acosf __P((float));
|
||||
extern float __ieee754_acoshf __P((float));
|
||||
extern float __ieee754_logf __P((float));
|
||||
extern float __ieee754_atanhf __P((float));
|
||||
extern float __ieee754_asinf __P((float));
|
||||
extern float __ieee754_atan2f __P((float,float));
|
||||
extern float __ieee754_expf __P((float));
|
||||
extern float __ieee754_coshf __P((float));
|
||||
extern float __ieee754_fmodf __P((float,float));
|
||||
extern float __ieee754_powf __P((float,float));
|
||||
extern float __ieee754_lgammaf_r __P((float,int *));
|
||||
extern float __ieee754_gammaf_r __P((float,int *));
|
||||
extern float __ieee754_lgammaf __P((float));
|
||||
extern float __ieee754_gammaf __P((float));
|
||||
extern float __ieee754_log10f __P((float));
|
||||
extern float __ieee754_sinhf __P((float));
|
||||
extern float __ieee754_hypotf __P((float,float));
|
||||
extern float __ieee754_j0f __P((float));
|
||||
extern float __ieee754_j1f __P((float));
|
||||
extern float __ieee754_y0f __P((float));
|
||||
extern float __ieee754_y1f __P((float));
|
||||
extern float __ieee754_jnf __P((int,float));
|
||||
extern float __ieee754_ynf __P((int,float));
|
||||
extern float __ieee754_remainderf __P((float,float));
|
||||
extern int __ieee754_rem_pio2f __P((float,float*));
|
||||
extern float __ieee754_scalbf __P((float,float));
|
||||
|
||||
/* float versions of fdlibm kernel functions */
|
||||
extern float __kernel_sinf __P((float,float,int));
|
||||
extern float __kernel_cosf __P((float,float));
|
||||
extern float __kernel_tanf __P((float,float,int));
|
||||
extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int*));
|
||||
|
||||
#endif /* _MATH_PRIVATE_H_ */
|
228
programs/develop/libraries/menuetlibc/src/libm/math_private.h
Executable file
228
programs/develop/libraries/menuetlibc/src/libm/math_private.h
Executable file
@@ -0,0 +1,228 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $Id: math_private.h,v 1.2 1994/08/18 23:06:19 jtc Exp $
|
||||
*/
|
||||
|
||||
#ifndef _MATH_PRIVATE_H_
|
||||
#define _MATH_PRIVATE_H_
|
||||
|
||||
#include <machine/endian.h>
|
||||
|
||||
#if !defined(__NetBSD__) && !defined(__FreeBSD__)
|
||||
typedef int int32_t;
|
||||
typedef unsigned int u_int32_t;
|
||||
#endif
|
||||
|
||||
/* The original fdlibm code used statements like:
|
||||
n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||||
ix0 = *(n0+(int*)&x); * high word of x *
|
||||
ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||||
to dig two 32 bit words out of the 64 bit IEEE floating point
|
||||
value. That is non-ANSI, and, moreover, the gcc instruction
|
||||
scheduler gets it wrong. We instead use the following macros.
|
||||
Unlike the original code, we determine the endianness at compile
|
||||
time, not at run time; I don't see much benefit to selecting
|
||||
endianness at run time. */
|
||||
|
||||
/* A union which permits us to convert between a double and two 32 bit
|
||||
ints. */
|
||||
|
||||
#if BYTE_ORDER == BIG_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t msw;
|
||||
u_int32_t lsw;
|
||||
} parts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t lsw;
|
||||
u_int32_t msw;
|
||||
} parts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
/* Get two 32 bit ints from a double. */
|
||||
|
||||
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix0) = ew_u.parts.msw; \
|
||||
(ix1) = ew_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the more significant 32 bit int from a double. */
|
||||
|
||||
#define GET_HIGH_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gh_u; \
|
||||
gh_u.value = (d); \
|
||||
(i) = gh_u.parts.msw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the less significant 32 bit int from a double. */
|
||||
|
||||
#define GET_LOW_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gl_u; \
|
||||
gl_u.value = (d); \
|
||||
(i) = gl_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from two 32 bit ints. */
|
||||
|
||||
#define INSERT_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.parts.msw = (ix0); \
|
||||
iw_u.parts.lsw = (ix1); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the more significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_HIGH_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sh_u; \
|
||||
sh_u.value = (d); \
|
||||
sh_u.parts.msw = (v); \
|
||||
(d) = sh_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the less significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_LOW_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sl_u; \
|
||||
sl_u.value = (d); \
|
||||
sl_u.parts.lsw = (v); \
|
||||
(d) = sl_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* A union which permits us to convert between a float and a 32 bit
|
||||
int. */
|
||||
|
||||
typedef union
|
||||
{
|
||||
float value;
|
||||
/* FIXME: Assumes 32 bit int. */
|
||||
unsigned int word;
|
||||
} ieee_float_shape_type;
|
||||
|
||||
/* Get a 32 bit int from a float. */
|
||||
|
||||
#define GET_FLOAT_WORD(i,d) \
|
||||
do { \
|
||||
ieee_float_shape_type gf_u; \
|
||||
gf_u.value = (d); \
|
||||
(i) = gf_u.word; \
|
||||
} while (0)
|
||||
|
||||
/* Set a float from a 32 bit int. */
|
||||
|
||||
#define SET_FLOAT_WORD(d,i) \
|
||||
do { \
|
||||
ieee_float_shape_type sf_u; \
|
||||
sf_u.word = (i); \
|
||||
(d) = sf_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* ieee style elementary functions */
|
||||
extern double __ieee754_sqrt __P((double));
|
||||
extern double __ieee754_acos __P((double));
|
||||
extern double __ieee754_acosh __P((double));
|
||||
extern double __ieee754_log __P((double));
|
||||
extern double __ieee754_atanh __P((double));
|
||||
extern double __ieee754_asin __P((double));
|
||||
extern double __ieee754_atan2 __P((double,double));
|
||||
extern double __ieee754_exp __P((double));
|
||||
extern double __ieee754_cosh __P((double));
|
||||
extern double __ieee754_fmod __P((double,double));
|
||||
extern double __ieee754_pow __P((double,double));
|
||||
extern double __ieee754_lgamma_r __P((double,int *));
|
||||
extern double __ieee754_gamma_r __P((double,int *));
|
||||
extern double __ieee754_lgamma __P((double));
|
||||
extern double __ieee754_gamma __P((double));
|
||||
extern double __ieee754_log10 __P((double));
|
||||
extern double __ieee754_sinh __P((double));
|
||||
extern double __ieee754_hypot __P((double,double));
|
||||
extern double __ieee754_j0 __P((double));
|
||||
extern double __ieee754_j1 __P((double));
|
||||
extern double __ieee754_y0 __P((double));
|
||||
extern double __ieee754_y1 __P((double));
|
||||
extern double __ieee754_jn __P((int,double));
|
||||
extern double __ieee754_yn __P((int,double));
|
||||
extern double __ieee754_remainder __P((double,double));
|
||||
extern int __ieee754_rem_pio2 __P((double,double*));
|
||||
extern double __ieee754_scalb __P((double,double));
|
||||
|
||||
/* fdlibm kernel function */
|
||||
extern double __kernel_standard __P((double,double,int));
|
||||
extern double __kernel_sin __P((double,double,int));
|
||||
extern double __kernel_cos __P((double,double));
|
||||
extern double __kernel_tan __P((double,double,int));
|
||||
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));
|
||||
|
||||
|
||||
/* ieee style elementary float functions */
|
||||
extern float __ieee754_sqrtf __P((float));
|
||||
extern float __ieee754_acosf __P((float));
|
||||
extern float __ieee754_acoshf __P((float));
|
||||
extern float __ieee754_logf __P((float));
|
||||
extern float __ieee754_atanhf __P((float));
|
||||
extern float __ieee754_asinf __P((float));
|
||||
extern float __ieee754_atan2f __P((float,float));
|
||||
extern float __ieee754_expf __P((float));
|
||||
extern float __ieee754_coshf __P((float));
|
||||
extern float __ieee754_fmodf __P((float,float));
|
||||
extern float __ieee754_powf __P((float,float));
|
||||
extern float __ieee754_lgammaf_r __P((float,int *));
|
||||
extern float __ieee754_gammaf_r __P((float,int *));
|
||||
extern float __ieee754_lgammaf __P((float));
|
||||
extern float __ieee754_gammaf __P((float));
|
||||
extern float __ieee754_log10f __P((float));
|
||||
extern float __ieee754_sinhf __P((float));
|
||||
extern float __ieee754_hypotf __P((float,float));
|
||||
extern float __ieee754_j0f __P((float));
|
||||
extern float __ieee754_j1f __P((float));
|
||||
extern float __ieee754_y0f __P((float));
|
||||
extern float __ieee754_y1f __P((float));
|
||||
extern float __ieee754_jnf __P((int,float));
|
||||
extern float __ieee754_ynf __P((int,float));
|
||||
extern float __ieee754_remainderf __P((float,float));
|
||||
extern int __ieee754_rem_pio2f __P((float,float*));
|
||||
extern float __ieee754_scalbf __P((float,float));
|
||||
|
||||
/* float versions of fdlibm kernel functions */
|
||||
extern float __kernel_sinf __P((float,float,int));
|
||||
extern float __kernel_cosf __P((float,float));
|
||||
extern float __kernel_tanf __P((float,float,int));
|
||||
extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int*));
|
||||
|
||||
#endif /* _MATH_PRIVATE_H_ */
|
66
programs/develop/libraries/menuetlibc/src/libm/s_asinh.c
Executable file
66
programs/develop/libraries/menuetlibc/src/libm/s_asinh.c
Executable file
@@ -0,0 +1,66 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_asinh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_asinh.c,v 1.6 1994/08/18 23:06:20 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* asinh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
||||
* we have
|
||||
* asinh(x) := x if 1+x*x=1,
|
||||
* := sign(x)*(log(x)+ln2)) for large |x|, else
|
||||
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
||||
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||||
huge= 1.00000000000000000000e+300;
|
||||
|
||||
#ifdef __STDC__
|
||||
double asinh(double x)
|
||||
#else
|
||||
double asinh(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double t,w;
|
||||
int32_t hx,ix;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */
|
||||
if(ix< 0x3e300000) { /* |x|<2**-28 */
|
||||
if(huge+x>one) return x; /* return x inexact except 0 */
|
||||
}
|
||||
if(ix>0x41b00000) { /* |x| > 2**28 */
|
||||
w = __ieee754_log(fabs(x))+ln2;
|
||||
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
|
||||
t = fabs(x);
|
||||
w = __ieee754_log(2.0*t+one/(sqrt(x*x+one)+t));
|
||||
} else { /* 2.0 > |x| > 2**-28 */
|
||||
t = x*x;
|
||||
w =log1p(fabs(x)+t/(one+sqrt(one+t)));
|
||||
}
|
||||
if(hx>0) return w; else return -w;
|
||||
}
|
6
programs/develop/libraries/menuetlibc/src/libm/s_atan.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/s_atan.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(atan)
|
||||
fldl 4(%esp)
|
||||
fld1
|
||||
fpatan
|
||||
ret
|
94
programs/develop/libraries/menuetlibc/src/libm/s_cbrt.c
Executable file
94
programs/develop/libraries/menuetlibc/src/libm/s_cbrt.c
Executable file
@@ -0,0 +1,94 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_cbrt.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_cbrt.c,v 1.6 1994/08/18 23:06:25 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* cbrt(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const u_int32_t
|
||||
#else
|
||||
static u_int32_t
|
||||
#endif
|
||||
B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */
|
||||
B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
C = 5.42857142857142815906e-01, /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
|
||||
D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */
|
||||
E = 1.41428571428571436819e+00, /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
|
||||
F = 1.60714285714285720630e+00, /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
|
||||
G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double cbrt(double x)
|
||||
#else
|
||||
double cbrt(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
int32_t hx;
|
||||
double r,s,t=0.0,w;
|
||||
u_int32_t sign;
|
||||
u_int32_t high,low;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
sign=hx&0x80000000; /* sign= sign(x) */
|
||||
hx ^=sign;
|
||||
if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
|
||||
GET_LOW_WORD(low,x);
|
||||
if((hx|low)==0)
|
||||
return(x); /* cbrt(0) is itself */
|
||||
|
||||
SET_HIGH_WORD(x,hx); /* x <- |x| */
|
||||
/* rough cbrt to 5 bits */
|
||||
if(hx<0x00100000) /* subnormal number */
|
||||
{SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
|
||||
t*=x; GET_HIGH_WORD(high,t); SET_HIGH_WORD(t,high/3+B2);
|
||||
}
|
||||
else
|
||||
SET_HIGH_WORD(t,hx/3+B1);
|
||||
|
||||
|
||||
/* new cbrt to 23 bits, may be implemented in single precision */
|
||||
r=t*t/x;
|
||||
s=C+r*t;
|
||||
t*=G+F/(s+E+D/s);
|
||||
|
||||
/* chopped to 20 bits and make it larger than cbrt(x) */
|
||||
GET_HIGH_WORD(high,t);
|
||||
INSERT_WORDS(t,high+0x00000001,0);
|
||||
|
||||
|
||||
/* one step newton iteration to 53 bits with error less than 0.667 ulps */
|
||||
s=t*t; /* t*t is exact */
|
||||
r=x/s;
|
||||
w=t+t;
|
||||
r=(r-t)/(w+r); /* r-s is exact */
|
||||
t=t+t*r;
|
||||
|
||||
/* retore the sign bit */
|
||||
GET_HIGH_WORD(high,t);
|
||||
SET_HIGH_WORD(t,high|sign);
|
||||
return(t);
|
||||
}
|
21
programs/develop/libraries/menuetlibc/src/libm/s_ceil.s
Executable file
21
programs/develop/libraries/menuetlibc/src/libm/s_ceil.s
Executable file
@@ -0,0 +1,21 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(ceil)
|
||||
|
||||
pushl %ebp
|
||||
movl %esp,%ebp
|
||||
subl $8,%esp
|
||||
|
||||
fstcw -12(%ebp)
|
||||
movw -12(%ebp),%dx
|
||||
orw $0x0800,%dx
|
||||
andw $0xfbff,%dx
|
||||
movw %dx,-16(%ebp)
|
||||
fldcw -16(%ebp)
|
||||
|
||||
fldl 8(%ebp);
|
||||
frndint
|
||||
|
||||
fldcw -12(%ebp)
|
||||
|
||||
leave
|
||||
ret
|
10
programs/develop/libraries/menuetlibc/src/libm/s_copysi.s
Executable file
10
programs/develop/libraries/menuetlibc/src/libm/s_copysi.s
Executable file
@@ -0,0 +1,10 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(copysign)
|
||||
movl 16(%esp),%edx
|
||||
andl $0x80000000,%edx
|
||||
movl 8(%esp),%eax
|
||||
andl $0x7fffffff,%eax
|
||||
orl %edx,%eax
|
||||
movl %eax,8(%esp)
|
||||
fldl 4(%esp)
|
||||
ret
|
18
programs/develop/libraries/menuetlibc/src/libm/s_cos.s
Executable file
18
programs/develop/libraries/menuetlibc/src/libm/s_cos.s
Executable file
@@ -0,0 +1,18 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(cos)
|
||||
fldl 4(%esp)
|
||||
fcos
|
||||
fnstsw %ax
|
||||
andw $0x400,%ax
|
||||
jnz 1f
|
||||
ret
|
||||
1: fldpi
|
||||
fadd %st(0)
|
||||
fxch %st(1)
|
||||
2: fprem1
|
||||
fnstsw %ax
|
||||
andw $0x400,%ax
|
||||
jnz 2b
|
||||
fstp %st(1)
|
||||
fcos
|
||||
ret
|
315
programs/develop/libraries/menuetlibc/src/libm/s_erf.c
Executable file
315
programs/develop/libraries/menuetlibc/src/libm/s_erf.c
Executable file
@@ -0,0 +1,315 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_erf.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_erf.c,v 1.6 1994/08/18 23:06:36 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* double erf(double x)
|
||||
* double erfc(double x)
|
||||
* x
|
||||
* 2 |\
|
||||
* erf(x) = --------- | exp(-t*t)dt
|
||||
* sqrt(pi) \|
|
||||
* 0
|
||||
*
|
||||
* erfc(x) = 1-erf(x)
|
||||
* Note that
|
||||
* erf(-x) = -erf(x)
|
||||
* erfc(-x) = 2 - erfc(x)
|
||||
*
|
||||
* Method:
|
||||
* 1. For |x| in [0, 0.84375]
|
||||
* erf(x) = x + x*R(x^2)
|
||||
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
||||
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
||||
* where R = P/Q where P is an odd poly of degree 8 and
|
||||
* Q is an odd poly of degree 10.
|
||||
* -57.90
|
||||
* | R - (erf(x)-x)/x | <= 2
|
||||
*
|
||||
*
|
||||
* Remark. The formula is derived by noting
|
||||
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
||||
* and that
|
||||
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
||||
* is close to one. The interval is chosen because the fix
|
||||
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
||||
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
||||
* guarantee the error is less than one ulp for erf.
|
||||
*
|
||||
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
||||
* c = 0.84506291151 rounded to single (24 bits)
|
||||
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
||||
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
||||
* 1+(c+P1(s)/Q1(s)) if x < 0
|
||||
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
||||
* Remark: here we use the taylor series expansion at x=1.
|
||||
* erf(1+s) = erf(1) + s*Poly(s)
|
||||
* = 0.845.. + P1(s)/Q1(s)
|
||||
* That is, we use rational approximation to approximate
|
||||
* erf(1+s) - (c = (single)0.84506291151)
|
||||
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
||||
* where
|
||||
* P1(s) = degree 6 poly in s
|
||||
* Q1(s) = degree 6 poly in s
|
||||
*
|
||||
* 3. For x in [1.25,1/0.35(~2.857143)],
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
||||
* erf(x) = 1 - erfc(x)
|
||||
* where
|
||||
* R1(z) = degree 7 poly in z, (z=1/x^2)
|
||||
* S1(z) = degree 8 poly in z
|
||||
*
|
||||
* 4. For x in [1/0.35,28]
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
||||
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
||||
* = 2.0 - tiny (if x <= -6)
|
||||
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
||||
* erf(x) = sign(x)*(1.0 - tiny)
|
||||
* where
|
||||
* R2(z) = degree 6 poly in z, (z=1/x^2)
|
||||
* S2(z) = degree 7 poly in z
|
||||
*
|
||||
* Note1:
|
||||
* To compute exp(-x*x-0.5625+R/S), let s be a single
|
||||
* precision number and s := x; then
|
||||
* -x*x = -s*s + (s-x)*(s+x)
|
||||
* exp(-x*x-0.5626+R/S) =
|
||||
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
||||
* Note2:
|
||||
* Here 4 and 5 make use of the asymptotic series
|
||||
* exp(-x*x)
|
||||
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
|
||||
* x*sqrt(pi)
|
||||
* We use rational approximation to approximate
|
||||
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
|
||||
* Here is the error bound for R1/S1 and R2/S2
|
||||
* |R1/S1 - f(x)| < 2**(-62.57)
|
||||
* |R2/S2 - f(x)| < 2**(-61.52)
|
||||
*
|
||||
* 5. For inf > x >= 28
|
||||
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
||||
* erfc(x) = tiny*tiny (raise underflow) if x > 0
|
||||
* = 2 - tiny if x<0
|
||||
*
|
||||
* 7. Special case:
|
||||
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
||||
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
||||
* erfc/erf(NaN) is NaN
|
||||
*/
|
||||
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
tiny = 1e-300,
|
||||
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
||||
/* c = (float)0.84506291151 */
|
||||
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
|
||||
efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
|
||||
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
|
||||
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
|
||||
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
|
||||
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
|
||||
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
|
||||
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
|
||||
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
|
||||
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
|
||||
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
|
||||
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
|
||||
/*
|
||||
* Coefficients for approximation to erf in [0.84375,1.25]
|
||||
*/
|
||||
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
|
||||
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
|
||||
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
|
||||
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
|
||||
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
|
||||
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
|
||||
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
|
||||
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
|
||||
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
|
||||
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
|
||||
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
|
||||
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
|
||||
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
||||
*/
|
||||
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
|
||||
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
|
||||
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
|
||||
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
|
||||
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
|
||||
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
|
||||
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
|
||||
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
|
||||
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
|
||||
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
|
||||
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
|
||||
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
|
||||
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
|
||||
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
|
||||
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
|
||||
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1/.35,28]
|
||||
*/
|
||||
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
|
||||
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
|
||||
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
|
||||
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
|
||||
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
|
||||
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
|
||||
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
|
||||
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
|
||||
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
|
||||
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
|
||||
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
|
||||
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
|
||||
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
|
||||
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double erf(double x)
|
||||
#else
|
||||
double erf(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
int32_t hx,ix,i;
|
||||
double R,S,P,Q,s,y,z,r;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7ff00000) { /* erf(nan)=nan */
|
||||
i = ((u_int32_t)hx>>31)<<1;
|
||||
return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
|
||||
}
|
||||
|
||||
if(ix < 0x3feb0000) { /* |x|<0.84375 */
|
||||
if(ix < 0x3e300000) { /* |x|<2**-28 */
|
||||
if (ix < 0x00800000)
|
||||
return 0.125*(8.0*x+efx8*x); /*avoid underflow */
|
||||
return x + efx*x;
|
||||
}
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
y = r/s;
|
||||
return x + x*y;
|
||||
}
|
||||
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabs(x)-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
||||
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
|
||||
}
|
||||
if (ix >= 0x40180000) { /* inf>|x|>=6 */
|
||||
if(hx>=0) return one-tiny; else return tiny-one;
|
||||
}
|
||||
x = fabs(x);
|
||||
s = one/(x*x);
|
||||
if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
||||
ra5+s*(ra6+s*ra7))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
||||
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
||||
} else { /* |x| >= 1/0.35 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
||||
rb5+s*rb6)))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
||||
sb5+s*(sb6+s*sb7))))));
|
||||
}
|
||||
z = x;
|
||||
SET_LOW_WORD(z,0);
|
||||
r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
|
||||
if(hx>=0) return one-r/x; else return r/x-one;
|
||||
}
|
||||
|
||||
#ifdef __STDC__
|
||||
double erfc(double x)
|
||||
#else
|
||||
double erfc(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
int32_t hx,ix;
|
||||
double R,S,P,Q,s,y,z,r;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7ff00000) { /* erfc(nan)=nan */
|
||||
/* erfc(+-inf)=0,2 */
|
||||
return (double)(((u_int32_t)hx>>31)<<1)+one/x;
|
||||
}
|
||||
|
||||
if(ix < 0x3feb0000) { /* |x|<0.84375 */
|
||||
if(ix < 0x3c700000) /* |x|<2**-56 */
|
||||
return one-x;
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
y = r/s;
|
||||
if(hx < 0x3fd00000) { /* x<1/4 */
|
||||
return one-(x+x*y);
|
||||
} else {
|
||||
r = x*y;
|
||||
r += (x-half);
|
||||
return half - r ;
|
||||
}
|
||||
}
|
||||
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabs(x)-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
||||
if(hx>=0) {
|
||||
z = one-erx; return z - P/Q;
|
||||
} else {
|
||||
z = erx+P/Q; return one+z;
|
||||
}
|
||||
}
|
||||
if (ix < 0x403c0000) { /* |x|<28 */
|
||||
x = fabs(x);
|
||||
s = one/(x*x);
|
||||
if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
||||
ra5+s*(ra6+s*ra7))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
||||
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
||||
} else { /* |x| >= 1/.35 ~ 2.857143 */
|
||||
if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
||||
rb5+s*rb6)))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
||||
sb5+s*(sb6+s*sb7))))));
|
||||
}
|
||||
z = x;
|
||||
SET_LOW_WORD(z,0);
|
||||
r = __ieee754_exp(-z*z-0.5625)*
|
||||
__ieee754_exp((z-x)*(z+x)+R/S);
|
||||
if(hx>0) return r/x; else return two-r/x;
|
||||
} else {
|
||||
if(hx>0) return tiny*tiny; else return two-tiny;
|
||||
}
|
||||
}
|
17
programs/develop/libraries/menuetlibc/src/libm/s_expm1.s
Executable file
17
programs/develop/libraries/menuetlibc/src/libm/s_expm1.s
Executable file
@@ -0,0 +1,17 @@
|
||||
#include<libc/asm.h>
|
||||
|
||||
MK_C_SYM(expm1)
|
||||
fldl 4(%esp)
|
||||
fldl2e
|
||||
fmulp
|
||||
fstl %st(1)
|
||||
frndint
|
||||
fstl %st(2)
|
||||
fsubrp
|
||||
f2xm1
|
||||
fld1
|
||||
faddp
|
||||
fscale
|
||||
fld1
|
||||
fsubrp
|
||||
ret
|
36
programs/develop/libraries/menuetlibc/src/libm/s_fabs.c
Executable file
36
programs/develop/libraries/menuetlibc/src/libm/s_fabs.c
Executable file
@@ -0,0 +1,36 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_fabs.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_fabs.c,v 1.5 1994/08/18 23:06:42 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* fabs(x) returns the absolute value of x.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double fabs(double x)
|
||||
#else
|
||||
double fabs(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
u_int32_t high;
|
||||
GET_HIGH_WORD(high,x);
|
||||
SET_HIGH_WORD(x,high&0x7fffffff);
|
||||
return x;
|
||||
}
|
8
programs/develop/libraries/menuetlibc/src/libm/s_finite.s
Executable file
8
programs/develop/libraries/menuetlibc/src/libm/s_finite.s
Executable file
@@ -0,0 +1,8 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(finite)
|
||||
movl 8(%esp),%eax
|
||||
andl $0x7ff00000, %eax
|
||||
cmpl $0x7ff00000, %eax
|
||||
setne %al
|
||||
andl $0x000000ff, %eax
|
||||
ret
|
20
programs/develop/libraries/menuetlibc/src/libm/s_floor.s
Executable file
20
programs/develop/libraries/menuetlibc/src/libm/s_floor.s
Executable file
@@ -0,0 +1,20 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(floor)
|
||||
pushl %ebp
|
||||
movl %esp,%ebp
|
||||
subl $8,%esp
|
||||
|
||||
fstcw -12(%ebp)
|
||||
movw -12(%ebp),%dx
|
||||
orw $0x0400,%dx
|
||||
andw $0xf7ff,%dx
|
||||
movw %dx,-16(%ebp)
|
||||
fldcw -16(%ebp)
|
||||
|
||||
fldl 8(%ebp);
|
||||
frndint
|
||||
|
||||
fldcw -12(%ebp)
|
||||
|
||||
leave
|
||||
ret
|
61
programs/develop/libraries/menuetlibc/src/libm/s_frexp.c
Executable file
61
programs/develop/libraries/menuetlibc/src/libm/s_frexp.c
Executable file
@@ -0,0 +1,61 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_frexp.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_frexp.c,v 1.6 1994/08/18 23:06:49 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* for non-zero x
|
||||
* x = frexp(arg,&exp);
|
||||
* return a double fp quantity x such that 0.5 <= |x| <1.0
|
||||
* and the corresponding binary exponent "exp". That is
|
||||
* arg = x*2^exp.
|
||||
* If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg
|
||||
* with *exp=0.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double frexp(double x, int *eptr)
|
||||
#else
|
||||
double frexp(x, eptr)
|
||||
double x; int *eptr;
|
||||
#endif
|
||||
{
|
||||
int32_t hx, ix, lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = 0x7fffffff&hx;
|
||||
*eptr = 0;
|
||||
if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */
|
||||
if (ix<0x00100000) { /* subnormal */
|
||||
x *= two54;
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
*eptr = -54;
|
||||
}
|
||||
*eptr += (ix>>20)-1022;
|
||||
hx = (hx&0x800fffff)|0x3fe00000;
|
||||
SET_HIGH_WORD(x,hx);
|
||||
return x;
|
||||
}
|
15
programs/develop/libraries/menuetlibc/src/libm/s_ilogb.s
Executable file
15
programs/develop/libraries/menuetlibc/src/libm/s_ilogb.s
Executable file
@@ -0,0 +1,15 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(ilogb)
|
||||
pushl %esp
|
||||
movl %esp,%ebp
|
||||
subl $4,%esp
|
||||
|
||||
fldl 8(%ebp)
|
||||
fxtract
|
||||
fstpl %st
|
||||
|
||||
fistpl -4(%ebp)
|
||||
movl -4(%ebp),%eax
|
||||
|
||||
leave
|
||||
ret
|
38
programs/develop/libraries/menuetlibc/src/libm/s_infini.c
Executable file
38
programs/develop/libraries/menuetlibc/src/libm/s_infini.c
Executable file
@@ -0,0 +1,38 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/*
|
||||
* Copyright (c) 1994 Winning Strategies, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by Winning Strategies, Inc.
|
||||
* 4. The name of the author may not be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <machine/endian.h>
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
char __infinity[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, 0x7f };
|
||||
#else
|
||||
char __infinity[] = { 0x7f, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||||
#endif
|
57
programs/develop/libraries/menuetlibc/src/libm/s_isinf.c
Executable file
57
programs/develop/libraries/menuetlibc/src/libm/s_isinf.c
Executable file
@@ -0,0 +1,57 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/*
|
||||
* Copyright (c) 1994 Winning Strategies, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by Winning Strategies, Inc.
|
||||
* 4. The name of the author may not be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_isinf.c,v 1.6 1994/08/18 23:06:54 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* isinf(x) returns 1 is x is inf, else 0;
|
||||
* no branching!
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
int isinf(double x)
|
||||
#else
|
||||
int isinf(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
int32_t hx,lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
hx &= 0x7fffffff;
|
||||
hx ^= 0x7ff00000;
|
||||
hx |= lx;
|
||||
return (hx == 0);
|
||||
}
|
39
programs/develop/libraries/menuetlibc/src/libm/s_isnan.c
Executable file
39
programs/develop/libraries/menuetlibc/src/libm/s_isnan.c
Executable file
@@ -0,0 +1,39 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_isnan.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_isnan.c,v 1.6 1994/08/18 23:06:54 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* isnan(x) returns 1 is x is nan, else 0;
|
||||
* no branching!
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
int isnan(double x)
|
||||
#else
|
||||
int isnan(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
int32_t hx,lx;
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
hx &= 0x7fffffff;
|
||||
hx |= (u_int32_t)(lx|(-lx))>>31;
|
||||
hx = 0x7ff00000 - hx;
|
||||
return (int)((u_int32_t)(hx))>>31;
|
||||
}
|
33
programs/develop/libraries/menuetlibc/src/libm/s_ldexp.c
Executable file
33
programs/develop/libraries/menuetlibc/src/libm/s_ldexp.c
Executable file
@@ -0,0 +1,33 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_ldexp.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_ldexp.c,v 1.4 1994/08/10 20:32:37 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include <errno.h>
|
||||
|
||||
#ifdef __STDC__
|
||||
double ldexp(double value, int exp)
|
||||
#else
|
||||
double ldexp(value, exp)
|
||||
double value; int exp;
|
||||
#endif
|
||||
{
|
||||
if(!finite(value)||value==0.0) return value;
|
||||
value = scalbn(value,exp);
|
||||
if(!finite(value)||value==0.0) errno = ERANGE;
|
||||
return value;
|
||||
}
|
40
programs/develop/libraries/menuetlibc/src/libm/s_libver.c
Executable file
40
programs/develop/libraries/menuetlibc/src/libm/s_libver.c
Executable file
@@ -0,0 +1,40 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_lib_ver.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_lib_version.c,v 1.4 1994/08/10 20:32:40 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* MACRO for standards
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/*
|
||||
* define and initialize _LIB_VERSION
|
||||
*/
|
||||
#ifdef _POSIX_MODE
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _POSIX_;
|
||||
#else
|
||||
#ifdef _XOPEN_MODE
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _XOPEN_;
|
||||
#else
|
||||
#ifdef _SVID3_MODE
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _SVID_;
|
||||
#else /* default _IEEE_MODE */
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _IEEE_;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
8
programs/develop/libraries/menuetlibc/src/libm/s_log1p.s
Executable file
8
programs/develop/libraries/menuetlibc/src/libm/s_log1p.s
Executable file
@@ -0,0 +1,8 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(log1p)
|
||||
fldln2
|
||||
fldl 4(%esp)
|
||||
fld1
|
||||
faddp
|
||||
fyl2x
|
||||
ret
|
6
programs/develop/libraries/menuetlibc/src/libm/s_logb.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/s_logb.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(logb)
|
||||
fldl 4(%esp)
|
||||
fxtract
|
||||
fstpl %st
|
||||
ret
|
31
programs/develop/libraries/menuetlibc/src/libm/s_mather.c
Executable file
31
programs/develop/libraries/menuetlibc/src/libm/s_mather.c
Executable file
@@ -0,0 +1,31 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_matherr.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_matherr.c,v 1.4 1994/08/10 20:32:52 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
int matherr(struct exception *x)
|
||||
#else
|
||||
int matherr(x)
|
||||
struct exception *x;
|
||||
#endif
|
||||
{
|
||||
int n=0;
|
||||
if(x->arg1!=x->arg1) return 0;
|
||||
return n;
|
||||
}
|
84
programs/develop/libraries/menuetlibc/src/libm/s_modf.c
Executable file
84
programs/develop/libraries/menuetlibc/src/libm/s_modf.c
Executable file
@@ -0,0 +1,84 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_modf.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_modf.c,v 1.6 1994/08/18 23:07:09 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/*
|
||||
* modf(double x, double *iptr)
|
||||
* return fraction part of x, and return x's integral part in *iptr.
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
*
|
||||
* Exception:
|
||||
* No exception.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one = 1.0;
|
||||
#else
|
||||
static double one = 1.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double modf(double x, double *iptr)
|
||||
#else
|
||||
double modf(x, iptr)
|
||||
double x,*iptr;
|
||||
#endif
|
||||
{
|
||||
int32_t i0,i1,j0;
|
||||
u_int32_t i;
|
||||
EXTRACT_WORDS(i0,i1,x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff; /* exponent of x */
|
||||
if(j0<20) { /* integer part in high x */
|
||||
if(j0<0) { /* |x|<1 */
|
||||
INSERT_WORDS(*iptr,i0&0x80000000,0); /* *iptr = +-0 */
|
||||
return x;
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) { /* x is integral */
|
||||
u_int32_t high;
|
||||
*iptr = x;
|
||||
GET_HIGH_WORD(high,x);
|
||||
INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */
|
||||
return x;
|
||||
} else {
|
||||
INSERT_WORDS(*iptr,i0&(~i),0);
|
||||
return x - *iptr;
|
||||
}
|
||||
}
|
||||
} else if (j0>51) { /* no fraction part */
|
||||
u_int32_t high;
|
||||
*iptr = x*one;
|
||||
GET_HIGH_WORD(high,x);
|
||||
INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */
|
||||
return x;
|
||||
} else { /* fraction part in low x */
|
||||
i = ((u_int32_t)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) { /* x is integral */
|
||||
u_int32_t high;
|
||||
*iptr = x;
|
||||
GET_HIGH_WORD(high,x);
|
||||
INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */
|
||||
return x;
|
||||
} else {
|
||||
INSERT_WORDS(*iptr,i0,i1&(~i));
|
||||
return x - *iptr;
|
||||
}
|
||||
}
|
||||
}
|
80
programs/develop/libraries/menuetlibc/src/libm/s_nextaf.c
Executable file
80
programs/develop/libraries/menuetlibc/src/libm/s_nextaf.c
Executable file
@@ -0,0 +1,80 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_nextafter.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_nextafter.c,v 1.6 1994/08/18 23:07:13 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* IEEE functions
|
||||
* nextafter(x,y)
|
||||
* return the next machine floating-point number of x in the
|
||||
* direction toward y.
|
||||
* Special cases:
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double nextafter(double x, double y)
|
||||
#else
|
||||
double nextafter(x,y)
|
||||
double x,y;
|
||||
#endif
|
||||
{
|
||||
int32_t hx,hy,ix,iy;
|
||||
u_int32_t lx,ly;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
EXTRACT_WORDS(hy,ly,y);
|
||||
ix = hx&0x7fffffff; /* |x| */
|
||||
iy = hy&0x7fffffff; /* |y| */
|
||||
|
||||
if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */
|
||||
((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) /* y is nan */
|
||||
return x+y;
|
||||
if(x==y) return x; /* x=y, return x */
|
||||
if((ix|lx)==0) { /* x == 0 */
|
||||
INSERT_WORDS(x,hy&0x80000000,1); /* return +-minsubnormal */
|
||||
y = x*x;
|
||||
if(y==x) return y; else return x; /* raise underflow flag */
|
||||
}
|
||||
if(hx>=0) { /* x > 0 */
|
||||
if(hx>hy||((hx==hy)&&(lx>ly))) { /* x > y, x -= ulp */
|
||||
if(lx==0) hx -= 1;
|
||||
lx -= 1;
|
||||
} else { /* x < y, x += ulp */
|
||||
lx += 1;
|
||||
if(lx==0) hx += 1;
|
||||
}
|
||||
} else { /* x < 0 */
|
||||
if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){/* x < y, x -= ulp */
|
||||
if(lx==0) hx -= 1;
|
||||
lx -= 1;
|
||||
} else { /* x > y, x += ulp */
|
||||
lx += 1;
|
||||
if(lx==0) hx += 1;
|
||||
}
|
||||
}
|
||||
hy = hx&0x7ff00000;
|
||||
if(hy>=0x7ff00000) return x+x; /* overflow */
|
||||
if(hy<0x00100000) { /* underflow */
|
||||
y = x*x;
|
||||
if(y!=x) { /* raise underflow flag */
|
||||
INSERT_WORDS(y,hx,lx);
|
||||
return y;
|
||||
}
|
||||
}
|
||||
INSERT_WORDS(x,hx,lx);
|
||||
return x;
|
||||
}
|
5
programs/develop/libraries/menuetlibc/src/libm/s_rint.s
Executable file
5
programs/develop/libraries/menuetlibc/src/libm/s_rint.s
Executable file
@@ -0,0 +1,5 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(rint)
|
||||
fldl 4(%esp)
|
||||
frndint
|
||||
ret
|
6
programs/develop/libraries/menuetlibc/src/libm/s_scalbn.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/s_scalbn.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(scalbn)
|
||||
fildl 12(%esp)
|
||||
fldl 4(%esp)
|
||||
fscale
|
||||
ret
|
4
programs/develop/libraries/menuetlibc/src/libm/s_signga.c
Executable file
4
programs/develop/libraries/menuetlibc/src/libm/s_signga.c
Executable file
@@ -0,0 +1,4 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
int signgam = 0;
|
6
programs/develop/libraries/menuetlibc/src/libm/s_signif.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/s_signif.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(significand)
|
||||
fldl 4(%esp)
|
||||
fxtract
|
||||
fstpl %st(1)
|
||||
ret
|
18
programs/develop/libraries/menuetlibc/src/libm/s_sin.s
Executable file
18
programs/develop/libraries/menuetlibc/src/libm/s_sin.s
Executable file
@@ -0,0 +1,18 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(sin)
|
||||
fldl 4(%esp)
|
||||
fsin
|
||||
fnstsw %ax
|
||||
andw $0x400,%ax
|
||||
jnz 1f
|
||||
ret
|
||||
1: fldpi
|
||||
fadd %st(0)
|
||||
fxch %st(1)
|
||||
2: fprem1
|
||||
fnstsw %ax
|
||||
andw $0x400,%ax
|
||||
jnz 2b
|
||||
fstp %st(1)
|
||||
fsin
|
||||
ret
|
20
programs/develop/libraries/menuetlibc/src/libm/s_tan.s
Executable file
20
programs/develop/libraries/menuetlibc/src/libm/s_tan.s
Executable file
@@ -0,0 +1,20 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(tan)
|
||||
fldl 4(%esp)
|
||||
fptan
|
||||
fnstsw %ax
|
||||
andw $0x400,%ax
|
||||
jnz 1f
|
||||
fstp %st(0)
|
||||
ret
|
||||
1: fldpi
|
||||
fadd %st(0)
|
||||
fxch %st(1)
|
||||
2: fprem1
|
||||
fstsw %ax
|
||||
andw $0x400,%ax
|
||||
jnz 2b
|
||||
fstp %st(1)
|
||||
fptan
|
||||
fstp %st(0)
|
||||
ret
|
87
programs/develop/libraries/menuetlibc/src/libm/s_tanh.c
Executable file
87
programs/develop/libraries/menuetlibc/src/libm/s_tanh.c
Executable file
@@ -0,0 +1,87 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* @(#)s_tanh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_tanh.c,v 1.5 1994/08/18 23:10:22 jtc Exp $";
|
||||
#endif
|
||||
|
||||
/* Tanh(x)
|
||||
* Return the Hyperbolic Tangent of x
|
||||
*
|
||||
* Method :
|
||||
* x -x
|
||||
* e - e
|
||||
* 0. tanh(x) is defined to be -----------
|
||||
* x -x
|
||||
* e + e
|
||||
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
|
||||
* 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
|
||||
* -t
|
||||
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
|
||||
* t + 2
|
||||
* 2
|
||||
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
|
||||
* t + 2
|
||||
* 22.0 < x <= INF : tanh(x) := 1.
|
||||
*
|
||||
* Special cases:
|
||||
* tanh(NaN) is NaN;
|
||||
* only tanh(0)=0 is exact for finite argument.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one=1.0, two=2.0, tiny = 1.0e-300;
|
||||
#else
|
||||
static double one=1.0, two=2.0, tiny = 1.0e-300;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double tanh(double x)
|
||||
#else
|
||||
double tanh(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double t,z;
|
||||
int32_t jx,ix;
|
||||
|
||||
/* High word of |x|. */
|
||||
GET_HIGH_WORD(jx,x);
|
||||
ix = jx&0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7ff00000) {
|
||||
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
|
||||
else return one/x-one; /* tanh(NaN) = NaN */
|
||||
}
|
||||
|
||||
/* |x| < 22 */
|
||||
if (ix < 0x40360000) { /* |x|<22 */
|
||||
if (ix<0x3c800000) /* |x|<2**-55 */
|
||||
return x*(one+x); /* tanh(small) = small */
|
||||
if (ix>=0x3ff00000) { /* |x|>=1 */
|
||||
t = expm1(two*fabs(x));
|
||||
z = one - two/(t+two);
|
||||
} else {
|
||||
t = expm1(-two*fabs(x));
|
||||
z= -t/(t+two);
|
||||
}
|
||||
/* |x| > 22, return +-1 */
|
||||
} else {
|
||||
z = one - tiny; /* raised inexact flag */
|
||||
}
|
||||
return (jx>=0)? z: -z;
|
||||
}
|
58
programs/develop/libraries/menuetlibc/src/libm/sf_asinh.c
Executable file
58
programs/develop/libraries/menuetlibc/src/libm/sf_asinh.c
Executable file
@@ -0,0 +1,58 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* s_asinhf.c -- float version of s_asinh.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_asinhf.c,v 1.2 1994/08/18 23:06:21 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
one = 1.0000000000e+00, /* 0x3F800000 */
|
||||
ln2 = 6.9314718246e-01, /* 0x3f317218 */
|
||||
huge= 1.0000000000e+30;
|
||||
|
||||
#ifdef __STDC__
|
||||
float asinhf(float x)
|
||||
#else
|
||||
float asinhf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float t,w;
|
||||
int32_t hx,ix;
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix>=0x7f800000) return x+x; /* x is inf or NaN */
|
||||
if(ix< 0x31800000) { /* |x|<2**-28 */
|
||||
if(huge+x>one) return x; /* return x inexact except 0 */
|
||||
}
|
||||
if(ix>0x4d800000) { /* |x| > 2**28 */
|
||||
w = __ieee754_logf(fabsf(x))+ln2;
|
||||
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
|
||||
t = fabsf(x);
|
||||
w = __ieee754_logf((float)2.0*t+one/(sqrtf(x*x+one)+t));
|
||||
} else { /* 2.0 > |x| > 2**-28 */
|
||||
t = x*x;
|
||||
w =log1pf(fabsf(x)+t/(one+sqrtf(one+t)));
|
||||
}
|
||||
if(hx>0) return w; else return -w;
|
||||
}
|
6
programs/develop/libraries/menuetlibc/src/libm/sf_atan.s
Executable file
6
programs/develop/libraries/menuetlibc/src/libm/sf_atan.s
Executable file
@@ -0,0 +1,6 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(atanf)
|
||||
flds 4(%esp)
|
||||
fld1
|
||||
fpatan
|
||||
ret
|
84
programs/develop/libraries/menuetlibc/src/libm/sf_cbrt.c
Executable file
84
programs/develop/libraries/menuetlibc/src/libm/sf_cbrt.c
Executable file
@@ -0,0 +1,84 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
/* s_cbrtf.c -- float version of s_cbrt.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#if defined(LIBM_SCCS) && !defined(lint)
|
||||
static char rcsid[] = "$Id: s_cbrtf.c,v 1.2 1994/08/18 23:06:27 jtc Exp $";
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* cbrtf(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const unsigned
|
||||
#else
|
||||
static unsigned
|
||||
#endif
|
||||
B1 = 709958130, /* B1 = (84+2/3-0.03306235651)*2**23 */
|
||||
B2 = 642849266; /* B2 = (76+2/3-0.03306235651)*2**23 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float
|
||||
#else
|
||||
static float
|
||||
#endif
|
||||
C = 5.4285717010e-01, /* 19/35 = 0x3f0af8b0 */
|
||||
D = -7.0530611277e-01, /* -864/1225 = 0xbf348ef1 */
|
||||
E = 1.4142856598e+00, /* 99/70 = 0x3fb50750 */
|
||||
F = 1.6071428061e+00, /* 45/28 = 0x3fcdb6db */
|
||||
G = 3.5714286566e-01; /* 5/14 = 0x3eb6db6e */
|
||||
|
||||
#ifdef __STDC__
|
||||
float cbrtf(float x)
|
||||
#else
|
||||
float cbrtf(x)
|
||||
float x;
|
||||
#endif
|
||||
{
|
||||
float r,s,t;
|
||||
int32_t hx;
|
||||
u_int32_t sign;
|
||||
u_int32_t high;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
sign=hx&0x80000000; /* sign= sign(x) */
|
||||
hx ^=sign;
|
||||
if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */
|
||||
if(hx==0)
|
||||
return(x); /* cbrt(0) is itself */
|
||||
|
||||
SET_FLOAT_WORD(x,hx); /* x <- |x| */
|
||||
/* rough cbrt to 5 bits */
|
||||
if(hx<0x00800000) /* subnormal number */
|
||||
{SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */
|
||||
t*=x; GET_FLOAT_WORD(high,t); SET_FLOAT_WORD(t,high/3+B2);
|
||||
}
|
||||
else
|
||||
SET_FLOAT_WORD(t,hx/3+B1);
|
||||
|
||||
|
||||
/* new cbrt to 23 bits */
|
||||
r=t*t/x;
|
||||
s=C+r*t;
|
||||
t*=G+F/(s+E+D/s);
|
||||
|
||||
/* retore the sign bit */
|
||||
GET_FLOAT_WORD(high,t);
|
||||
SET_FLOAT_WORD(t,high|sign);
|
||||
return(t);
|
||||
}
|
20
programs/develop/libraries/menuetlibc/src/libm/sf_ceil.s
Executable file
20
programs/develop/libraries/menuetlibc/src/libm/sf_ceil.s
Executable file
@@ -0,0 +1,20 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(ceilf)
|
||||
pushl %ebp
|
||||
movl %esp,%ebp
|
||||
subl $8,%esp
|
||||
|
||||
fstcw -12(%ebp)
|
||||
movw -12(%ebp),%dx
|
||||
orw $0x0800,%dx
|
||||
andw $0xfbff,%dx
|
||||
movw %dx,-16(%ebp)
|
||||
fldcw -16(%ebp)
|
||||
|
||||
flds 8(%ebp);
|
||||
frndint
|
||||
|
||||
fldcw -12(%ebp)
|
||||
|
||||
leave
|
||||
ret
|
10
programs/develop/libraries/menuetlibc/src/libm/sf_copys.s
Executable file
10
programs/develop/libraries/menuetlibc/src/libm/sf_copys.s
Executable file
@@ -0,0 +1,10 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(copysignf)
|
||||
movl 8(%esp),%edx
|
||||
andl $0x80000000,%edx
|
||||
movl 4(%esp),%eax
|
||||
andl $0x7fffffff,%eax
|
||||
orl %edx,%eax
|
||||
movl %eax,4(%esp)
|
||||
flds 4(%esp)
|
||||
ret
|
5
programs/develop/libraries/menuetlibc/src/libm/sf_cos.s
Executable file
5
programs/develop/libraries/menuetlibc/src/libm/sf_cos.s
Executable file
@@ -0,0 +1,5 @@
|
||||
#include<libc/asm.h>
|
||||
MK_C_SYM(cosf)
|
||||
flds 4(%esp)
|
||||
fcos
|
||||
ret
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user