forked from KolibriOS/kolibrios
upload sdk
git-svn-id: svn://kolibrios.org@4349 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
217
contrib/sdk/sources/newlib/math/s_log1p.c
Normal file
217
contrib/sdk/sources/newlib/math/s_log1p.c
Normal file
@@ -0,0 +1,217 @@
|
||||
|
||||
/* @(#)s_log1p.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
FUNCTION
|
||||
<<log1p>>, <<log1pf>>---log of <<1 + <[x]>>>
|
||||
|
||||
INDEX
|
||||
log1p
|
||||
INDEX
|
||||
log1pf
|
||||
|
||||
ANSI_SYNOPSIS
|
||||
#include <math.h>
|
||||
double log1p(double <[x]>);
|
||||
float log1pf(float <[x]>);
|
||||
|
||||
TRAD_SYNOPSIS
|
||||
#include <math.h>
|
||||
double log1p(<[x]>)
|
||||
double <[x]>;
|
||||
|
||||
float log1pf(<[x]>)
|
||||
float <[x]>;
|
||||
|
||||
DESCRIPTION
|
||||
<<log1p>> calculates
|
||||
@tex
|
||||
$ln(1+x)$,
|
||||
@end tex
|
||||
the natural logarithm of <<1+<[x]>>>. You can use <<log1p>> rather
|
||||
than `<<log(1+<[x]>)>>' for greater precision when <[x]> is very
|
||||
small.
|
||||
|
||||
<<log1pf>> calculates the same thing, but accepts and returns
|
||||
<<float>> values rather than <<double>>.
|
||||
|
||||
RETURNS
|
||||
<<log1p>> returns a <<double>>, the natural log of <<1+<[x]>>>.
|
||||
<<log1pf>> returns a <<float>>, the natural log of <<1+<[x]>>>.
|
||||
|
||||
PORTABILITY
|
||||
Neither <<log1p>> nor <<log1pf>> is required by ANSI C or by the System V
|
||||
Interface Definition (Issue 2).
|
||||
|
||||
*/
|
||||
|
||||
/* double log1p(double x)
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* 1+x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||
* may not be representable exactly. In that case, a correction
|
||||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||
* and add back the correction term c/u.
|
||||
* (Note: when x > 2**53, one can simply return log(x))
|
||||
*
|
||||
* 2. Approximation of log1p(f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
||||
* (the values of Lp1 to Lp7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lp1*s +...+Lp7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log1p(f) = f - (hfsq - s*(hfsq+R)).
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||
* log1p(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
* return log(u)*(x/(u-1.0));
|
||||
*
|
||||
* See HP-15C Advanced Functions Handbook, p.193.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifndef _DOUBLE_IS_32BITS
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double zero = 0.0;
|
||||
#else
|
||||
static double zero = 0.0;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double log1p(double x)
|
||||
#else
|
||||
double log1p(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double hfsq,f,c,s,z,R,u;
|
||||
__int32_t k,hx,hu,ax;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
ax = hx&0x7fffffff;
|
||||
|
||||
k = 1;
|
||||
if (hx < 0x3FDA827A) { /* x < 0.41422 */
|
||||
if(ax>=0x3ff00000) { /* x <= -1.0 */
|
||||
if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
|
||||
else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if(ax<0x3e200000) { /* |x| < 2**-29 */
|
||||
if(two54+x>zero /* raise inexact */
|
||||
&&ax<0x3c900000) /* |x| < 2**-54 */
|
||||
return x;
|
||||
else
|
||||
return x - x*x*0.5;
|
||||
}
|
||||
if(hx>0||hx<=((__int32_t)0xbfd2bec3)) {
|
||||
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
|
||||
}
|
||||
if (hx >= 0x7ff00000) return x+x;
|
||||
if(k!=0) {
|
||||
if(hx<0x43400000) {
|
||||
u = 1.0+x;
|
||||
GET_HIGH_WORD(hu,u);
|
||||
k = (hu>>20)-1023;
|
||||
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
||||
c /= u;
|
||||
} else {
|
||||
u = x;
|
||||
GET_HIGH_WORD(hu,u);
|
||||
k = (hu>>20)-1023;
|
||||
c = 0;
|
||||
}
|
||||
hu &= 0x000fffff;
|
||||
if(hu<0x6a09e) {
|
||||
SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
|
||||
} else {
|
||||
k += 1;
|
||||
SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
|
||||
hu = (0x00100000-hu)>>2;
|
||||
}
|
||||
f = u-1.0;
|
||||
}
|
||||
hfsq=0.5*f*f;
|
||||
if(hu==0) { /* |f| < 2**-20 */
|
||||
if(f==zero) { if(k==0) return zero;
|
||||
else {c += k*ln2_lo; return k*ln2_hi+c;}}
|
||||
R = hfsq*(1.0-0.66666666666666666*f);
|
||||
if(k==0) return f-R; else
|
||||
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
||||
}
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
||||
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
||||
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
|
||||
}
|
||||
|
||||
#endif /* _DOUBLE_IS_32BITS */
|
Reference in New Issue
Block a user