sdk: build libsupc++ from libstdc++ source

git-svn-id: svn://kolibrios.org@5134 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
Sergey Semyonov (Serge)
2014-09-21 10:51:57 +00:00
parent c993fd46f8
commit 9d5ad505ec
863 changed files with 369722 additions and 0 deletions

View File

@@ -0,0 +1,251 @@
// class template array -*- C++ -*-
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/array
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_ARRAY
#define _GLIBCXX_TR1_ARRAY 1
#pragma GCC system_header
#include <bits/stl_algobase.h>
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief A standard container for storing a fixed size sequence of elements.
*
* @ingroup sequences
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and a
* <a href="tables.html#67">sequence</a>.
*
* Sets support random access iterators.
*
* @param Tp Type of element. Required to be a complete type.
* @param N Number of elements.
*/
template<typename _Tp, std::size_t _Nm>
struct array
{
typedef _Tp value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// Support for zero-sized arrays mandatory.
value_type _M_instance[_Nm ? _Nm : 1];
// No explicit construct/copy/destroy for aggregate type.
void
assign(const value_type& __u)
{ std::fill_n(begin(), size(), __u); }
void
swap(array& __other)
{ std::swap_ranges(begin(), end(), __other.begin()); }
// Iterators.
iterator
begin()
{ return iterator(std::__addressof(_M_instance[0])); }
const_iterator
begin() const
{ return const_iterator(std::__addressof(_M_instance[0])); }
iterator
end()
{ return iterator(std::__addressof(_M_instance[_Nm])); }
const_iterator
end() const
{ return const_iterator(std::__addressof(_M_instance[_Nm])); }
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
// Capacity.
size_type
size() const { return _Nm; }
size_type
max_size() const { return _Nm; }
bool
empty() const { return size() == 0; }
// Element access.
reference
operator[](size_type __n)
{ return _M_instance[__n]; }
const_reference
operator[](size_type __n) const
{ return _M_instance[__n]; }
reference
at(size_type __n)
{
if (__n >= _Nm)
std::__throw_out_of_range(__N("array::at"));
return _M_instance[__n];
}
const_reference
at(size_type __n) const
{
if (__n >= _Nm)
std::__throw_out_of_range(__N("array::at"));
return _M_instance[__n];
}
reference
front()
{ return *begin(); }
const_reference
front() const
{ return *begin(); }
reference
back()
{ return _Nm ? *(end() - 1) : *end(); }
const_reference
back() const
{ return _Nm ? *(end() - 1) : *end(); }
_Tp*
data()
{ return std::__addressof(_M_instance[0]); }
const _Tp*
data() const
{ return std::__addressof(_M_instance[0]); }
};
// Array comparisons.
template<typename _Tp, std::size_t _Nm>
inline bool
operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return std::equal(__one.begin(), __one.end(), __two.begin()); }
template<typename _Tp, std::size_t _Nm>
inline bool
operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one == __two); }
template<typename _Tp, std::size_t _Nm>
inline bool
operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b)
{
return std::lexicographical_compare(__a.begin(), __a.end(),
__b.begin(), __b.end());
}
template<typename _Tp, std::size_t _Nm>
inline bool
operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return __two < __one; }
template<typename _Tp, std::size_t _Nm>
inline bool
operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one > __two); }
template<typename _Tp, std::size_t _Nm>
inline bool
operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one < __two); }
// Specialized algorithms [6.2.2.2].
template<typename _Tp, std::size_t _Nm>
inline void
swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two)
{ __one.swap(__two); }
// Tuple interface to class template array [6.2.2.5].
/// tuple_size
template<typename _Tp>
class tuple_size;
/// tuple_element
template<int _Int, typename _Tp>
class tuple_element;
template<typename _Tp, std::size_t _Nm>
struct tuple_size<array<_Tp, _Nm> >
{ static const int value = _Nm; };
template<typename _Tp, std::size_t _Nm>
const int
tuple_size<array<_Tp, _Nm> >::value;
template<int _Int, typename _Tp, std::size_t _Nm>
struct tuple_element<_Int, array<_Tp, _Nm> >
{ typedef _Tp type; };
template<int _Int, typename _Tp, std::size_t _Nm>
inline _Tp&
get(array<_Tp, _Nm>& __arr)
{ return __arr[_Int]; }
template<int _Int, typename _Tp, std::size_t _Nm>
inline const _Tp&
get(const array<_Tp, _Nm>& __arr)
{ return __arr[_Int]; }
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_ARRAY

View File

@@ -0,0 +1,628 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/bessel_function.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland.
//
// References:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 9, pp. 355-434, Section 10 pp. 435-478
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 240-245
#ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
#define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
#include "special_function_util.h"
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Compute the gamma functions required by the Temme series
* expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
* @f[
* \Gamma_1 = \frac{1}{2\mu}
* [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
* @f]
* and
* @f[
* \Gamma_2 = \frac{1}{2}
* [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
* @f]
* where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
* is the nearest integer to @f$ \nu @f$.
* The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
* are returned as well.
*
* The accuracy requirements on this are exquisite.
*
* @param __mu The input parameter of the gamma functions.
* @param __gam1 The output function \f$ \Gamma_1(\mu) \f$
* @param __gam2 The output function \f$ \Gamma_2(\mu) \f$
* @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
* @param __gammi The output function \f$ \Gamma(1 - \mu) \f$
*/
template <typename _Tp>
void
__gamma_temme(_Tp __mu,
_Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
{
#if _GLIBCXX_USE_C99_MATH_TR1
__gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
__gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
#else
__gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
__gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
#endif
if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
__gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
else
__gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
__gam2 = (__gammi + __gampl) / (_Tp(2));
return;
}
/**
* @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
* @f$ N_\nu(x) @f$ functions and their first derivatives
* @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
* These four functions are computed together for numerical
* stability.
*
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Jnu The output Bessel function of the first kind.
* @param __Nnu The output Neumann function (Bessel function of the second kind).
* @param __Jpnu The output derivative of the Bessel function of the first kind.
* @param __Npnu The output derivative of the Neumann function.
*/
template <typename _Tp>
void
__bessel_jn(_Tp __nu, _Tp __x,
_Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
{
if (__x == _Tp(0))
{
if (__nu == _Tp(0))
{
__Jnu = _Tp(1);
__Jpnu = _Tp(0);
}
else if (__nu == _Tp(1))
{
__Jnu = _Tp(0);
__Jpnu = _Tp(0.5L);
}
else
{
__Jnu = _Tp(0);
__Jpnu = _Tp(0);
}
__Nnu = -std::numeric_limits<_Tp>::infinity();
__Npnu = std::numeric_limits<_Tp>::infinity();
return;
}
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
// When the multiplier is N i.e.
// fp_min = N * min()
// Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
//const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
const int __max_iter = 15000;
const _Tp __x_min = _Tp(2);
const int __nl = (__x < __x_min
? static_cast<int>(__nu + _Tp(0.5L))
: std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
const _Tp __mu = __nu - __nl;
const _Tp __mu2 = __mu * __mu;
const _Tp __xi = _Tp(1) / __x;
const _Tp __xi2 = _Tp(2) * __xi;
_Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
int __isign = 1;
_Tp __h = __nu * __xi;
if (__h < __fp_min)
__h = __fp_min;
_Tp __b = __xi2 * __nu;
_Tp __d = _Tp(0);
_Tp __c = __h;
int __i;
for (__i = 1; __i <= __max_iter; ++__i)
{
__b += __xi2;
__d = __b - __d;
if (std::abs(__d) < __fp_min)
__d = __fp_min;
__c = __b - _Tp(1) / __c;
if (std::abs(__c) < __fp_min)
__c = __fp_min;
__d = _Tp(1) / __d;
const _Tp __del = __c * __d;
__h *= __del;
if (__d < _Tp(0))
__isign = -__isign;
if (std::abs(__del - _Tp(1)) < __eps)
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
"try asymptotic expansion."));
_Tp __Jnul = __isign * __fp_min;
_Tp __Jpnul = __h * __Jnul;
_Tp __Jnul1 = __Jnul;
_Tp __Jpnu1 = __Jpnul;
_Tp __fact = __nu * __xi;
for ( int __l = __nl; __l >= 1; --__l )
{
const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
__fact -= __xi;
__Jpnul = __fact * __Jnutemp - __Jnul;
__Jnul = __Jnutemp;
}
if (__Jnul == _Tp(0))
__Jnul = __eps;
_Tp __f= __Jpnul / __Jnul;
_Tp __Nmu, __Nnu1, __Npmu, __Jmu;
if (__x < __x_min)
{
const _Tp __x2 = __x / _Tp(2);
const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
_Tp __fact = (std::abs(__pimu) < __eps
? _Tp(1) : __pimu / std::sin(__pimu));
_Tp __d = -std::log(__x2);
_Tp __e = __mu * __d;
_Tp __fact2 = (std::abs(__e) < __eps
? _Tp(1) : std::sinh(__e) / __e);
_Tp __gam1, __gam2, __gampl, __gammi;
__gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
_Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
* __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
__e = std::exp(__e);
_Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
_Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
const _Tp __pimu2 = __pimu / _Tp(2);
_Tp __fact3 = (std::abs(__pimu2) < __eps
? _Tp(1) : std::sin(__pimu2) / __pimu2 );
_Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
_Tp __c = _Tp(1);
__d = -__x2 * __x2;
_Tp __sum = __ff + __r * __q;
_Tp __sum1 = __p;
for (__i = 1; __i <= __max_iter; ++__i)
{
__ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
__c *= __d / _Tp(__i);
__p /= _Tp(__i) - __mu;
__q /= _Tp(__i) + __mu;
const _Tp __del = __c * (__ff + __r * __q);
__sum += __del;
const _Tp __del1 = __c * __p - __i * __del;
__sum1 += __del1;
if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
break;
}
if ( __i > __max_iter )
std::__throw_runtime_error(__N("Bessel y series failed to converge "
"in __bessel_jn."));
__Nmu = -__sum;
__Nnu1 = -__sum1 * __xi2;
__Npmu = __mu * __xi * __Nmu - __Nnu1;
__Jmu = __w / (__Npmu - __f * __Nmu);
}
else
{
_Tp __a = _Tp(0.25L) - __mu2;
_Tp __q = _Tp(1);
_Tp __p = -__xi / _Tp(2);
_Tp __br = _Tp(2) * __x;
_Tp __bi = _Tp(2);
_Tp __fact = __a * __xi / (__p * __p + __q * __q);
_Tp __cr = __br + __q * __fact;
_Tp __ci = __bi + __p * __fact;
_Tp __den = __br * __br + __bi * __bi;
_Tp __dr = __br / __den;
_Tp __di = -__bi / __den;
_Tp __dlr = __cr * __dr - __ci * __di;
_Tp __dli = __cr * __di + __ci * __dr;
_Tp __temp = __p * __dlr - __q * __dli;
__q = __p * __dli + __q * __dlr;
__p = __temp;
int __i;
for (__i = 2; __i <= __max_iter; ++__i)
{
__a += _Tp(2 * (__i - 1));
__bi += _Tp(2);
__dr = __a * __dr + __br;
__di = __a * __di + __bi;
if (std::abs(__dr) + std::abs(__di) < __fp_min)
__dr = __fp_min;
__fact = __a / (__cr * __cr + __ci * __ci);
__cr = __br + __cr * __fact;
__ci = __bi - __ci * __fact;
if (std::abs(__cr) + std::abs(__ci) < __fp_min)
__cr = __fp_min;
__den = __dr * __dr + __di * __di;
__dr /= __den;
__di /= -__den;
__dlr = __cr * __dr - __ci * __di;
__dli = __cr * __di + __ci * __dr;
__temp = __p * __dlr - __q * __dli;
__q = __p * __dli + __q * __dlr;
__p = __temp;
if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Lentz's method failed "
"in __bessel_jn."));
const _Tp __gam = (__p - __f) / __q;
__Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
#if _GLIBCXX_USE_C99_MATH_TR1
__Jmu = std::tr1::copysign(__Jmu, __Jnul);
#else
if (__Jmu * __Jnul < _Tp(0))
__Jmu = -__Jmu;
#endif
__Nmu = __gam * __Jmu;
__Npmu = (__p + __q / __gam) * __Nmu;
__Nnu1 = __mu * __xi * __Nmu - __Npmu;
}
__fact = __Jmu / __Jnul;
__Jnu = __fact * __Jnul1;
__Jpnu = __fact * __Jpnu1;
for (__i = 1; __i <= __nl; ++__i)
{
const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
__Nmu = __Nnu1;
__Nnu1 = __Nnutemp;
}
__Nnu = __Nmu;
__Npnu = __nu * __xi * __Nmu - __Nnu1;
return;
}
/**
* @brief This routine computes the asymptotic cylindrical Bessel
* and Neumann functions of order nu: \f$ J_{\nu} \f$,
* \f$ N_{\nu} \f$.
*
* References:
* (1) Handbook of Mathematical Functions,
* ed. Milton Abramowitz and Irene A. Stegun,
* Dover Publications,
* Section 9 p. 364, Equations 9.2.5-9.2.10
*
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Jnu The output Bessel function of the first kind.
* @param __Nnu The output Neumann function (Bessel function of the second kind).
*/
template <typename _Tp>
void
__cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
{
const _Tp __mu = _Tp(4) * __nu * __nu;
const _Tp __mum1 = __mu - _Tp(1);
const _Tp __mum9 = __mu - _Tp(9);
const _Tp __mum25 = __mu - _Tp(25);
const _Tp __mum49 = __mu - _Tp(49);
const _Tp __xx = _Tp(64) * __x * __x;
const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
* (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
const _Tp __Q = __mum1 / (_Tp(8) * __x)
* (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
const _Tp __chi = __x - (__nu + _Tp(0.5L))
* __numeric_constants<_Tp>::__pi_2();
const _Tp __c = std::cos(__chi);
const _Tp __s = std::sin(__chi);
const _Tp __coef = std::sqrt(_Tp(2)
/ (__numeric_constants<_Tp>::__pi() * __x));
__Jnu = __coef * (__c * __P - __s * __Q);
__Nnu = __coef * (__s * __P + __c * __Q);
return;
}
/**
* @brief This routine returns the cylindrical Bessel functions
* of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
* by series expansion.
*
* The modified cylindrical Bessel function is:
* @f[
* Z_{\nu}(x) = \sum_{k=0}^{\infty}
* \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
* where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for
* \f$ Z = I \f$ or \f$ J \f$ respectively.
*
* See Abramowitz & Stegun, 9.1.10
* Abramowitz & Stegun, 9.6.7
* (1) Handbook of Mathematical Functions,
* ed. Milton Abramowitz and Irene A. Stegun,
* Dover Publications,
* Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
*
* @param __nu The order of the Bessel function.
* @param __x The argument of the Bessel function.
* @param __sgn The sign of the alternate terms
* -1 for the Bessel function of the first kind.
* +1 for the modified Bessel function of the first kind.
* @return The output Bessel function.
*/
template <typename _Tp>
_Tp
__cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
unsigned int __max_iter)
{
if (__x == _Tp(0))
return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
const _Tp __x2 = __x / _Tp(2);
_Tp __fact = __nu * std::log(__x2);
#if _GLIBCXX_USE_C99_MATH_TR1
__fact -= std::tr1::lgamma(__nu + _Tp(1));
#else
__fact -= __log_gamma(__nu + _Tp(1));
#endif
__fact = std::exp(__fact);
const _Tp __xx4 = __sgn * __x2 * __x2;
_Tp __Jn = _Tp(1);
_Tp __term = _Tp(1);
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
__Jn += __term;
if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
break;
}
return __fact * __Jn;
}
/**
* @brief Return the Bessel function of order \f$ \nu \f$:
* \f$ J_{\nu}(x) \f$.
*
* The cylindrical Bessel function is:
* @f[
* J_{\nu}(x) = \sum_{k=0}^{\infty}
* \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
*
* @param __nu The order of the Bessel function.
* @param __x The argument of the Bessel function.
* @return The output Bessel function.
*/
template<typename _Tp>
_Tp
__cyl_bessel_j(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_bessel_j."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
else if (__x > _Tp(1000))
{
_Tp __J_nu, __N_nu;
__cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
return __J_nu;
}
else
{
_Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
__bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
return __J_nu;
}
}
/**
* @brief Return the Neumann function of order \f$ \nu \f$:
* \f$ N_{\nu}(x) \f$.
*
* The Neumann function is defined by:
* @f[
* N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
* {\sin \nu\pi}
* @f]
* where for integral \f$ \nu = n \f$ a limit is taken:
* \f$ lim_{\nu \to n} \f$.
*
* @param __nu The order of the Neumann function.
* @param __x The argument of the Neumann function.
* @return The output Neumann function.
*/
template<typename _Tp>
_Tp
__cyl_neumann_n(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_neumann_n."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x > _Tp(1000))
{
_Tp __J_nu, __N_nu;
__cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
return __N_nu;
}
else
{
_Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
__bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
return __N_nu;
}
}
/**
* @brief Compute the spherical Bessel @f$ j_n(x) @f$
* and Neumann @f$ n_n(x) @f$ functions and their first
* derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
* respectively.
*
* @param __n The order of the spherical Bessel function.
* @param __x The argument of the spherical Bessel function.
* @param __j_n The output spherical Bessel function.
* @param __n_n The output spherical Neumann function.
* @param __jp_n The output derivative of the spherical Bessel function.
* @param __np_n The output derivative of the spherical Neumann function.
*/
template <typename _Tp>
void
__sph_bessel_jn(unsigned int __n, _Tp __x,
_Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
{
const _Tp __nu = _Tp(__n) + _Tp(0.5L);
_Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
__bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
/ std::sqrt(__x);
__j_n = __factor * __J_nu;
__n_n = __factor * __N_nu;
__jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
__np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
return;
}
/**
* @brief Return the spherical Bessel function
* @f$ j_n(x) @f$ of order n.
*
* The spherical Bessel function is defined by:
* @f[
* j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
* @f]
*
* @param __n The order of the spherical Bessel function.
* @param __x The argument of the spherical Bessel function.
* @return The output spherical Bessel function.
*/
template <typename _Tp>
_Tp
__sph_bessel(unsigned int __n, _Tp __x)
{
if (__x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __sph_bessel."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x == _Tp(0))
{
if (__n == 0)
return _Tp(1);
else
return _Tp(0);
}
else
{
_Tp __j_n, __n_n, __jp_n, __np_n;
__sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
return __j_n;
}
}
/**
* @brief Return the spherical Neumann function
* @f$ n_n(x) @f$.
*
* The spherical Neumann function is defined by:
* @f[
* n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
* @f]
*
* @param __n The order of the spherical Neumann function.
* @param __x The argument of the spherical Neumann function.
* @return The output spherical Neumann function.
*/
template <typename _Tp>
_Tp
__sph_neumann(unsigned int __n, _Tp __x)
{
if (__x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __sph_neumann."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x == _Tp(0))
return -std::numeric_limits<_Tp>::infinity();
else
{
_Tp __j_n, __n_n, __jp_n, __np_n;
__sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
return __n_n;
}
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC

View File

@@ -0,0 +1,197 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/beta_function.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 6, pp. 253-266
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 213-216
// (4) Gamma, Exploring Euler's Constant, Julian Havil,
// Princeton, 2003.
#ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC
#define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Return the beta function: \f$B(x,y)\f$.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
_Tp
__beta_gamma(_Tp __x, _Tp __y)
{
_Tp __bet;
#if _GLIBCXX_USE_C99_MATH_TR1
if (__x > __y)
{
__bet = std::tr1::tgamma(__x)
/ std::tr1::tgamma(__x + __y);
__bet *= std::tr1::tgamma(__y);
}
else
{
__bet = std::tr1::tgamma(__y)
/ std::tr1::tgamma(__x + __y);
__bet *= std::tr1::tgamma(__x);
}
#else
if (__x > __y)
{
__bet = __gamma(__x) / __gamma(__x + __y);
__bet *= __gamma(__y);
}
else
{
__bet = __gamma(__y) / __gamma(__x + __y);
__bet *= __gamma(__x);
}
#endif
return __bet;
}
/**
* @brief Return the beta function \f$B(x,y)\f$ using
* the log gamma functions.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
_Tp
__beta_lgamma(_Tp __x, _Tp __y)
{
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __bet = std::tr1::lgamma(__x)
+ std::tr1::lgamma(__y)
- std::tr1::lgamma(__x + __y);
#else
_Tp __bet = __log_gamma(__x)
+ __log_gamma(__y)
- __log_gamma(__x + __y);
#endif
__bet = std::exp(__bet);
return __bet;
}
/**
* @brief Return the beta function \f$B(x,y)\f$ using
* the product form.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
_Tp
__beta_product(_Tp __x, _Tp __y)
{
_Tp __bet = (__x + __y) / (__x * __y);
unsigned int __max_iter = 1000000;
for (unsigned int __k = 1; __k < __max_iter; ++__k)
{
_Tp __term = (_Tp(1) + (__x + __y) / __k)
/ ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
__bet *= __term;
}
return __bet;
}
/**
* @brief Return the beta function \f$ B(x,y) \f$.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
inline _Tp
__beta(_Tp __x, _Tp __y)
{
if (__isnan(__x) || __isnan(__y))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __beta_lgamma(__x, __y);
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // __GLIBCXX_TR1_BETA_FUNCTION_TCC

View File

@@ -0,0 +1,34 @@
// TR1 ccomplex -*- C++ -*-
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/ccomplex
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CCOMPLEX
#define _GLIBCXX_TR1_CCOMPLEX 1
#include <tr1/complex>
#endif // _GLIBCXX_TR1_CCOMPLEX

View File

@@ -0,0 +1,49 @@
// TR1 cctype -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cctype
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CCTYPE
#define _GLIBCXX_TR1_CCTYPE 1
#include <bits/c++config.h>
#include <cctype>
#ifdef _GLIBCXX_USE_C99_CTYPE_TR1
#undef isblank
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
using ::isblank;
}
}
#endif
#endif // _GLIBCXX_TR1_CCTYPE

View File

@@ -0,0 +1,81 @@
// TR1 cfenv -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cfenv
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CFENV
#define _GLIBCXX_TR1_CFENV 1
#pragma GCC system_header
#include <bits/c++config.h>
#if _GLIBCXX_HAVE_FENV_H
# include <fenv.h>
#endif
#ifdef _GLIBCXX_USE_C99_FENV_TR1
#undef feclearexcept
#undef fegetexceptflag
#undef feraiseexcept
#undef fesetexceptflag
#undef fetestexcept
#undef fegetround
#undef fesetround
#undef fegetenv
#undef feholdexcept
#undef fesetenv
#undef feupdateenv
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// types
using ::fenv_t;
using ::fexcept_t;
// functions
using ::feclearexcept;
using ::fegetexceptflag;
using ::feraiseexcept;
using ::fesetexceptflag;
using ::fetestexcept;
using ::fegetround;
using ::fesetround;
using ::fegetenv;
using ::feholdexcept;
using ::fesetenv;
using ::feupdateenv;
}
}
#endif // _GLIBCXX_USE_C99_FENV_TR1
#endif // _GLIBCXX_TR1_CFENV

View File

@@ -0,0 +1,42 @@
// TR1 cfloat -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cfloat
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CFLOAT
#define _GLIBCXX_TR1_CFLOAT 1
#include <cfloat>
#ifndef DECIMAL_DIG
#define DECIMAL_DIG __DECIMAL_DIG__
#endif
#ifndef FLT_EVAL_METHOD
#define FLT_EVAL_METHOD __FLT_EVAL_METHOD__
#endif
#endif //_GLIBCXX_TR1_CFLOAT

View File

@@ -0,0 +1,84 @@
// TR1 cinttypes -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cinttypes
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CINTTYPES
#define _GLIBCXX_TR1_CINTTYPES 1
#pragma GCC system_header
#include <tr1/cstdint>
// For 8.11.1/1 (see C99, Note 184)
#if _GLIBCXX_HAVE_INTTYPES_H
# ifndef __STDC_FORMAT_MACROS
# define _UNDEF__STDC_FORMAT_MACROS
# define __STDC_FORMAT_MACROS
# endif
# include <inttypes.h>
# ifdef _UNDEF__STDC_FORMAT_MACROS
# undef __STDC_FORMAT_MACROS
# undef _UNDEF__STDC_FORMAT_MACROS
# endif
#endif
#ifdef _GLIBCXX_USE_C99_INTTYPES_TR1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// types
using ::imaxdiv_t;
// functions
using ::imaxabs;
// May collide with _Longlong abs(_Longlong), and is not described
// anywhere outside the synopsis. Likely, a defect.
//
// intmax_t abs(intmax_t)
using ::imaxdiv;
// Likewise, with lldiv_t div(_Longlong, _Longlong).
//
// imaxdiv_t div(intmax_t, intmax_t)
using ::strtoimax;
using ::strtoumax;
#if defined(_GLIBCXX_USE_WCHAR_T) && _GLIBCXX_USE_C99_INTTYPES_WCHAR_T_TR1
using ::wcstoimax;
using ::wcstoumax;
#endif
}
}
#endif // _GLIBCXX_USE_C99_INTTYPES_TR1
#endif // _GLIBCXX_TR1_CINTTYPES

View File

@@ -0,0 +1,46 @@
// TR1 climits -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/climits
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CLIMITS
#define _GLIBCXX_TR1_CLIMITS 1
#include <climits>
#ifndef LLONG_MIN
#define LLONG_MIN (-__LONG_LONG_MAX__ - 1)
#endif
#ifndef LLONG_MAX
#define LLONG_MAX __LONG_LONG_MAX__
#endif
#ifndef ULLONG_MAX
#define ULLONG_MAX (__LONG_LONG_MAX__ * 2ULL + 1)
#endif
#endif // _GLIBCXX_TR1_CLIMITS

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,418 @@
// TR1 complex -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/complex
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_COMPLEX
#define _GLIBCXX_TR1_COMPLEX 1
#pragma GCC system_header
#include <complex>
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @addtogroup complex_numbers
* @{
*/
#if __cplusplus >= 201103L
using std::acos;
using std::asin;
using std::atan;
#else
template<typename _Tp> std::complex<_Tp> acos(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> asin(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> atan(const std::complex<_Tp>&);
#endif
template<typename _Tp> std::complex<_Tp> acosh(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> asinh(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> atanh(const std::complex<_Tp>&);
// The std::fabs return type in C++0x mode is different (just _Tp).
template<typename _Tp> std::complex<_Tp> fabs(const std::complex<_Tp>&);
#if __cplusplus < 201103L
template<typename _Tp>
inline std::complex<_Tp>
__complex_acos(const std::complex<_Tp>& __z)
{
const std::complex<_Tp> __t = std::tr1::asin(__z);
const _Tp __pi_2 = 1.5707963267948966192313216916397514L;
return std::complex<_Tp>(__pi_2 - __t.real(), -__t.imag());
}
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_acos(__complex__ float __z)
{ return __builtin_cacosf(__z); }
inline __complex__ double
__complex_acos(__complex__ double __z)
{ return __builtin_cacos(__z); }
inline __complex__ long double
__complex_acos(const __complex__ long double& __z)
{ return __builtin_cacosl(__z); }
template<typename _Tp>
inline std::complex<_Tp>
acos(const std::complex<_Tp>& __z)
{ return __complex_acos(__z.__rep()); }
#else
/// acos(__z) [8.1.2].
// Effects: Behaves the same as C99 function cacos, defined
// in subclause 7.3.5.1.
template<typename _Tp>
inline std::complex<_Tp>
acos(const std::complex<_Tp>& __z)
{ return __complex_acos(__z); }
#endif
template<typename _Tp>
inline std::complex<_Tp>
__complex_asin(const std::complex<_Tp>& __z)
{
std::complex<_Tp> __t(-__z.imag(), __z.real());
__t = std::tr1::asinh(__t);
return std::complex<_Tp>(__t.imag(), -__t.real());
}
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_asin(__complex__ float __z)
{ return __builtin_casinf(__z); }
inline __complex__ double
__complex_asin(__complex__ double __z)
{ return __builtin_casin(__z); }
inline __complex__ long double
__complex_asin(const __complex__ long double& __z)
{ return __builtin_casinl(__z); }
template<typename _Tp>
inline std::complex<_Tp>
asin(const std::complex<_Tp>& __z)
{ return __complex_asin(__z.__rep()); }
#else
/// asin(__z) [8.1.3].
// Effects: Behaves the same as C99 function casin, defined
// in subclause 7.3.5.2.
template<typename _Tp>
inline std::complex<_Tp>
asin(const std::complex<_Tp>& __z)
{ return __complex_asin(__z); }
#endif
template<typename _Tp>
std::complex<_Tp>
__complex_atan(const std::complex<_Tp>& __z)
{
const _Tp __r2 = __z.real() * __z.real();
const _Tp __x = _Tp(1.0) - __r2 - __z.imag() * __z.imag();
_Tp __num = __z.imag() + _Tp(1.0);
_Tp __den = __z.imag() - _Tp(1.0);
__num = __r2 + __num * __num;
__den = __r2 + __den * __den;
return std::complex<_Tp>(_Tp(0.5) * atan2(_Tp(2.0) * __z.real(), __x),
_Tp(0.25) * log(__num / __den));
}
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_atan(__complex__ float __z)
{ return __builtin_catanf(__z); }
inline __complex__ double
__complex_atan(__complex__ double __z)
{ return __builtin_catan(__z); }
inline __complex__ long double
__complex_atan(const __complex__ long double& __z)
{ return __builtin_catanl(__z); }
template<typename _Tp>
inline std::complex<_Tp>
atan(const std::complex<_Tp>& __z)
{ return __complex_atan(__z.__rep()); }
#else
/// atan(__z) [8.1.4].
// Effects: Behaves the same as C99 function catan, defined
// in subclause 7.3.5.3.
template<typename _Tp>
inline std::complex<_Tp>
atan(const std::complex<_Tp>& __z)
{ return __complex_atan(__z); }
#endif
#endif // C++11
template<typename _Tp>
std::complex<_Tp>
__complex_acosh(const std::complex<_Tp>& __z)
{
// Kahan's formula.
return _Tp(2.0) * std::log(std::sqrt(_Tp(0.5) * (__z + _Tp(1.0)))
+ std::sqrt(_Tp(0.5) * (__z - _Tp(1.0))));
}
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_acosh(__complex__ float __z)
{ return __builtin_cacoshf(__z); }
inline __complex__ double
__complex_acosh(__complex__ double __z)
{ return __builtin_cacosh(__z); }
inline __complex__ long double
__complex_acosh(const __complex__ long double& __z)
{ return __builtin_cacoshl(__z); }
template<typename _Tp>
inline std::complex<_Tp>
acosh(const std::complex<_Tp>& __z)
{ return __complex_acosh(__z.__rep()); }
#else
/// acosh(__z) [8.1.5].
// Effects: Behaves the same as C99 function cacosh, defined
// in subclause 7.3.6.1.
template<typename _Tp>
inline std::complex<_Tp>
acosh(const std::complex<_Tp>& __z)
{ return __complex_acosh(__z); }
#endif
template<typename _Tp>
std::complex<_Tp>
__complex_asinh(const std::complex<_Tp>& __z)
{
std::complex<_Tp> __t((__z.real() - __z.imag())
* (__z.real() + __z.imag()) + _Tp(1.0),
_Tp(2.0) * __z.real() * __z.imag());
__t = std::sqrt(__t);
return std::log(__t + __z);
}
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_asinh(__complex__ float __z)
{ return __builtin_casinhf(__z); }
inline __complex__ double
__complex_asinh(__complex__ double __z)
{ return __builtin_casinh(__z); }
inline __complex__ long double
__complex_asinh(const __complex__ long double& __z)
{ return __builtin_casinhl(__z); }
template<typename _Tp>
inline std::complex<_Tp>
asinh(const std::complex<_Tp>& __z)
{ return __complex_asinh(__z.__rep()); }
#else
/// asinh(__z) [8.1.6].
// Effects: Behaves the same as C99 function casin, defined
// in subclause 7.3.6.2.
template<typename _Tp>
inline std::complex<_Tp>
asinh(const std::complex<_Tp>& __z)
{ return __complex_asinh(__z); }
#endif
template<typename _Tp>
std::complex<_Tp>
__complex_atanh(const std::complex<_Tp>& __z)
{
const _Tp __i2 = __z.imag() * __z.imag();
const _Tp __x = _Tp(1.0) - __i2 - __z.real() * __z.real();
_Tp __num = _Tp(1.0) + __z.real();
_Tp __den = _Tp(1.0) - __z.real();
__num = __i2 + __num * __num;
__den = __i2 + __den * __den;
return std::complex<_Tp>(_Tp(0.25) * (log(__num) - log(__den)),
_Tp(0.5) * atan2(_Tp(2.0) * __z.imag(), __x));
}
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_atanh(__complex__ float __z)
{ return __builtin_catanhf(__z); }
inline __complex__ double
__complex_atanh(__complex__ double __z)
{ return __builtin_catanh(__z); }
inline __complex__ long double
__complex_atanh(const __complex__ long double& __z)
{ return __builtin_catanhl(__z); }
template<typename _Tp>
inline std::complex<_Tp>
atanh(const std::complex<_Tp>& __z)
{ return __complex_atanh(__z.__rep()); }
#else
/// atanh(__z) [8.1.7].
// Effects: Behaves the same as C99 function catanh, defined
// in subclause 7.3.6.3.
template<typename _Tp>
inline std::complex<_Tp>
atanh(const std::complex<_Tp>& __z)
{ return __complex_atanh(__z); }
#endif
template<typename _Tp>
inline std::complex<_Tp>
/// fabs(__z) [8.1.8].
// Effects: Behaves the same as C99 function cabs, defined
// in subclause 7.3.8.1.
fabs(const std::complex<_Tp>& __z)
{ return std::abs(__z); }
/// Additional overloads [8.1.9].
#if __cplusplus < 201103L
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
arg(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
#if (_GLIBCXX_USE_C99_MATH && !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC)
return std::signbit(__x) ? __type(3.1415926535897932384626433832795029L)
: __type();
#else
return std::arg(std::complex<__type>(__x));
#endif
}
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
imag(_Tp)
{ return _Tp(); }
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
norm(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __type(__x) * __type(__x);
}
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
real(_Tp __x)
{ return __x; }
#endif
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
pow(const std::complex<_Tp>& __x, const _Up& __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(std::complex<__type>(__x), __type(__y));
}
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
pow(const _Tp& __x, const std::complex<_Up>& __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(__type(__x), std::complex<__type>(__y));
}
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(std::complex<__type>(__x),
std::complex<__type>(__y));
}
using std::arg;
template<typename _Tp>
inline std::complex<_Tp>
conj(const std::complex<_Tp>& __z)
{ return std::conj(__z); }
template<typename _Tp>
inline std::complex<typename __gnu_cxx::__promote<_Tp>::__type>
conj(_Tp __x)
{ return __x; }
using std::imag;
using std::norm;
using std::polar;
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
polar(const _Tp& __rho, const _Up& __theta)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::polar(__type(__rho), __type(__theta));
}
using std::real;
template<typename _Tp>
inline std::complex<_Tp>
pow(const std::complex<_Tp>& __x, const _Tp& __y)
{ return std::pow(__x, __y); }
template<typename _Tp>
inline std::complex<_Tp>
pow(const _Tp& __x, const std::complex<_Tp>& __y)
{ return std::pow(__x, __y); }
template<typename _Tp>
inline std::complex<_Tp>
pow(const std::complex<_Tp>& __x, const std::complex<_Tp>& __y)
{ return std::pow(__x, __y); }
// @} group complex_numbers
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_COMPLEX

View File

@@ -0,0 +1,34 @@
// TR1 complex.h -*- C++ -*-
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/complex.h
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_COMPLEX_H
#define _GLIBCXX_TR1_COMPLEX_H 1
#include <tr1/ccomplex>
#endif // _GLIBCXX_TR1_COMPLEX_H

View File

@@ -0,0 +1,34 @@
// TR1 cstdarg -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cstdarg
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CSTDARG
#define _GLIBCXX_TR1_CSTDARG 1
#include <cstdarg>
#endif // _GLIBCXX_TR1_CSTDARG

View File

@@ -0,0 +1,40 @@
// TR1 cstdbool -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cstdbool
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CSTDBOOL
#define _GLIBCXX_TR1_CSTDBOOL 1
#pragma GCC system_header
#include <bits/c++config.h>
#if _GLIBCXX_HAVE_STDBOOL_H
#include <stdbool.h>
#endif
#endif // _GLIBCXX_TR1_CSTDBOOL

View File

@@ -0,0 +1,104 @@
// TR1 cstdint -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cstdint
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CSTDINT
#define _GLIBCXX_TR1_CSTDINT 1
#pragma GCC system_header
#include <bits/c++config.h>
// For 8.22.1/1 (see C99, Notes 219, 220, 222)
# if _GLIBCXX_HAVE_STDINT_H
# ifndef __STDC_LIMIT_MACROS
# define _UNDEF__STDC_LIMIT_MACROS
# define __STDC_LIMIT_MACROS
# endif
# ifndef __STDC_CONSTANT_MACROS
# define _UNDEF__STDC_CONSTANT_MACROS
# define __STDC_CONSTANT_MACROS
# endif
# include <stdint.h>
# ifdef _UNDEF__STDC_LIMIT_MACROS
# undef __STDC_LIMIT_MACROS
# undef _UNDEF__STDC_LIMIT_MACROS
# endif
# ifdef _UNDEF__STDC_CONSTANT_MACROS
# undef __STDC_CONSTANT_MACROS
# undef _UNDEF__STDC_CONSTANT_MACROS
# endif
# endif
#ifdef _GLIBCXX_USE_C99_STDINT_TR1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
using ::int8_t;
using ::int16_t;
using ::int32_t;
using ::int64_t;
using ::int_fast8_t;
using ::int_fast16_t;
using ::int_fast32_t;
using ::int_fast64_t;
using ::int_least8_t;
using ::int_least16_t;
using ::int_least32_t;
using ::int_least64_t;
using ::intmax_t;
using ::intptr_t;
using ::uint8_t;
using ::uint16_t;
using ::uint32_t;
using ::uint64_t;
using ::uint_fast8_t;
using ::uint_fast16_t;
using ::uint_fast32_t;
using ::uint_fast64_t;
using ::uint_least8_t;
using ::uint_least16_t;
using ::uint_least32_t;
using ::uint_least64_t;
using ::uintmax_t;
using ::uintptr_t;
}
}
#endif // _GLIBCXX_USE_C99_STDINT_TR1
#endif // _GLIBCXX_TR1_CSTDINT

View File

@@ -0,0 +1,53 @@
// TR1 cstdio -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cstdio
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CSTDIO
#define _GLIBCXX_TR1_CSTDIO 1
#pragma GCC system_header
#include <cstdio>
#if _GLIBCXX_USE_C99
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
using std::snprintf;
using std::vsnprintf;
using std::vfscanf;
using std::vscanf;
using std::vsscanf;
}
}
#endif
#endif // _GLIBCXX_TR1_CSTDIO

View File

@@ -0,0 +1,72 @@
// TR1 cstdlib -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cstdlib
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CSTDLIB
#define _GLIBCXX_TR1_CSTDLIB 1
#pragma GCC system_header
#include <cstdlib>
#if _GLIBCXX_HOSTED
#if _GLIBCXX_USE_C99
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
#if !_GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
// types
using std::lldiv_t;
// functions
using std::llabs;
using std::lldiv;
#endif
using std::atoll;
using std::strtoll;
using std::strtoull;
using std::strtof;
using std::strtold;
// overloads
using std::abs;
#if !_GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
using std::div;
#endif
}
}
#endif // _GLIBCXX_USE_C99
#endif // _GLIBCXX_HOSTED
#endif // _GLIBCXX_TR1_CSTDLIB

View File

@@ -0,0 +1,34 @@
// TR1 ctgmath -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/ctgmath
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CTGMATH
#define _GLIBCXX_TR1_CTGMATH 1
#include <tr1/cmath>
#endif // _GLIBCXX_TR1_CTGMATH

View File

@@ -0,0 +1,34 @@
// TR1 ctime -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/ctime
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CTIME
#define _GLIBCXX_TR1_CTIME 1
#include <ctime>
#endif // _GLIBCXX_TR1_CTIME

View File

@@ -0,0 +1,34 @@
// TR1 ctype.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/ctype.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_CTYPE_H
#define _TR1_CTYPE_H 1
#include <tr1/cctype>
#endif

View File

@@ -0,0 +1,65 @@
// TR1 cwchar -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cwchar
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CWCHAR
#define _GLIBCXX_TR1_CWCHAR 1
#pragma GCC system_header
#include <cwchar>
#ifdef _GLIBCXX_USE_WCHAR_T
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
#if _GLIBCXX_HAVE_WCSTOF
using std::wcstof;
#endif
#if _GLIBCXX_HAVE_VFWSCANF
using std::vfwscanf;
#endif
#if _GLIBCXX_HAVE_VSWSCANF
using std::vswscanf;
#endif
#if _GLIBCXX_HAVE_VWSCANF
using std::vwscanf;
#endif
#if _GLIBCXX_USE_C99
using std::wcstold;
using std::wcstoll;
using std::wcstoull;
#endif
}
}
#endif // _GLIBCXX_USE_WCHAR_T
#endif // _GLIBCXX_TR1_CWCHAR

View File

@@ -0,0 +1,50 @@
// TR1 cwctype -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cwctype
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CWCTYPE
#define _GLIBCXX_TR1_CWCTYPE 1
#pragma GCC system_header
#include <cwctype>
#ifdef _GLIBCXX_USE_WCHAR_T
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
#if _GLIBCXX_HAVE_ISWBLANK
using std::iswblank;
#endif
}
}
#endif // _GLIBCXX_USE_WCHAR_T
#endif // _GLIBCXX_TR1_CWCTYPE

View File

@@ -0,0 +1,750 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/ell_integral.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
// (1) B. C. Carlson Numer. Math. 33, 1 (1979)
// (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)
// (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press
// (1992), pp. 261-269
#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
* of the first kind.
*
* The Carlson elliptic function of the first kind is defined by:
* @f[
* R_F(x,y,z) = \frac{1}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
* @f]
*
* @param __x The first of three symmetric arguments.
* @param __y The second of three symmetric arguments.
* @param __z The third of three symmetric arguments.
* @return The Carlson elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__ellint_rf(_Tp __x, _Tp __y, _Tp __z)
{
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = _Tp(5) * __min;
const _Tp __uplim = __max / _Tp(5);
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rf."));
else if (__x + __y < __lolim || __x + __z < __lolim
|| __y + __z < __lolim)
std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(1) / _Tp(24);
const _Tp __c2 = _Tp(1) / _Tp(10);
const _Tp __c3 = _Tp(3) / _Tp(44);
const _Tp __c4 = _Tp(1) / _Tp(14);
_Tp __xn = __x;
_Tp __yn = __y;
_Tp __zn = __z;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
_Tp __mu;
_Tp __xndev, __yndev, __zndev;
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + __yn + __zn) / _Tp(3);
__xndev = 2 - (__mu + __xn) / __mu;
__yndev = 2 - (__mu + __yn) / __mu;
__zndev = 2 - (__mu + __zn) / __mu;
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
__epsilon = std::max(__epsilon, std::abs(__zndev));
if (__epsilon < __errtol)
break;
const _Tp __xnroot = std::sqrt(__xn);
const _Tp __ynroot = std::sqrt(__yn);
const _Tp __znroot = std::sqrt(__zn);
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
+ __ynroot * __znroot;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
__zn = __c0 * (__zn + __lambda);
}
const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
const _Tp __e3 = __xndev * __yndev * __zndev;
const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
+ __c4 * __e3;
return __s / std::sqrt(__mu);
}
}
/**
* @brief Return the complete elliptic integral of the first kind
* @f$ K(k) @f$ by series expansion.
*
* The complete elliptic integral of the first kind is defined as
* @f[
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
* {\sqrt{1 - k^2sin^2\theta}}
* @f]
*
* This routine is not bad as long as |k| is somewhat smaller than 1
* but is not is good as the Carlson elliptic integral formulation.
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_1_series(_Tp __k)
{
const _Tp __kk = __k * __k;
_Tp __term = __kk / _Tp(4);
_Tp __sum = _Tp(1) + __term;
const unsigned int __max_iter = 1000;
for (unsigned int __i = 2; __i < __max_iter; ++__i)
{
__term *= (2 * __i - 1) * __kk / (2 * __i);
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term;
}
return __numeric_constants<_Tp>::__pi_2() * __sum;
}
/**
* @brief Return the complete elliptic integral of the first kind
* @f$ K(k) @f$ using the Carlson formulation.
*
* The complete elliptic integral of the first kind is defined as
* @f[
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
* {\sqrt{1 - k^2 sin^2\theta}}
* @f]
* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
* first kind.
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_1(_Tp __k)
{
if (__isnan(__k))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) >= _Tp(1))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
}
/**
* @brief Return the incomplete elliptic integral of the first kind
* @f$ F(k,\phi) @f$ using the Carlson formulation.
*
* The incomplete elliptic integral of the first kind is defined as
* @f[
* F(k,\phi) = \int_0^{\phi}\frac{d\theta}
* {\sqrt{1 - k^2 sin^2\theta}}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __phi The integral limit argument of the elliptic function.
* @return The elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__ellint_1(_Tp __k, _Tp __phi)
{
if (__isnan(__k) || __isnan(__phi))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __ellint_1."));
else
{
// Reduce phi to -pi/2 < phi < +pi/2.
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
+ _Tp(0.5L));
const _Tp __phi_red = __phi
- __n * __numeric_constants<_Tp>::__pi();
const _Tp __s = std::sin(__phi_red);
const _Tp __c = std::cos(__phi_red);
const _Tp __F = __s
* __ellint_rf(__c * __c,
_Tp(1) - __k * __k * __s * __s, _Tp(1));
if (__n == 0)
return __F;
else
return __F + _Tp(2) * __n * __comp_ellint_1(__k);
}
}
/**
* @brief Return the complete elliptic integral of the second kind
* @f$ E(k) @f$ by series expansion.
*
* The complete elliptic integral of the second kind is defined as
* @f[
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
* @f]
*
* This routine is not bad as long as |k| is somewhat smaller than 1
* but is not is good as the Carlson elliptic integral formulation.
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_2_series(_Tp __k)
{
const _Tp __kk = __k * __k;
_Tp __term = __kk;
_Tp __sum = __term;
const unsigned int __max_iter = 1000;
for (unsigned int __i = 2; __i < __max_iter; ++__i)
{
const _Tp __i2m = 2 * __i - 1;
const _Tp __i2 = 2 * __i;
__term *= __i2m * __i2m * __kk / (__i2 * __i2);
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term / __i2m;
}
return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
}
/**
* @brief Return the Carlson elliptic function of the second kind
* @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
* @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
* of the third kind.
*
* The Carlson elliptic function of the second kind is defined by:
* @f[
* R_D(x,y,z) = \frac{3}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
* @f]
*
* Based on Carlson's algorithms:
* - B. C. Carlson Numer. Math. 33, 1 (1979)
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
* by Press, Teukolsky, Vetterling, Flannery (1992)
*
* @param __x The first of two symmetric arguments.
* @param __y The second of two symmetric arguments.
* @param __z The third argument.
* @return The Carlson elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__ellint_rd(_Tp __x, _Tp __y, _Tp __z)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
if (__x < _Tp(0) || __y < _Tp(0))
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rd."));
else if (__x + __y < __lolim || __z < __lolim)
std::__throw_domain_error(__N("Argument too small "
"in __ellint_rd."));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(3) / _Tp(14);
const _Tp __c2 = _Tp(1) / _Tp(6);
const _Tp __c3 = _Tp(9) / _Tp(22);
const _Tp __c4 = _Tp(3) / _Tp(26);
_Tp __xn = __x;
_Tp __yn = __y;
_Tp __zn = __z;
_Tp __sigma = _Tp(0);
_Tp __power4 = _Tp(1);
_Tp __mu;
_Tp __xndev, __yndev, __zndev;
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
__xndev = (__mu - __xn) / __mu;
__yndev = (__mu - __yn) / __mu;
__zndev = (__mu - __zn) / __mu;
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
__epsilon = std::max(__epsilon, std::abs(__zndev));
if (__epsilon < __errtol)
break;
_Tp __xnroot = std::sqrt(__xn);
_Tp __ynroot = std::sqrt(__yn);
_Tp __znroot = std::sqrt(__zn);
_Tp __lambda = __xnroot * (__ynroot + __znroot)
+ __ynroot * __znroot;
__sigma += __power4 / (__znroot * (__zn + __lambda));
__power4 *= __c0;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
__zn = __c0 * (__zn + __lambda);
}
// Note: __ea is an SPU badname.
_Tp __eaa = __xndev * __yndev;
_Tp __eb = __zndev * __zndev;
_Tp __ec = __eaa - __eb;
_Tp __ed = __eaa - _Tp(6) * __eb;
_Tp __ef = __ed + __ec + __ec;
_Tp __s1 = __ed * (-__c1 + __c3 * __ed
/ _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
/ _Tp(2));
_Tp __s2 = __zndev
* (__c2 * __ef
+ __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
/ (__mu * std::sqrt(__mu));
}
}
/**
* @brief Return the complete elliptic integral of the second kind
* @f$ E(k) @f$ using the Carlson formulation.
*
* The complete elliptic integral of the second kind is defined as
* @f[
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
* @f]
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_2(_Tp __k)
{
if (__isnan(__k))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) == 1)
return _Tp(1);
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
else
{
const _Tp __kk = __k * __k;
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
- __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
}
}
/**
* @brief Return the incomplete elliptic integral of the second kind
* @f$ E(k,\phi) @f$ using the Carlson formulation.
*
* The incomplete elliptic integral of the second kind is defined as
* @f[
* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __phi The integral limit argument of the elliptic function.
* @return The elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__ellint_2(_Tp __k, _Tp __phi)
{
if (__isnan(__k) || __isnan(__phi))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __ellint_2."));
else
{
// Reduce phi to -pi/2 < phi < +pi/2.
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
+ _Tp(0.5L));
const _Tp __phi_red = __phi
- __n * __numeric_constants<_Tp>::__pi();
const _Tp __kk = __k * __k;
const _Tp __s = std::sin(__phi_red);
const _Tp __ss = __s * __s;
const _Tp __sss = __ss * __s;
const _Tp __c = std::cos(__phi_red);
const _Tp __cc = __c * __c;
const _Tp __E = __s
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
- __kk * __sss
* __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
/ _Tp(3);
if (__n == 0)
return __E;
else
return __E + _Tp(2) * __n * __comp_ellint_2(__k);
}
}
/**
* @brief Return the Carlson elliptic function
* @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
* is the Carlson elliptic function of the first kind.
*
* The Carlson elliptic function is defined by:
* @f[
* R_C(x,y) = \frac{1}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)}
* @f]
*
* Based on Carlson's algorithms:
* - B. C. Carlson Numer. Math. 33, 1 (1979)
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
* by Press, Teukolsky, Vetterling, Flannery (1992)
*
* @param __x The first argument.
* @param __y The second argument.
* @return The Carlson elliptic function.
*/
template<typename _Tp>
_Tp
__ellint_rc(_Tp __x, _Tp __y)
{
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = _Tp(5) * __min;
const _Tp __uplim = __max / _Tp(5);
if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rc."));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(1) / _Tp(7);
const _Tp __c2 = _Tp(9) / _Tp(22);
const _Tp __c3 = _Tp(3) / _Tp(10);
const _Tp __c4 = _Tp(3) / _Tp(8);
_Tp __xn = __x;
_Tp __yn = __y;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
_Tp __mu;
_Tp __sn;
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + _Tp(2) * __yn) / _Tp(3);
__sn = (__yn + __mu) / __mu - _Tp(2);
if (std::abs(__sn) < __errtol)
break;
const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
+ __yn;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
}
_Tp __s = __sn * __sn
* (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
return (_Tp(1) + __s) / std::sqrt(__mu);
}
}
/**
* @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
* of the third kind.
*
* The Carlson elliptic function of the third kind is defined by:
* @f[
* R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
* @f]
*
* Based on Carlson's algorithms:
* - B. C. Carlson Numer. Math. 33, 1 (1979)
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
* by Press, Teukolsky, Vetterling, Flannery (1992)
*
* @param __x The first of three symmetric arguments.
* @param __y The second of three symmetric arguments.
* @param __z The third of three symmetric arguments.
* @param __p The fourth argument.
* @return The Carlson elliptic function of the fourth kind.
*/
template<typename _Tp>
_Tp
__ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p)
{
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
const _Tp __uplim = _Tp(0.3L)
* std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rj."));
else if (__x + __y < __lolim || __x + __z < __lolim
|| __y + __z < __lolim || __p < __lolim)
std::__throw_domain_error(__N("Argument too small "
"in __ellint_rj"));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(3) / _Tp(14);
const _Tp __c2 = _Tp(1) / _Tp(3);
const _Tp __c3 = _Tp(3) / _Tp(22);
const _Tp __c4 = _Tp(3) / _Tp(26);
_Tp __xn = __x;
_Tp __yn = __y;
_Tp __zn = __z;
_Tp __pn = __p;
_Tp __sigma = _Tp(0);
_Tp __power4 = _Tp(1);
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
_Tp __lambda, __mu;
_Tp __xndev, __yndev, __zndev, __pndev;
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
__xndev = (__mu - __xn) / __mu;
__yndev = (__mu - __yn) / __mu;
__zndev = (__mu - __zn) / __mu;
__pndev = (__mu - __pn) / __mu;
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
__epsilon = std::max(__epsilon, std::abs(__zndev));
__epsilon = std::max(__epsilon, std::abs(__pndev));
if (__epsilon < __errtol)
break;
const _Tp __xnroot = std::sqrt(__xn);
const _Tp __ynroot = std::sqrt(__yn);
const _Tp __znroot = std::sqrt(__zn);
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
+ __ynroot * __znroot;
const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
+ __xnroot * __ynroot * __znroot;
const _Tp __alpha2 = __alpha1 * __alpha1;
const _Tp __beta = __pn * (__pn + __lambda)
* (__pn + __lambda);
__sigma += __power4 * __ellint_rc(__alpha2, __beta);
__power4 *= __c0;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
__zn = __c0 * (__zn + __lambda);
__pn = __c0 * (__pn + __lambda);
}
// Note: __ea is an SPU badname.
_Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
_Tp __eb = __xndev * __yndev * __zndev;
_Tp __ec = __pndev * __pndev;
_Tp __e2 = __eaa - _Tp(3) * __ec;
_Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
_Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
- _Tp(3) * __c4 * __e3 / _Tp(2));
_Tp __s2 = __eb * (__c2 / _Tp(2)
+ __pndev * (-__c3 - __c3 + __pndev * __c4));
_Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
- __c2 * __pndev * __ec;
return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
/ (__mu * std::sqrt(__mu));
}
}
/**
* @brief Return the complete elliptic integral of the third kind
* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
* Carlson formulation.
*
* The complete elliptic integral of the third kind is defined as
* @f[
* \Pi(k,\nu) = \int_0^{\pi/2}
* \frac{d\theta}
* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __nu The second argument of the elliptic function.
* @return The complete elliptic function of the third kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_3(_Tp __k, _Tp __nu)
{
if (__isnan(__k) || __isnan(__nu))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__nu == _Tp(1))
return std::numeric_limits<_Tp>::infinity();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
else
{
const _Tp __kk = __k * __k;
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
- __nu
* __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
/ _Tp(3);
}
}
/**
* @brief Return the incomplete elliptic integral of the third kind
* @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
*
* The incomplete elliptic integral of the third kind is defined as
* @f[
* \Pi(k,\nu,\phi) = \int_0^{\phi}
* \frac{d\theta}
* {(1 - \nu \sin^2\theta)
* \sqrt{1 - k^2 \sin^2\theta}}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __nu The second argument of the elliptic function.
* @param __phi The integral limit argument of the elliptic function.
* @return The elliptic function of the third kind.
*/
template<typename _Tp>
_Tp
__ellint_3(_Tp __k, _Tp __nu, _Tp __phi)
{
if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __ellint_3."));
else
{
// Reduce phi to -pi/2 < phi < +pi/2.
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
+ _Tp(0.5L));
const _Tp __phi_red = __phi
- __n * __numeric_constants<_Tp>::__pi();
const _Tp __kk = __k * __k;
const _Tp __s = std::sin(__phi_red);
const _Tp __ss = __s * __s;
const _Tp __sss = __ss * __s;
const _Tp __c = std::cos(__phi_red);
const _Tp __cc = __c * __c;
const _Tp __Pi = __s
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
- __nu * __sss
* __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
_Tp(1) + __nu * __ss) / _Tp(3);
if (__n == 0)
return __Pi;
else
return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
}
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC

View File

@@ -0,0 +1,526 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/exp_integral.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
//
// (1) Handbook of Mathematical Functions,
// Ed. by Milton Abramowitz and Irene A. Stegun,
// Dover Publications, New-York, Section 5, pp. 228-251.
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 222-225.
//
#ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
#define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1
#include "special_function_util.h"
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename _Tp> _Tp __expint_E1(_Tp);
/**
* @brief Return the exponential integral @f$ E_1(x) @f$
* by series summation. This should be good
* for @f$ x < 1 @f$.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1_series(_Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
_Tp __term = _Tp(1);
_Tp __esum = _Tp(0);
_Tp __osum = _Tp(0);
const unsigned int __max_iter = 100;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= - __x / __i;
if (std::abs(__term) < __eps)
break;
if (__term >= _Tp(0))
__esum += __term / __i;
else
__osum += __term / __i;
}
return - __esum - __osum
- __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
}
/**
* @brief Return the exponential integral @f$ E_1(x) @f$
* by asymptotic expansion.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1_asymp(_Tp __x)
{
_Tp __term = _Tp(1);
_Tp __esum = _Tp(1);
_Tp __osum = _Tp(0);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
_Tp __prev = __term;
__term *= - __i / __x;
if (std::abs(__term) > std::abs(__prev))
break;
if (__term >= _Tp(0))
__esum += __term;
else
__osum += __term;
}
return std::exp(- __x) * (__esum + __osum) / __x;
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by series summation.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_series(unsigned int __n, _Tp __x)
{
const unsigned int __max_iter = 100;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const int __nm1 = __n - 1;
_Tp __ans = (__nm1 != 0
? _Tp(1) / __nm1 : -std::log(__x)
- __numeric_constants<_Tp>::__gamma_e());
_Tp __fact = _Tp(1);
for (int __i = 1; __i <= __max_iter; ++__i)
{
__fact *= -__x / _Tp(__i);
_Tp __del;
if ( __i != __nm1 )
__del = -__fact / _Tp(__i - __nm1);
else
{
_Tp __psi = -__numeric_constants<_Tp>::gamma_e();
for (int __ii = 1; __ii <= __nm1; ++__ii)
__psi += _Tp(1) / _Tp(__ii);
__del = __fact * (__psi - std::log(__x));
}
__ans += __del;
if (std::abs(__del) < __eps * std::abs(__ans))
return __ans;
}
std::__throw_runtime_error(__N("Series summation failed "
"in __expint_En_series."));
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by continued fractions.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_cont_frac(unsigned int __n, _Tp __x)
{
const unsigned int __max_iter = 100;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __fp_min = std::numeric_limits<_Tp>::min();
const int __nm1 = __n - 1;
_Tp __b = __x + _Tp(__n);
_Tp __c = _Tp(1) / __fp_min;
_Tp __d = _Tp(1) / __b;
_Tp __h = __d;
for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
{
_Tp __a = -_Tp(__i * (__nm1 + __i));
__b += _Tp(2);
__d = _Tp(1) / (__a * __d + __b);
__c = __b + __a / __c;
const _Tp __del = __c * __d;
__h *= __del;
if (std::abs(__del - _Tp(1)) < __eps)
{
const _Tp __ans = __h * std::exp(-__x);
return __ans;
}
}
std::__throw_runtime_error(__N("Continued fraction failed "
"in __expint_En_cont_frac."));
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by recursion. Use upward recursion for @f$ x < n @f$
* and downward recursion (Miller's algorithm) otherwise.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_recursion(unsigned int __n, _Tp __x)
{
_Tp __En;
_Tp __E1 = __expint_E1(__x);
if (__x < _Tp(__n))
{
// Forward recursion is stable only for n < x.
__En = __E1;
for (unsigned int __j = 2; __j < __n; ++__j)
__En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
}
else
{
// Backward recursion is stable only for n >= x.
__En = _Tp(1);
const int __N = __n + 20; // TODO: Check this starting number.
_Tp __save = _Tp(0);
for (int __j = __N; __j > 0; --__j)
{
__En = (std::exp(-__x) - __j * __En) / __x;
if (__j == __n)
__save = __En;
}
_Tp __norm = __En / __E1;
__En /= __norm;
}
return __En;
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$
* by series summation.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei_series(_Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(0);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= __x / __i;
__sum += __term / __i;
if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
break;
}
return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$
* by asymptotic expansion.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei_asymp(_Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
_Tp __prev = __term;
__term *= __i / __x;
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
if (__term >= __prev)
break;
__sum += __term;
}
return std::exp(__x) * __sum / __x;
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei(_Tp __x)
{
if (__x < _Tp(0))
return -__expint_E1(-__x);
else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
return __expint_Ei_series(__x);
else
return __expint_Ei_asymp(__x);
}
/**
* @brief Return the exponential integral @f$ E_1(x) @f$.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1(_Tp __x)
{
if (__x < _Tp(0))
return -__expint_Ei(-__x);
else if (__x < _Tp(1))
return __expint_E1_series(__x);
else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.
return __expint_En_cont_frac(1, __x);
else
return __expint_E1_asymp(__x);
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* for large argument.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_asymp(unsigned int __n, _Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
for (unsigned int __i = 1; __i <= __n; ++__i)
{
_Tp __prev = __term;
__term *= -(__n - __i + 1) / __x;
if (std::abs(__term) > std::abs(__prev))
break;
__sum += __term;
}
return std::exp(-__x) * __sum / __x;
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* for large order.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_large_n(unsigned int __n, _Tp __x)
{
const _Tp __xpn = __x + __n;
const _Tp __xpn2 = __xpn * __xpn;
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
for (unsigned int __i = 1; __i <= __n; ++__i)
{
_Tp __prev = __term;
__term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term;
}
return std::exp(-__x) * __sum / __xpn;
}
/**
* @brief Return the exponential integral @f$ E_n(x) @f$.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint(unsigned int __n, _Tp __x)
{
// Return NaN on NaN input.
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__n <= 1 && __x == _Tp(0))
return std::numeric_limits<_Tp>::infinity();
else
{
_Tp __E0 = std::exp(__x) / __x;
if (__n == 0)
return __E0;
_Tp __E1 = __expint_E1(__x);
if (__n == 1)
return __E1;
if (__x == _Tp(0))
return _Tp(1) / static_cast<_Tp>(__n - 1);
_Tp __En = __expint_En_recursion(__n, __x);
return __En;
}
}
/**
* @brief Return the exponential integral @f$ Ei(x) @f$.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
inline _Tp
__expint(_Tp __x)
{
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __expint_Ei(__x);
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC

View File

@@ -0,0 +1,34 @@
// TR1 fenv.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/fenv.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_FENV_H
#define _TR1_FENV_H 1
#include <tr1/cfenv>
#endif

View File

@@ -0,0 +1,34 @@
// TR1 float.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/float.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_FLOAT_H
#define _TR1_FLOAT_H 1
#include <tr1/cfloat>
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,196 @@
// TR1 functional_hash.h header -*- C++ -*-
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/functional_hash.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/functional}
*/
#ifndef _GLIBCXX_TR1_FUNCTIONAL_HASH_H
#define _GLIBCXX_TR1_FUNCTIONAL_HASH_H 1
#pragma GCC system_header
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/// Class template hash.
// Declaration of default hash functor std::tr1::hash. The types for
// which std::tr1::hash<T> is well-defined is in clause 6.3.3. of the PDTR.
template<typename _Tp>
struct hash : public std::unary_function<_Tp, size_t>
{
size_t
operator()(_Tp __val) const;
};
/// Partial specializations for pointer types.
template<typename _Tp>
struct hash<_Tp*> : public std::unary_function<_Tp*, size_t>
{
size_t
operator()(_Tp* __p) const
{ return reinterpret_cast<size_t>(__p); }
};
/// Explicit specializations for integer types.
#define _TR1_hashtable_define_trivial_hash(_Tp) \
template<> \
inline size_t \
hash<_Tp>::operator()(_Tp __val) const \
{ return static_cast<size_t>(__val); }
_TR1_hashtable_define_trivial_hash(bool);
_TR1_hashtable_define_trivial_hash(char);
_TR1_hashtable_define_trivial_hash(signed char);
_TR1_hashtable_define_trivial_hash(unsigned char);
_TR1_hashtable_define_trivial_hash(wchar_t);
_TR1_hashtable_define_trivial_hash(short);
_TR1_hashtable_define_trivial_hash(int);
_TR1_hashtable_define_trivial_hash(long);
_TR1_hashtable_define_trivial_hash(long long);
_TR1_hashtable_define_trivial_hash(unsigned short);
_TR1_hashtable_define_trivial_hash(unsigned int);
_TR1_hashtable_define_trivial_hash(unsigned long);
_TR1_hashtable_define_trivial_hash(unsigned long long);
#undef _TR1_hashtable_define_trivial_hash
// Fowler / Noll / Vo (FNV) Hash (type FNV-1a)
// (Used by the next specializations of std::tr1::hash.)
/// Dummy generic implementation (for sizeof(size_t) != 4, 8).
template<size_t>
struct _Fnv_hash_base
{
template<typename _Tp>
static size_t
hash(const _Tp* __ptr, size_t __clength)
{
size_t __result = 0;
const char* __cptr = reinterpret_cast<const char*>(__ptr);
for (; __clength; --__clength)
__result = (__result * 131) + *__cptr++;
return __result;
}
};
template<>
struct _Fnv_hash_base<4>
{
template<typename _Tp>
static size_t
hash(const _Tp* __ptr, size_t __clength)
{
size_t __result = static_cast<size_t>(2166136261UL);
const char* __cptr = reinterpret_cast<const char*>(__ptr);
for (; __clength; --__clength)
{
__result ^= static_cast<size_t>(*__cptr++);
__result *= static_cast<size_t>(16777619UL);
}
return __result;
}
};
template<>
struct _Fnv_hash_base<8>
{
template<typename _Tp>
static size_t
hash(const _Tp* __ptr, size_t __clength)
{
size_t __result
= static_cast<size_t>(14695981039346656037ULL);
const char* __cptr = reinterpret_cast<const char*>(__ptr);
for (; __clength; --__clength)
{
__result ^= static_cast<size_t>(*__cptr++);
__result *= static_cast<size_t>(1099511628211ULL);
}
return __result;
}
};
struct _Fnv_hash
: public _Fnv_hash_base<sizeof(size_t)>
{
using _Fnv_hash_base<sizeof(size_t)>::hash;
template<typename _Tp>
static size_t
hash(const _Tp& __val)
{ return hash(&__val, sizeof(__val)); }
};
/// Explicit specializations for float.
template<>
inline size_t
hash<float>::operator()(float __val) const
{
// 0 and -0 both hash to zero.
return __val != 0.0f ? std::tr1::_Fnv_hash::hash(__val) : 0;
}
/// Explicit specializations for double.
template<>
inline size_t
hash<double>::operator()(double __val) const
{
// 0 and -0 both hash to zero.
return __val != 0.0 ? std::tr1::_Fnv_hash::hash(__val) : 0;
}
/// Explicit specializations for long double.
template<>
_GLIBCXX_PURE size_t
hash<long double>::operator()(long double __val) const;
/// Explicit specialization of member operator for non-builtin types.
template<>
_GLIBCXX_PURE size_t
hash<string>::operator()(string) const;
template<>
_GLIBCXX_PURE size_t
hash<const string&>::operator()(const string&) const;
#ifdef _GLIBCXX_USE_WCHAR_T
template<>
_GLIBCXX_PURE size_t
hash<wstring>::operator()(wstring) const;
template<>
_GLIBCXX_PURE size_t
hash<const wstring&>::operator()(const wstring&) const;
#endif
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_FUNCTIONAL_HASH_H

View File

@@ -0,0 +1,469 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/gamma.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 6, pp. 253-266
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 213-216
// (4) Gamma, Exploring Euler's Constant, Julian Havil,
// Princeton, 2003.
#ifndef _GLIBCXX_TR1_GAMMA_TCC
#define _GLIBCXX_TR1_GAMMA_TCC 1
#include "special_function_util.h"
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief This returns Bernoulli numbers from a table or by summation
* for larger values.
*
* Recursion is unstable.
*
* @param __n the order n of the Bernoulli number.
* @return The Bernoulli number of order n.
*/
template <typename _Tp>
_Tp
__bernoulli_series(unsigned int __n)
{
static const _Tp __num[28] = {
_Tp(1UL), -_Tp(1UL) / _Tp(2UL),
_Tp(1UL) / _Tp(6UL), _Tp(0UL),
-_Tp(1UL) / _Tp(30UL), _Tp(0UL),
_Tp(1UL) / _Tp(42UL), _Tp(0UL),
-_Tp(1UL) / _Tp(30UL), _Tp(0UL),
_Tp(5UL) / _Tp(66UL), _Tp(0UL),
-_Tp(691UL) / _Tp(2730UL), _Tp(0UL),
_Tp(7UL) / _Tp(6UL), _Tp(0UL),
-_Tp(3617UL) / _Tp(510UL), _Tp(0UL),
_Tp(43867UL) / _Tp(798UL), _Tp(0UL),
-_Tp(174611) / _Tp(330UL), _Tp(0UL),
_Tp(854513UL) / _Tp(138UL), _Tp(0UL),
-_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
_Tp(8553103UL) / _Tp(6UL), _Tp(0UL)
};
if (__n == 0)
return _Tp(1);
if (__n == 1)
return -_Tp(1) / _Tp(2);
// Take care of the rest of the odd ones.
if (__n % 2 == 1)
return _Tp(0);
// Take care of some small evens that are painful for the series.
if (__n < 28)
return __num[__n];
_Tp __fact = _Tp(1);
if ((__n / 2) % 2 == 0)
__fact *= _Tp(-1);
for (unsigned int __k = 1; __k <= __n; ++__k)
__fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
__fact *= _Tp(2);
_Tp __sum = _Tp(0);
for (unsigned int __i = 1; __i < 1000; ++__i)
{
_Tp __term = std::pow(_Tp(__i), -_Tp(__n));
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term;
}
return __fact * __sum;
}
/**
* @brief This returns Bernoulli number \f$B_n\f$.
*
* @param __n the order n of the Bernoulli number.
* @return The Bernoulli number of order n.
*/
template<typename _Tp>
inline _Tp
__bernoulli(int __n)
{ return __bernoulli_series<_Tp>(__n); }
/**
* @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
* with Bernoulli number coefficients. This is like
* Sterling's approximation.
*
* @param __x The argument of the log of the gamma function.
* @return The logarithm of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma_bernoulli(_Tp __x)
{
_Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
+ _Tp(0.5L) * std::log(_Tp(2)
* __numeric_constants<_Tp>::__pi());
const _Tp __xx = __x * __x;
_Tp __help = _Tp(1) / __x;
for ( unsigned int __i = 1; __i < 20; ++__i )
{
const _Tp __2i = _Tp(2 * __i);
__help /= __2i * (__2i - _Tp(1)) * __xx;
__lg += __bernoulli<_Tp>(2 * __i) * __help;
}
return __lg;
}
/**
* @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
* This method dominates all others on the positive axis I think.
*
* @param __x The argument of the log of the gamma function.
* @return The logarithm of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma_lanczos(_Tp __x)
{
const _Tp __xm1 = __x - _Tp(1);
static const _Tp __lanczos_cheb_7[9] = {
_Tp( 0.99999999999980993227684700473478L),
_Tp( 676.520368121885098567009190444019L),
_Tp(-1259.13921672240287047156078755283L),
_Tp( 771.3234287776530788486528258894L),
_Tp(-176.61502916214059906584551354L),
_Tp( 12.507343278686904814458936853L),
_Tp(-0.13857109526572011689554707L),
_Tp( 9.984369578019570859563e-6L),
_Tp( 1.50563273514931155834e-7L)
};
static const _Tp __LOGROOT2PI
= _Tp(0.9189385332046727417803297364056176L);
_Tp __sum = __lanczos_cheb_7[0];
for(unsigned int __k = 1; __k < 9; ++__k)
__sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
const _Tp __term1 = (__xm1 + _Tp(0.5L))
* std::log((__xm1 + _Tp(7.5L))
/ __numeric_constants<_Tp>::__euler());
const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
const _Tp __result = __term1 + (__term2 - _Tp(7));
return __result;
}
/**
* @brief Return \f$ log(|\Gamma(x)|) \f$.
* This will return values even for \f$ x < 0 \f$.
* To recover the sign of \f$ \Gamma(x) \f$ for
* any argument use @a __log_gamma_sign.
*
* @param __x The argument of the log of the gamma function.
* @return The logarithm of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma(_Tp __x)
{
if (__x > _Tp(0.5L))
return __log_gamma_lanczos(__x);
else
{
const _Tp __sin_fact
= std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
if (__sin_fact == _Tp(0))
std::__throw_domain_error(__N("Argument is nonpositive integer "
"in __log_gamma"));
return __numeric_constants<_Tp>::__lnpi()
- std::log(__sin_fact)
- __log_gamma_lanczos(_Tp(1) - __x);
}
}
/**
* @brief Return the sign of \f$ \Gamma(x) \f$.
* At nonpositive integers zero is returned.
*
* @param __x The argument of the gamma function.
* @return The sign of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma_sign(_Tp __x)
{
if (__x > _Tp(0))
return _Tp(1);
else
{
const _Tp __sin_fact
= std::sin(__numeric_constants<_Tp>::__pi() * __x);
if (__sin_fact > _Tp(0))
return (1);
else if (__sin_fact < _Tp(0))
return -_Tp(1);
else
return _Tp(0);
}
}
/**
* @brief Return the logarithm of the binomial coefficient.
* The binomial coefficient is given by:
* @f[
* \left( \right) = \frac{n!}{(n-k)! k!}
* @f]
*
* @param __n The first argument of the binomial coefficient.
* @param __k The second argument of the binomial coefficient.
* @return The binomial coefficient.
*/
template<typename _Tp>
_Tp
__log_bincoef(unsigned int __n, unsigned int __k)
{
// Max e exponent before overflow.
static const _Tp __max_bincoeff
= std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __coeff = std::tr1::lgamma(_Tp(1 + __n))
- std::tr1::lgamma(_Tp(1 + __k))
- std::tr1::lgamma(_Tp(1 + __n - __k));
#else
_Tp __coeff = __log_gamma(_Tp(1 + __n))
- __log_gamma(_Tp(1 + __k))
- __log_gamma(_Tp(1 + __n - __k));
#endif
}
/**
* @brief Return the binomial coefficient.
* The binomial coefficient is given by:
* @f[
* \left( \right) = \frac{n!}{(n-k)! k!}
* @f]
*
* @param __n The first argument of the binomial coefficient.
* @param __k The second argument of the binomial coefficient.
* @return The binomial coefficient.
*/
template<typename _Tp>
_Tp
__bincoef(unsigned int __n, unsigned int __k)
{
// Max e exponent before overflow.
static const _Tp __max_bincoeff
= std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
if (__log_coeff > __max_bincoeff)
return std::numeric_limits<_Tp>::quiet_NaN();
else
return std::exp(__log_coeff);
}
/**
* @brief Return \f$ \Gamma(x) \f$.
*
* @param __x The argument of the gamma function.
* @return The gamma function.
*/
template<typename _Tp>
inline _Tp
__gamma(_Tp __x)
{ return std::exp(__log_gamma(__x)); }
/**
* @brief Return the digamma function by series expansion.
* The digamma or @f$ \psi(x) @f$ function is defined by
* @f[
* \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
* @f]
*
* The series is given by:
* @f[
* \psi(x) = -\gamma_E - \frac{1}{x}
* \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
* @f]
*/
template<typename _Tp>
_Tp
__psi_series(_Tp __x)
{
_Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
const unsigned int __max_iter = 100000;
for (unsigned int __k = 1; __k < __max_iter; ++__k)
{
const _Tp __term = __x / (__k * (__k + __x));
__sum += __term;
if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
break;
}
return __sum;
}
/**
* @brief Return the digamma function for large argument.
* The digamma or @f$ \psi(x) @f$ function is defined by
* @f[
* \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
* @f]
*
* The asymptotic series is given by:
* @f[
* \psi(x) = \ln(x) - \frac{1}{2x}
* - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
* @f]
*/
template<typename _Tp>
_Tp
__psi_asymp(_Tp __x)
{
_Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
const _Tp __xx = __x * __x;
_Tp __xp = __xx;
const unsigned int __max_iter = 100;
for (unsigned int __k = 1; __k < __max_iter; ++__k)
{
const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
__sum -= __term;
if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
break;
__xp *= __xx;
}
return __sum;
}
/**
* @brief Return the digamma function.
* The digamma or @f$ \psi(x) @f$ function is defined by
* @f[
* \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
* @f]
* For negative argument the reflection formula is used:
* @f[
* \psi(x) = \psi(1-x) - \pi \cot(\pi x)
* @f]
*/
template<typename _Tp>
_Tp
__psi(_Tp __x)
{
const int __n = static_cast<int>(__x + 0.5L);
const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x < _Tp(0))
{
const _Tp __pi = __numeric_constants<_Tp>::__pi();
return __psi(_Tp(1) - __x)
- __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
}
else if (__x > _Tp(100))
return __psi_asymp(__x);
else
return __psi_series(__x);
}
/**
* @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$.
*
* The polygamma function is related to the Hurwitz zeta function:
* @f[
* \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
* @f]
*/
template<typename _Tp>
_Tp
__psi(unsigned int __n, _Tp __x)
{
if (__x <= _Tp(0))
std::__throw_domain_error(__N("Argument out of range "
"in __psi"));
else if (__n == 0)
return __psi(__x);
else
{
const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1));
#else
const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
#endif
_Tp __result = std::exp(__ln_nfact) * __hzeta;
if (__n % 2 == 1)
__result = -__result;
return __result;
}
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_GAMMA_TCC

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,783 @@
// Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/hashtable_policy.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly.
* @headername{tr1/unordered_map, tr1/unordered_set}
*/
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// Helper function: return distance(first, last) for forward
// iterators, or 0 for input iterators.
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last,
std::input_iterator_tag)
{ return 0; }
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last,
std::forward_iterator_tag)
{ return std::distance(__first, __last); }
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last)
{
typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
return __distance_fw(__first, __last, _Tag());
}
// Auxiliary types used for all instantiations of _Hashtable: nodes
// and iterators.
// Nodes, used to wrap elements stored in the hash table. A policy
// template parameter of class template _Hashtable controls whether
// nodes also store a hash code. In some cases (e.g. strings) this
// may be a performance win.
template<typename _Value, bool __cache_hash_code>
struct _Hash_node;
template<typename _Value>
struct _Hash_node<_Value, true>
{
_Value _M_v;
std::size_t _M_hash_code;
_Hash_node* _M_next;
};
template<typename _Value>
struct _Hash_node<_Value, false>
{
_Value _M_v;
_Hash_node* _M_next;
};
// Local iterators, used to iterate within a bucket but not between
// buckets.
template<typename _Value, bool __cache>
struct _Node_iterator_base
{
_Node_iterator_base(_Hash_node<_Value, __cache>* __p)
: _M_cur(__p) { }
void
_M_incr()
{ _M_cur = _M_cur->_M_next; }
_Hash_node<_Value, __cache>* _M_cur;
};
template<typename _Value, bool __cache>
inline bool
operator==(const _Node_iterator_base<_Value, __cache>& __x,
const _Node_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur == __y._M_cur; }
template<typename _Value, bool __cache>
inline bool
operator!=(const _Node_iterator_base<_Value, __cache>& __x,
const _Node_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur != __y._M_cur; }
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Node_iterator
: public _Node_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value*, _Value*>::__type
pointer;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value&, _Value&>::__type
reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Node_iterator()
: _Node_iterator_base<_Value, __cache>(0) { }
explicit
_Node_iterator(_Hash_node<_Value, __cache>* __p)
: _Node_iterator_base<_Value, __cache>(__p) { }
reference
operator*() const
{ return this->_M_cur->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur->_M_v); }
_Node_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Node_iterator
operator++(int)
{
_Node_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Node_const_iterator
: public _Node_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef const _Value* pointer;
typedef const _Value& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Node_const_iterator()
: _Node_iterator_base<_Value, __cache>(0) { }
explicit
_Node_const_iterator(_Hash_node<_Value, __cache>* __p)
: _Node_iterator_base<_Value, __cache>(__p) { }
_Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
__cache>& __x)
: _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
reference
operator*() const
{ return this->_M_cur->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur->_M_v); }
_Node_const_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Node_const_iterator
operator++(int)
{
_Node_const_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
template<typename _Value, bool __cache>
struct _Hashtable_iterator_base
{
_Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
_Hash_node<_Value, __cache>** __bucket)
: _M_cur_node(__node), _M_cur_bucket(__bucket) { }
void
_M_incr()
{
_M_cur_node = _M_cur_node->_M_next;
if (!_M_cur_node)
_M_incr_bucket();
}
void
_M_incr_bucket();
_Hash_node<_Value, __cache>* _M_cur_node;
_Hash_node<_Value, __cache>** _M_cur_bucket;
};
// Global iterators, used for arbitrary iteration within a hash
// table. Larger and more expensive than local iterators.
template<typename _Value, bool __cache>
void
_Hashtable_iterator_base<_Value, __cache>::
_M_incr_bucket()
{
++_M_cur_bucket;
// This loop requires the bucket array to have a non-null sentinel.
while (!*_M_cur_bucket)
++_M_cur_bucket;
_M_cur_node = *_M_cur_bucket;
}
template<typename _Value, bool __cache>
inline bool
operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
const _Hashtable_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur_node == __y._M_cur_node; }
template<typename _Value, bool __cache>
inline bool
operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
const _Hashtable_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur_node != __y._M_cur_node; }
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Hashtable_iterator
: public _Hashtable_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value*, _Value*>::__type
pointer;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value&, _Value&>::__type
reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Hashtable_iterator()
: _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
_Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
explicit
_Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
reference
operator*() const
{ return this->_M_cur_node->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur_node->_M_v); }
_Hashtable_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Hashtable_iterator
operator++(int)
{
_Hashtable_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Hashtable_const_iterator
: public _Hashtable_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef const _Value* pointer;
typedef const _Value& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Hashtable_const_iterator()
: _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
_Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
explicit
_Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
_Hashtable_const_iterator(const _Hashtable_iterator<_Value,
__constant_iterators, __cache>& __x)
: _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
__x._M_cur_bucket) { }
reference
operator*() const
{ return this->_M_cur_node->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur_node->_M_v); }
_Hashtable_const_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Hashtable_const_iterator
operator++(int)
{
_Hashtable_const_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
// Many of class template _Hashtable's template parameters are policy
// classes. These are defaults for the policies.
// Default range hashing function: use division to fold a large number
// into the range [0, N).
struct _Mod_range_hashing
{
typedef std::size_t first_argument_type;
typedef std::size_t second_argument_type;
typedef std::size_t result_type;
result_type
operator()(first_argument_type __num, second_argument_type __den) const
{ return __num % __den; }
};
// Default ranged hash function H. In principle it should be a
// function object composed from objects of type H1 and H2 such that
// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
// h1 and h2. So instead we'll just use a tag to tell class template
// hashtable to do that composition.
struct _Default_ranged_hash { };
// Default value for rehash policy. Bucket size is (usually) the
// smallest prime that keeps the load factor small enough.
struct _Prime_rehash_policy
{
_Prime_rehash_policy(float __z = 1.0)
: _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
float
max_load_factor() const
{ return _M_max_load_factor; }
// Return a bucket size no smaller than n.
std::size_t
_M_next_bkt(std::size_t __n) const;
// Return a bucket count appropriate for n elements
std::size_t
_M_bkt_for_elements(std::size_t __n) const;
// __n_bkt is current bucket count, __n_elt is current element count,
// and __n_ins is number of elements to be inserted. Do we need to
// increase bucket count? If so, return make_pair(true, n), where n
// is the new bucket count. If not, return make_pair(false, 0).
std::pair<bool, std::size_t>
_M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
std::size_t __n_ins) const;
enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
float _M_max_load_factor;
float _M_growth_factor;
mutable std::size_t _M_next_resize;
};
extern const unsigned long __prime_list[];
// XXX This is a hack. There's no good reason for any of
// _Prime_rehash_policy's member functions to be inline.
// Return a prime no smaller than n.
inline std::size_t
_Prime_rehash_policy::
_M_next_bkt(std::size_t __n) const
{
const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
+ _S_n_primes, __n);
_M_next_resize =
static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
return *__p;
}
// Return the smallest prime p such that alpha p >= n, where alpha
// is the load factor.
inline std::size_t
_Prime_rehash_policy::
_M_bkt_for_elements(std::size_t __n) const
{
const float __min_bkts = __n / _M_max_load_factor;
const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
+ _S_n_primes, __min_bkts);
_M_next_resize =
static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
return *__p;
}
// Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
// If p > __n_bkt, return make_pair(true, p); otherwise return
// make_pair(false, 0). In principle this isn't very different from
// _M_bkt_for_elements.
// The only tricky part is that we're caching the element count at
// which we need to rehash, so we don't have to do a floating-point
// multiply for every insertion.
inline std::pair<bool, std::size_t>
_Prime_rehash_policy::
_M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
std::size_t __n_ins) const
{
if (__n_elt + __n_ins > _M_next_resize)
{
float __min_bkts = ((float(__n_ins) + float(__n_elt))
/ _M_max_load_factor);
if (__min_bkts > __n_bkt)
{
__min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
const unsigned long* __p =
std::lower_bound(__prime_list, __prime_list + _S_n_primes,
__min_bkts);
_M_next_resize = static_cast<std::size_t>
(__builtin_ceil(*__p * _M_max_load_factor));
return std::make_pair(true, *__p);
}
else
{
_M_next_resize = static_cast<std::size_t>
(__builtin_ceil(__n_bkt * _M_max_load_factor));
return std::make_pair(false, 0);
}
}
else
return std::make_pair(false, 0);
}
// Base classes for std::tr1::_Hashtable. We define these base
// classes because in some cases we want to do different things
// depending on the value of a policy class. In some cases the
// policy class affects which member functions and nested typedefs
// are defined; we handle that by specializing base class templates.
// Several of the base class templates need to access other members
// of class template _Hashtable, so we use the "curiously recurring
// template pattern" for them.
// class template _Map_base. If the hashtable has a value type of the
// form pair<T1, T2> and a key extraction policy that returns the
// first part of the pair, the hashtable gets a mapped_type typedef.
// If it satisfies those criteria and also has unique keys, then it
// also gets an operator[].
template<typename _Key, typename _Value, typename _Ex, bool __unique,
typename _Hashtable>
struct _Map_base { };
template<typename _Key, typename _Pair, typename _Hashtable>
struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
{
typedef typename _Pair::second_type mapped_type;
};
template<typename _Key, typename _Pair, typename _Hashtable>
struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
{
typedef typename _Pair::second_type mapped_type;
mapped_type&
operator[](const _Key& __k);
};
template<typename _Key, typename _Pair, typename _Hashtable>
typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
true, _Hashtable>::mapped_type&
_Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
operator[](const _Key& __k)
{
_Hashtable* __h = static_cast<_Hashtable*>(this);
typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
std::size_t __n = __h->_M_bucket_index(__k, __code,
__h->_M_bucket_count);
typename _Hashtable::_Node* __p =
__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
if (!__p)
return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
__n, __code)->second;
return (__p->_M_v).second;
}
// class template _Rehash_base. Give hashtable the max_load_factor
// functions iff the rehash policy is _Prime_rehash_policy.
template<typename _RehashPolicy, typename _Hashtable>
struct _Rehash_base { };
template<typename _Hashtable>
struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
{
float
max_load_factor() const
{
const _Hashtable* __this = static_cast<const _Hashtable*>(this);
return __this->__rehash_policy().max_load_factor();
}
void
max_load_factor(float __z)
{
_Hashtable* __this = static_cast<_Hashtable*>(this);
__this->__rehash_policy(_Prime_rehash_policy(__z));
}
};
// Class template _Hash_code_base. Encapsulates two policy issues that
// aren't quite orthogonal.
// (1) the difference between using a ranged hash function and using
// the combination of a hash function and a range-hashing function.
// In the former case we don't have such things as hash codes, so
// we have a dummy type as placeholder.
// (2) Whether or not we cache hash codes. Caching hash codes is
// meaningless if we have a ranged hash function.
// We also put the key extraction and equality comparison function
// objects here, for convenience.
// Primary template: unused except as a hook for specializations.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
bool __cache_hash_code>
struct _Hash_code_base;
// Specialization: ranged hash function, no caching hash codes. H1
// and H2 are provided but ignored. We define a dummy hash code type.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Hash, false>
{
protected:
_Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
const _H1&, const _H2&, const _Hash& __h)
: _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
typedef void* _Hash_code_type;
_Hash_code_type
_M_hash_code(const _Key& __key) const
{ return 0; }
std::size_t
_M_bucket_index(const _Key& __k, _Hash_code_type,
std::size_t __n) const
{ return _M_ranged_hash(__k, __n); }
std::size_t
_M_bucket_index(const _Hash_node<_Value, false>* __p,
std::size_t __n) const
{ return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
bool
_M_compare(const _Key& __k, _Hash_code_type,
_Hash_node<_Value, false>* __n) const
{ return _M_eq(__k, _M_extract(__n->_M_v)); }
void
_M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
{ }
void
_M_copy_code(_Hash_node<_Value, false>*,
const _Hash_node<_Value, false>*) const
{ }
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract, __x._M_extract);
std::swap(_M_eq, __x._M_eq);
std::swap(_M_ranged_hash, __x._M_ranged_hash);
}
protected:
_ExtractKey _M_extract;
_Equal _M_eq;
_Hash _M_ranged_hash;
};
// No specialization for ranged hash function while caching hash codes.
// That combination is meaningless, and trying to do it is an error.
// Specialization: ranged hash function, cache hash codes. This
// combination is meaningless, so we provide only a declaration
// and no definition.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Hash, true>;
// Specialization: hash function and range-hashing function, no
// caching of hash codes. H is provided but ignored. Provides
// typedef and accessor required by TR1.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Default_ranged_hash, false>
{
typedef _H1 hasher;
hasher
hash_function() const
{ return _M_h1; }
protected:
_Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
const _H1& __h1, const _H2& __h2,
const _Default_ranged_hash&)
: _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
typedef std::size_t _Hash_code_type;
_Hash_code_type
_M_hash_code(const _Key& __k) const
{ return _M_h1(__k); }
std::size_t
_M_bucket_index(const _Key&, _Hash_code_type __c,
std::size_t __n) const
{ return _M_h2(__c, __n); }
std::size_t
_M_bucket_index(const _Hash_node<_Value, false>* __p,
std::size_t __n) const
{ return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
bool
_M_compare(const _Key& __k, _Hash_code_type,
_Hash_node<_Value, false>* __n) const
{ return _M_eq(__k, _M_extract(__n->_M_v)); }
void
_M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
{ }
void
_M_copy_code(_Hash_node<_Value, false>*,
const _Hash_node<_Value, false>*) const
{ }
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract, __x._M_extract);
std::swap(_M_eq, __x._M_eq);
std::swap(_M_h1, __x._M_h1);
std::swap(_M_h2, __x._M_h2);
}
protected:
_ExtractKey _M_extract;
_Equal _M_eq;
_H1 _M_h1;
_H2 _M_h2;
};
// Specialization: hash function and range-hashing function,
// caching hash codes. H is provided but ignored. Provides
// typedef and accessor required by TR1.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Default_ranged_hash, true>
{
typedef _H1 hasher;
hasher
hash_function() const
{ return _M_h1; }
protected:
_Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
const _H1& __h1, const _H2& __h2,
const _Default_ranged_hash&)
: _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
typedef std::size_t _Hash_code_type;
_Hash_code_type
_M_hash_code(const _Key& __k) const
{ return _M_h1(__k); }
std::size_t
_M_bucket_index(const _Key&, _Hash_code_type __c,
std::size_t __n) const
{ return _M_h2(__c, __n); }
std::size_t
_M_bucket_index(const _Hash_node<_Value, true>* __p,
std::size_t __n) const
{ return _M_h2(__p->_M_hash_code, __n); }
bool
_M_compare(const _Key& __k, _Hash_code_type __c,
_Hash_node<_Value, true>* __n) const
{ return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
void
_M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
{ __n->_M_hash_code = __c; }
void
_M_copy_code(_Hash_node<_Value, true>* __to,
const _Hash_node<_Value, true>* __from) const
{ __to->_M_hash_code = __from->_M_hash_code; }
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract, __x._M_extract);
std::swap(_M_eq, __x._M_eq);
std::swap(_M_h1, __x._M_h1);
std::swap(_M_h2, __x._M_h2);
}
protected:
_ExtractKey _M_extract;
_Equal _M_eq;
_H1 _M_h1;
_H2 _M_h2;
};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
}
}

View File

@@ -0,0 +1,775 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/hypergeometric.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 6, pp. 555-566
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
#ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
#define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief This routine returns the confluent hypergeometric function
* by series expansion.
*
* @f[
* _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* If a and b are integers and a < 0 and either b > 0 or b < a
* then the series is a polynomial with a finite number of
* terms. If b is an integer and b <= 0 the confluent
* hypergeometric function is undefined.
*
* @param __a The "numerator" parameter.
* @param __c The "denominator" parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
_Tp __term = _Tp(1);
_Tp __Fac = _Tp(1);
const unsigned int __max_iter = 100000;
unsigned int __i;
for (__i = 0; __i < __max_iter; ++__i)
{
__term *= (__a + _Tp(__i)) * __x
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
if (std::abs(__term) < __eps)
{
break;
}
__Fac += __term;
}
if (__i == __max_iter)
std::__throw_runtime_error(__N("Series failed to converge "
"in __conf_hyperg_series."));
return __Fac;
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by an iterative procedure described in
* Luke, Algorithms for the Computation of Mathematical Functions.
*
* Like the case of the 2F1 rational approximations, these are
* probably guaranteed to converge for x < 0, barring gross
* numerical instability in the pre-asymptotic regime.
*/
template<typename _Tp>
_Tp
__conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin)
{
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
const int __nmax = 20000;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __x = -__xin;
const _Tp __x3 = __x * __x * __x;
const _Tp __t0 = __a / __c;
const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
_Tp __F = _Tp(1);
_Tp __prec;
_Tp __Bnm3 = _Tp(1);
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
_Tp __Anm3 = _Tp(1);
_Tp __Anm2 = __Bnm2 - __t0 * __x;
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
int __n = 3;
while(1)
{
_Tp __npam1 = _Tp(__n - 1) + __a;
_Tp __npcm1 = _Tp(__n - 1) + __c;
_Tp __npam2 = _Tp(__n - 2) + __a;
_Tp __npcm2 = _Tp(__n - 2) + __c;
_Tp __tnm1 = _Tp(2 * __n - 1);
_Tp __tnm3 = _Tp(2 * __n - 3);
_Tp __tnm5 = _Tp(2 * __n - 5);
_Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
_Tp __F2 = (_Tp(__n) + __a) * __npam1
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
_Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
_Tp __E = -__npam1 * (_Tp(__n - 1) - __c)
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
_Tp __r = __An / __Bn;
__prec = std::abs((__F - __r) / __F);
__F = __r;
if (__prec < __eps || __n > __nmax)
break;
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
{
__An /= __big;
__Bn /= __big;
__Anm1 /= __big;
__Bnm1 /= __big;
__Anm2 /= __big;
__Bnm2 /= __big;
__Anm3 /= __big;
__Bnm3 /= __big;
}
else if (std::abs(__An) < _Tp(1) / __big
|| std::abs(__Bn) < _Tp(1) / __big)
{
__An *= __big;
__Bn *= __big;
__Anm1 *= __big;
__Bnm1 *= __big;
__Anm2 *= __big;
__Bnm2 *= __big;
__Anm3 *= __big;
__Bnm3 *= __big;
}
++__n;
__Bnm3 = __Bnm2;
__Bnm2 = __Bnm1;
__Bnm1 = __Bn;
__Anm3 = __Anm2;
__Anm2 = __Anm1;
__Anm1 = __An;
}
if (__n >= __nmax)
std::__throw_runtime_error(__N("Iteration failed to converge "
"in __conf_hyperg_luke."));
return __F;
}
/**
* @brief Return the confluent hypogeometric function
* @f$ _1F_1(a;c;x) @f$.
*
* @todo Handle b == nonpositive integer blowup - return NaN.
*
* @param __a The @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__conf_hyperg(_Tp __a, _Tp __c, _Tp __x)
{
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __c_nint = std::tr1::nearbyint(__c);
#else
const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
#endif
if (__isnan(__a) || __isnan(__c) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__c_nint == __c && __c_nint <= 0)
return std::numeric_limits<_Tp>::infinity();
else if (__a == _Tp(0))
return _Tp(1);
else if (__c == __a)
return std::exp(__x);
else if (__x < _Tp(0))
return __conf_hyperg_luke(__a, __c, __x);
else
return __conf_hyperg_series(__a, __c, __x);
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by series expansion.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* This works and it's pretty fast.
*
* @param __a The first @a numerator parameter.
* @param __a The second @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
_Tp __term = _Tp(1);
_Tp __Fabc = _Tp(1);
const unsigned int __max_iter = 100000;
unsigned int __i;
for (__i = 0; __i < __max_iter; ++__i)
{
__term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
if (std::abs(__term) < __eps)
{
break;
}
__Fabc += __term;
}
if (__i == __max_iter)
std::__throw_runtime_error(__N("Series failed to converge "
"in __hyperg_series."));
return __Fabc;
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by an iterative procedure described in
* Luke, Algorithms for the Computation of Mathematical Functions.
*/
template<typename _Tp>
_Tp
__hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
{
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
const int __nmax = 20000;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __x = -__xin;
const _Tp __x3 = __x * __x * __x;
const _Tp __t0 = __a * __b / __c;
const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
/ (_Tp(2) * (__c + _Tp(1)));
_Tp __F = _Tp(1);
_Tp __Bnm3 = _Tp(1);
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
_Tp __Anm3 = _Tp(1);
_Tp __Anm2 = __Bnm2 - __t0 * __x;
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
int __n = 3;
while (1)
{
const _Tp __npam1 = _Tp(__n - 1) + __a;
const _Tp __npbm1 = _Tp(__n - 1) + __b;
const _Tp __npcm1 = _Tp(__n - 1) + __c;
const _Tp __npam2 = _Tp(__n - 2) + __a;
const _Tp __npbm2 = _Tp(__n - 2) + __b;
const _Tp __npcm2 = _Tp(__n - 2) + __c;
const _Tp __tnm1 = _Tp(2 * __n - 1);
const _Tp __tnm3 = _Tp(2 * __n - 3);
const _Tp __tnm5 = _Tp(2 * __n - 5);
const _Tp __n2 = __n * __n;
const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
+ _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
/ (_Tp(2) * __tnm3 * __npcm1);
const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
+ _Tp(2) - __a * __b) * __npam1 * __npbm1
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
* (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
const _Tp __r = __An / __Bn;
const _Tp __prec = std::abs((__F - __r) / __F);
__F = __r;
if (__prec < __eps || __n > __nmax)
break;
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
{
__An /= __big;
__Bn /= __big;
__Anm1 /= __big;
__Bnm1 /= __big;
__Anm2 /= __big;
__Bnm2 /= __big;
__Anm3 /= __big;
__Bnm3 /= __big;
}
else if (std::abs(__An) < _Tp(1) / __big
|| std::abs(__Bn) < _Tp(1) / __big)
{
__An *= __big;
__Bn *= __big;
__Anm1 *= __big;
__Bnm1 *= __big;
__Anm2 *= __big;
__Bnm2 *= __big;
__Anm3 *= __big;
__Bnm3 *= __big;
}
++__n;
__Bnm3 = __Bnm2;
__Bnm2 = __Bnm1;
__Bnm1 = __Bn;
__Anm3 = __Anm2;
__Anm2 = __Anm1;
__Anm1 = __An;
}
if (__n >= __nmax)
std::__throw_runtime_error(__N("Iteration failed to converge "
"in __hyperg_luke."));
return __F;
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by the reflection formulae in Abramowitz & Stegun formula
* 15.3.6 for d = c - a - b not integral and formula 15.3.11 for
* d = c - a - b integral. This assumes a, b, c != negative
* integer.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
* _2F_1(a,b;1-d;1-x)
* + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
* _2F_1(c-a,c-b;1+d;1-x)
* @f]
*
* The reflection formula for integral @f$ m = c - a - b @f$ is:
* @f[
* _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
* \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
* -
* @f]
*/
template<typename _Tp>
_Tp
__hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
const _Tp __d = __c - __a - __b;
const int __intd = std::floor(__d + _Tp(0.5L));
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __toler = _Tp(1000) * __eps;
const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
const bool __d_integer = (std::abs(__d - __intd) < __toler);
if (__d_integer)
{
const _Tp __ln_omx = std::log(_Tp(1) - __x);
const _Tp __ad = std::abs(__d);
_Tp __F1, __F2;
_Tp __d1, __d2;
if (__d >= _Tp(0))
{
__d1 = __d;
__d2 = _Tp(0);
}
else
{
__d1 = _Tp(0);
__d2 = __d;
}
const _Tp __lng_c = __log_gamma(__c);
// Evaluate F1.
if (__ad < __eps)
{
// d = c - a - b = 0.
__F1 = _Tp(0);
}
else
{
bool __ok_d1 = true;
_Tp __lng_ad, __lng_ad1, __lng_bd1;
__try
{
__lng_ad = __log_gamma(__ad);
__lng_ad1 = __log_gamma(__a + __d1);
__lng_bd1 = __log_gamma(__b + __d1);
}
__catch(...)
{
__ok_d1 = false;
}
if (__ok_d1)
{
/* Gamma functions in the denominator are ok.
* Proceed with evaluation.
*/
_Tp __sum1 = _Tp(1);
_Tp __term = _Tp(1);
_Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
- __lng_ad1 - __lng_bd1;
/* Do F1 sum.
*/
for (int __i = 1; __i < __ad; ++__i)
{
const int __j = __i - 1;
__term *= (__a + __d2 + __j) * (__b + __d2 + __j)
/ (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
__sum1 += __term;
}
if (__ln_pre1 > __log_max)
std::__throw_runtime_error(__N("Overflow of gamma functions"
" in __hyperg_luke."));
else
__F1 = std::exp(__ln_pre1) * __sum1;
}
else
{
// Gamma functions in the denominator were not ok.
// So the F1 term is zero.
__F1 = _Tp(0);
}
} // end F1 evaluation
// Evaluate F2.
bool __ok_d2 = true;
_Tp __lng_ad2, __lng_bd2;
__try
{
__lng_ad2 = __log_gamma(__a + __d2);
__lng_bd2 = __log_gamma(__b + __d2);
}
__catch(...)
{
__ok_d2 = false;
}
if (__ok_d2)
{
// Gamma functions in the denominator are ok.
// Proceed with evaluation.
const int __maxiter = 2000;
const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
const _Tp __psi_apd1 = __psi(__a + __d1);
const _Tp __psi_bpd1 = __psi(__b + __d1);
_Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
- __psi_bpd1 - __ln_omx;
_Tp __fact = _Tp(1);
_Tp __sum2 = __psi_term;
_Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
- __lng_ad2 - __lng_bd2;
// Do F2 sum.
int __j;
for (__j = 1; __j < __maxiter; ++__j)
{
// Values for psi functions use recurrence;
// Abramowitz & Stegun 6.3.5
const _Tp __term1 = _Tp(1) / _Tp(__j)
+ _Tp(1) / (__ad + __j);
const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
+ _Tp(1) / (__b + __d1 + _Tp(__j - 1));
__psi_term += __term1 - __term2;
__fact *= (__a + __d1 + _Tp(__j - 1))
* (__b + __d1 + _Tp(__j - 1))
/ ((__ad + __j) * __j) * (_Tp(1) - __x);
const _Tp __delta = __fact * __psi_term;
__sum2 += __delta;
if (std::abs(__delta) < __eps * std::abs(__sum2))
break;
}
if (__j == __maxiter)
std::__throw_runtime_error(__N("Sum F2 failed to converge "
"in __hyperg_reflect"));
if (__sum2 == _Tp(0))
__F2 = _Tp(0);
else
__F2 = std::exp(__ln_pre2) * __sum2;
}
else
{
// Gamma functions in the denominator not ok.
// So the F2 term is zero.
__F2 = _Tp(0);
} // end F2 evaluation
const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
const _Tp __F = __F1 + __sgn_2 * __F2;
return __F;
}
else
{
// d = c - a - b not an integer.
// These gamma functions appear in the denominator, so we
// catch their harmless domain errors and set the terms to zero.
bool __ok1 = true;
_Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
_Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
__try
{
__sgn_g1ca = __log_gamma_sign(__c - __a);
__ln_g1ca = __log_gamma(__c - __a);
__sgn_g1cb = __log_gamma_sign(__c - __b);
__ln_g1cb = __log_gamma(__c - __b);
}
__catch(...)
{
__ok1 = false;
}
bool __ok2 = true;
_Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
_Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
__try
{
__sgn_g2a = __log_gamma_sign(__a);
__ln_g2a = __log_gamma(__a);
__sgn_g2b = __log_gamma_sign(__b);
__ln_g2b = __log_gamma(__b);
}
__catch(...)
{
__ok2 = false;
}
const _Tp __sgn_gc = __log_gamma_sign(__c);
const _Tp __ln_gc = __log_gamma(__c);
const _Tp __sgn_gd = __log_gamma_sign(__d);
const _Tp __ln_gd = __log_gamma(__d);
const _Tp __sgn_gmd = __log_gamma_sign(-__d);
const _Tp __ln_gmd = __log_gamma(-__d);
const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb;
const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b;
_Tp __pre1, __pre2;
if (__ok1 && __ok2)
{
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
+ __d * std::log(_Tp(1) - __x);
if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
{
__pre1 = std::exp(__ln_pre1);
__pre2 = std::exp(__ln_pre2);
__pre1 *= __sgn1;
__pre2 *= __sgn2;
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else if (__ok1 && !__ok2)
{
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
if (__ln_pre1 < __log_max)
{
__pre1 = std::exp(__ln_pre1);
__pre1 *= __sgn1;
__pre2 = _Tp(0);
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else if (!__ok1 && __ok2)
{
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
+ __d * std::log(_Tp(1) - __x);
if (__ln_pre2 < __log_max)
{
__pre1 = _Tp(0);
__pre2 = std::exp(__ln_pre2);
__pre2 *= __sgn2;
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else
{
__pre1 = _Tp(0);
__pre2 = _Tp(0);
std::__throw_runtime_error(__N("Underflow of gamma functions "
"in __hyperg_reflect"));
}
const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
_Tp(1) - __x);
const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
_Tp(1) - __x);
const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
return __F;
}
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* @param __a The first @a numerator parameter.
* @param __a The second @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __a_nint = std::tr1::nearbyint(__a);
const _Tp __b_nint = std::tr1::nearbyint(__b);
const _Tp __c_nint = std::tr1::nearbyint(__c);
#else
const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
#endif
const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
if (std::abs(__x) >= _Tp(1))
std::__throw_domain_error(__N("Argument outside unit circle "
"in __hyperg."));
else if (__isnan(__a) || __isnan(__b)
|| __isnan(__c) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__c_nint == __c && __c_nint <= _Tp(0))
return std::numeric_limits<_Tp>::infinity();
else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
return std::pow(_Tp(1) - __x, __c - __a - __b);
else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
&& __x >= _Tp(0) && __x < _Tp(0.995L))
return __hyperg_series(__a, __b, __c, __x);
else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
{
// For integer a and b the hypergeometric function is a
// finite polynomial.
if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler)
return __hyperg_series(__a_nint, __b, __c, __x);
else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler)
return __hyperg_series(__a, __b_nint, __c, __x);
else if (__x < -_Tp(0.25L))
return __hyperg_luke(__a, __b, __c, __x);
else if (__x < _Tp(0.5L))
return __hyperg_series(__a, __b, __c, __x);
else
if (std::abs(__c) > _Tp(10))
return __hyperg_series(__a, __b, __c, __x);
else
return __hyperg_reflect(__a, __b, __c, __x);
}
else
return __hyperg_luke(__a, __b, __c, __x);
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC

View File

@@ -0,0 +1,34 @@
// TR1 inttypes.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/inttypes.h
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_INTTYPES_H
#define _GLIBCXX_TR1_INTTYPES_H 1
#include <tr1/cinttypes>
#endif // _GLIBCXX_TR1_INTTYPES_H

View File

@@ -0,0 +1,303 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/legendre_function.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 8, pp. 331-341
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 252-254
#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
#include "special_function_util.h"
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Return the Legendre polynomial by recursion on order
* @f$ l @f$.
*
* The Legendre function of @f$ l @f$ and @f$ x @f$,
* @f$ P_l(x) @f$, is defined by:
* @f[
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
* @f]
*
* @param l The order of the Legendre polynomial. @f$l >= 0@f$.
* @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
*/
template<typename _Tp>
_Tp
__poly_legendre_p(unsigned int __l, _Tp __x)
{
if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
std::__throw_domain_error(__N("Argument out of range"
" in __poly_legendre_p."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x == +_Tp(1))
return +_Tp(1);
else if (__x == -_Tp(1))
return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
else
{
_Tp __p_lm2 = _Tp(1);
if (__l == 0)
return __p_lm2;
_Tp __p_lm1 = __x;
if (__l == 1)
return __p_lm1;
_Tp __p_l = 0;
for (unsigned int __ll = 2; __ll <= __l; ++__ll)
{
// This arrangement is supposed to be better for roundoff
// protection, Arfken, 2nd Ed, Eq 12.17a.
__p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
- (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
__p_lm2 = __p_lm1;
__p_lm1 = __p_l;
}
return __p_l;
}
}
/**
* @brief Return the associated Legendre function by recursion
* on @f$ l @f$.
*
* The associated Legendre function is derived from the Legendre function
* @f$ P_l(x) @f$ by the Rodrigues formula:
* @f[
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
* @f]
*
* @param l The order of the associated Legendre function.
* @f$ l >= 0 @f$.
* @param m The order of the associated Legendre function.
* @f$ m <= l @f$.
* @param x The argument of the associated Legendre function.
* @f$ |x| <= 1 @f$.
*/
template<typename _Tp>
_Tp
__assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x)
{
if (__x < _Tp(-1) || __x > _Tp(+1))
std::__throw_domain_error(__N("Argument out of range"
" in __assoc_legendre_p."));
else if (__m > __l)
std::__throw_domain_error(__N("Degree out of range"
" in __assoc_legendre_p."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__m == 0)
return __poly_legendre_p(__l, __x);
else
{
_Tp __p_mm = _Tp(1);
if (__m > 0)
{
// Two square roots seem more accurate more of the time
// than just one.
_Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
_Tp __fact = _Tp(1);
for (unsigned int __i = 1; __i <= __m; ++__i)
{
__p_mm *= -__fact * __root;
__fact += _Tp(2);
}
}
if (__l == __m)
return __p_mm;
_Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
if (__l == __m + 1)
return __p_mp1m;
_Tp __p_lm2m = __p_mm;
_Tp __P_lm1m = __p_mp1m;
_Tp __p_lm = _Tp(0);
for (unsigned int __j = __m + 2; __j <= __l; ++__j)
{
__p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
- _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
__p_lm2m = __P_lm1m;
__P_lm1m = __p_lm;
}
return __p_lm;
}
}
/**
* @brief Return the spherical associated Legendre function.
*
* The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
* and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
* @f[
* Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
* \frac{(l-m)!}{(l+m)!}]
* P_l^m(\cos\theta) \exp^{im\phi}
* @f]
* is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
* associated Legendre function.
*
* This function differs from the associated Legendre function by
* argument (@f$x = \cos(\theta)@f$) and by a normalization factor
* but this factor is rather large for large @f$ l @f$ and @f$ m @f$
* and so this function is stable for larger differences of @f$ l @f$
* and @f$ m @f$.
*
* @param l The order of the spherical associated Legendre function.
* @f$ l >= 0 @f$.
* @param m The order of the spherical associated Legendre function.
* @f$ m <= l @f$.
* @param theta The radian angle argument of the spherical associated
* Legendre function.
*/
template <typename _Tp>
_Tp
__sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
{
if (__isnan(__theta))
return std::numeric_limits<_Tp>::quiet_NaN();
const _Tp __x = std::cos(__theta);
if (__l < __m)
{
std::__throw_domain_error(__N("Bad argument "
"in __sph_legendre."));
}
else if (__m == 0)
{
_Tp __P = __poly_legendre_p(__l, __x);
_Tp __fact = std::sqrt(_Tp(2 * __l + 1)
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
__P *= __fact;
return __P;
}
else if (__x == _Tp(1) || __x == -_Tp(1))
{
// m > 0 here
return _Tp(0);
}
else
{
// m > 0 and |x| < 1 here
// Starting value for recursion.
// Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
// (-1)^m (1-x^2)^(m/2) / pi^(1/4)
const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __lncirc = std::tr1::log1p(-__x * __x);
#else
const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
#endif
// Gamma(m+1/2) / Gamma(m)
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
- std::tr1::lgamma(_Tp(__m));
#else
const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
- __log_gamma(_Tp(__m));
#endif
const _Tp __lnpre_val =
-_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
+ _Tp(0.5L) * (__lnpoch + __m * __lncirc);
_Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
_Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
_Tp __y_mp1m = __y_mp1m_factor * __y_mm;
if (__l == __m)
{
return __y_mm;
}
else if (__l == __m + 1)
{
return __y_mp1m;
}
else
{
_Tp __y_lm = _Tp(0);
// Compute Y_l^m, l > m+1, upward recursion on l.
for ( int __ll = __m + 2; __ll <= __l; ++__ll)
{
const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
* _Tp(2 * __ll - 1));
const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
/ _Tp(2 * __ll - 3));
__y_lm = (__x * __y_mp1m * __fact1
- (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
__y_mm = __y_mp1m;
__y_mp1m = __y_lm;
}
return __y_lm;
}
}
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC

View File

@@ -0,0 +1,34 @@
// TR1 limits.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/limits.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_LIMITS_H
#define _TR1_LIMITS_H 1
#include <tr1/climits>
#endif

View File

@@ -0,0 +1,186 @@
// TR1 math.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/math.h
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_MATH_H
#define _GLIBCXX_TR1_MATH_H 1
#include <tr1/cmath>
#if _GLIBCXX_USE_C99_MATH_TR1
using std::tr1::acos;
using std::tr1::acosh;
using std::tr1::asin;
using std::tr1::asinh;
using std::tr1::atan;
using std::tr1::atan2;
using std::tr1::atanh;
using std::tr1::cbrt;
using std::tr1::ceil;
using std::tr1::copysign;
using std::tr1::cos;
using std::tr1::cosh;
using std::tr1::erf;
using std::tr1::erfc;
using std::tr1::exp;
using std::tr1::exp2;
using std::tr1::expm1;
using std::tr1::fabs;
using std::tr1::fdim;
using std::tr1::floor;
using std::tr1::fma;
using std::tr1::fmax;
using std::tr1::fmin;
using std::tr1::fmod;
using std::tr1::frexp;
using std::tr1::hypot;
using std::tr1::ilogb;
using std::tr1::ldexp;
using std::tr1::lgamma;
using std::tr1::llrint;
using std::tr1::llround;
using std::tr1::log;
using std::tr1::log10;
using std::tr1::log1p;
using std::tr1::log2;
using std::tr1::logb;
using std::tr1::lrint;
using std::tr1::lround;
using std::tr1::nearbyint;
using std::tr1::nextafter;
using std::tr1::nexttoward;
using std::tr1::pow;
using std::tr1::remainder;
using std::tr1::remquo;
using std::tr1::rint;
using std::tr1::round;
using std::tr1::scalbln;
using std::tr1::scalbn;
using std::tr1::sin;
using std::tr1::sinh;
using std::tr1::sqrt;
using std::tr1::tan;
using std::tr1::tanh;
using std::tr1::tgamma;
using std::tr1::trunc;
#endif
using std::tr1::assoc_laguerref;
using std::tr1::assoc_laguerre;
using std::tr1::assoc_laguerrel;
using std::tr1::assoc_legendref;
using std::tr1::assoc_legendre;
using std::tr1::assoc_legendrel;
using std::tr1::betaf;
using std::tr1::beta;
using std::tr1::betal;
using std::tr1::comp_ellint_1f;
using std::tr1::comp_ellint_1;
using std::tr1::comp_ellint_1l;
using std::tr1::comp_ellint_2f;
using std::tr1::comp_ellint_2;
using std::tr1::comp_ellint_2l;
using std::tr1::comp_ellint_3f;
using std::tr1::comp_ellint_3;
using std::tr1::comp_ellint_3l;
using std::tr1::conf_hypergf;
using std::tr1::conf_hyperg;
using std::tr1::conf_hypergl;
using std::tr1::cyl_bessel_if;
using std::tr1::cyl_bessel_i;
using std::tr1::cyl_bessel_il;
using std::tr1::cyl_bessel_jf;
using std::tr1::cyl_bessel_j;
using std::tr1::cyl_bessel_jl;
using std::tr1::cyl_bessel_kf;
using std::tr1::cyl_bessel_k;
using std::tr1::cyl_bessel_kl;
using std::tr1::cyl_neumannf;
using std::tr1::cyl_neumann;
using std::tr1::cyl_neumannl;
using std::tr1::ellint_1f;
using std::tr1::ellint_1;
using std::tr1::ellint_1l;
using std::tr1::ellint_2f;
using std::tr1::ellint_2;
using std::tr1::ellint_2l;
using std::tr1::ellint_3f;
using std::tr1::ellint_3;
using std::tr1::ellint_3l;
using std::tr1::expintf;
using std::tr1::expint;
using std::tr1::expintl;
using std::tr1::hermitef;
using std::tr1::hermite;
using std::tr1::hermitel;
using std::tr1::hypergf;
using std::tr1::hyperg;
using std::tr1::hypergl;
using std::tr1::laguerref;
using std::tr1::laguerre;
using std::tr1::laguerrel;
using std::tr1::legendref;
using std::tr1::legendre;
using std::tr1::legendrel;
using std::tr1::riemann_zetaf;
using std::tr1::riemann_zeta;
using std::tr1::riemann_zetal;
using std::tr1::sph_besself;
using std::tr1::sph_bessel;
using std::tr1::sph_bessell;
using std::tr1::sph_legendref;
using std::tr1::sph_legendre;
using std::tr1::sph_legendrel;
using std::tr1::sph_neumannf;
using std::tr1::sph_neumann;
using std::tr1::sph_neumannl;
#endif // _GLIBCXX_TR1_MATH_H

View File

@@ -0,0 +1,52 @@
// <tr1/memory> -*- C++ -*-
// Copyright (C) 2005-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/**
* @file tr1/memory
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_MEMORY
#define _GLIBCXX_TR1_MEMORY 1
#pragma GCC system_header
#if defined(_GLIBCXX_INCLUDE_AS_CXX11)
# error TR1 header cannot be included from C++11 header
#endif
#include <memory>
#include <exception> // std::exception
#include <typeinfo> // std::type_info in get_deleter
#include <bits/stl_algobase.h> // std::swap
#include <iosfwd> // std::basic_ostream
#include <ext/atomicity.h>
#include <ext/concurrence.h>
#include <bits/functexcept.h>
#include <bits/stl_function.h> // std::less
#include <debug/debug.h>
#include <tr1/type_traits>
#include <tr1/shared_ptr.h>
#endif // _GLIBCXX_TR1_MEMORY

View File

@@ -0,0 +1,435 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/modified_bessel_func.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland.
//
// References:
// (1) Handbook of Mathematical Functions,
// Ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 9, pp. 355-434, Section 10 pp. 435-478
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 246-249.
#ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
#define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1
#include "special_function_util.h"
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
* @f$ K_\nu(x) @f$ and their first derivatives
* @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
* These four functions are computed together for numerical
* stability.
*
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Inu The output regular modified Bessel function.
* @param __Knu The output irregular modified Bessel function.
* @param __Ipnu The output derivative of the regular
* modified Bessel function.
* @param __Kpnu The output derivative of the irregular
* modified Bessel function.
*/
template <typename _Tp>
void
__bessel_ik(_Tp __nu, _Tp __x,
_Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
{
if (__x == _Tp(0))
{
if (__nu == _Tp(0))
{
__Inu = _Tp(1);
__Ipnu = _Tp(0);
}
else if (__nu == _Tp(1))
{
__Inu = _Tp(0);
__Ipnu = _Tp(0.5L);
}
else
{
__Inu = _Tp(0);
__Ipnu = _Tp(0);
}
__Knu = std::numeric_limits<_Tp>::infinity();
__Kpnu = -std::numeric_limits<_Tp>::infinity();
return;
}
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
const int __max_iter = 15000;
const _Tp __x_min = _Tp(2);
const int __nl = static_cast<int>(__nu + _Tp(0.5L));
const _Tp __mu = __nu - __nl;
const _Tp __mu2 = __mu * __mu;
const _Tp __xi = _Tp(1) / __x;
const _Tp __xi2 = _Tp(2) * __xi;
_Tp __h = __nu * __xi;
if ( __h < __fp_min )
__h = __fp_min;
_Tp __b = __xi2 * __nu;
_Tp __d = _Tp(0);
_Tp __c = __h;
int __i;
for ( __i = 1; __i <= __max_iter; ++__i )
{
__b += __xi2;
__d = _Tp(1) / (__b + __d);
__c = __b + _Tp(1) / __c;
const _Tp __del = __c * __d;
__h *= __del;
if (std::abs(__del - _Tp(1)) < __eps)
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Argument x too large "
"in __bessel_ik; "
"try asymptotic expansion."));
_Tp __Inul = __fp_min;
_Tp __Ipnul = __h * __Inul;
_Tp __Inul1 = __Inul;
_Tp __Ipnu1 = __Ipnul;
_Tp __fact = __nu * __xi;
for (int __l = __nl; __l >= 1; --__l)
{
const _Tp __Inutemp = __fact * __Inul + __Ipnul;
__fact -= __xi;
__Ipnul = __fact * __Inutemp + __Inul;
__Inul = __Inutemp;
}
_Tp __f = __Ipnul / __Inul;
_Tp __Kmu, __Knu1;
if (__x < __x_min)
{
const _Tp __x2 = __x / _Tp(2);
const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
const _Tp __fact = (std::abs(__pimu) < __eps
? _Tp(1) : __pimu / std::sin(__pimu));
_Tp __d = -std::log(__x2);
_Tp __e = __mu * __d;
const _Tp __fact2 = (std::abs(__e) < __eps
? _Tp(1) : std::sinh(__e) / __e);
_Tp __gam1, __gam2, __gampl, __gammi;
__gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
_Tp __ff = __fact
* (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
_Tp __sum = __ff;
__e = std::exp(__e);
_Tp __p = __e / (_Tp(2) * __gampl);
_Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
_Tp __c = _Tp(1);
__d = __x2 * __x2;
_Tp __sum1 = __p;
int __i;
for (__i = 1; __i <= __max_iter; ++__i)
{
__ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
__c *= __d / __i;
__p /= __i - __mu;
__q /= __i + __mu;
const _Tp __del = __c * __ff;
__sum += __del;
const _Tp __del1 = __c * (__p - __i * __ff);
__sum1 += __del1;
if (std::abs(__del) < __eps * std::abs(__sum))
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Bessel k series failed to converge "
"in __bessel_ik."));
__Kmu = __sum;
__Knu1 = __sum1 * __xi2;
}
else
{
_Tp __b = _Tp(2) * (_Tp(1) + __x);
_Tp __d = _Tp(1) / __b;
_Tp __delh = __d;
_Tp __h = __delh;
_Tp __q1 = _Tp(0);
_Tp __q2 = _Tp(1);
_Tp __a1 = _Tp(0.25L) - __mu2;
_Tp __q = __c = __a1;
_Tp __a = -__a1;
_Tp __s = _Tp(1) + __q * __delh;
int __i;
for (__i = 2; __i <= __max_iter; ++__i)
{
__a -= 2 * (__i - 1);
__c = -__a * __c / __i;
const _Tp __qnew = (__q1 - __b * __q2) / __a;
__q1 = __q2;
__q2 = __qnew;
__q += __c * __qnew;
__b += _Tp(2);
__d = _Tp(1) / (__b + __a * __d);
__delh = (__b * __d - _Tp(1)) * __delh;
__h += __delh;
const _Tp __dels = __q * __delh;
__s += __dels;
if ( std::abs(__dels / __s) < __eps )
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Steed's method failed "
"in __bessel_ik."));
__h = __a1 * __h;
__Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
* std::exp(-__x) / __s;
__Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
}
_Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
_Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
__Inu = __Inumu * __Inul1 / __Inul;
__Ipnu = __Inumu * __Ipnu1 / __Inul;
for ( __i = 1; __i <= __nl; ++__i )
{
const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
__Kmu = __Knu1;
__Knu1 = __Knutemp;
}
__Knu = __Kmu;
__Kpnu = __nu * __xi * __Kmu - __Knu1;
return;
}
/**
* @brief Return the regular modified Bessel function of order
* \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
*
* The regular modified cylindrical Bessel function is:
* @f[
* I_{\nu}(x) = \sum_{k=0}^{\infty}
* \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
*
* @param __nu The order of the regular modified Bessel function.
* @param __x The argument of the regular modified Bessel function.
* @return The output regular modified Bessel function.
*/
template<typename _Tp>
_Tp
__cyl_bessel_i(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_bessel_i."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
else
{
_Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
return __I_nu;
}
}
/**
* @brief Return the irregular modified Bessel function
* \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
*
* The irregular modified Bessel function is defined by:
* @f[
* K_{\nu}(x) = \frac{\pi}{2}
* \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
* @f]
* where for integral \f$ \nu = n \f$ a limit is taken:
* \f$ lim_{\nu \to n} \f$.
*
* @param __nu The order of the irregular modified Bessel function.
* @param __x The argument of the irregular modified Bessel function.
* @return The output irregular modified Bessel function.
*/
template<typename _Tp>
_Tp
__cyl_bessel_k(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_bessel_k."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else
{
_Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
return __K_nu;
}
}
/**
* @brief Compute the spherical modified Bessel functions
* @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
* derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
* respectively.
*
* @param __n The order of the modified spherical Bessel function.
* @param __x The argument of the modified spherical Bessel function.
* @param __i_n The output regular modified spherical Bessel function.
* @param __k_n The output irregular modified spherical
* Bessel function.
* @param __ip_n The output derivative of the regular modified
* spherical Bessel function.
* @param __kp_n The output derivative of the irregular modified
* spherical Bessel function.
*/
template <typename _Tp>
void
__sph_bessel_ik(unsigned int __n, _Tp __x,
_Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
{
const _Tp __nu = _Tp(__n) + _Tp(0.5L);
_Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
/ std::sqrt(__x);
__i_n = __factor * __I_nu;
__k_n = __factor * __K_nu;
__ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
__kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);
return;
}
/**
* @brief Compute the Airy functions
* @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
* derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
* respectively.
*
* @param __n The order of the Airy functions.
* @param __x The argument of the Airy functions.
* @param __i_n The output Airy function.
* @param __k_n The output Airy function.
* @param __ip_n The output derivative of the Airy function.
* @param __kp_n The output derivative of the Airy function.
*/
template <typename _Tp>
void
__airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
{
const _Tp __absx = std::abs(__x);
const _Tp __rootx = std::sqrt(__absx);
const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x > _Tp(0))
{
_Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
__bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
__Ai = __rootx * __K_nu
/ (__numeric_constants<_Tp>::__sqrt3()
* __numeric_constants<_Tp>::__pi());
__Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
+ _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());
__bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
__Aip = -__x * __K_nu
/ (__numeric_constants<_Tp>::__sqrt3()
* __numeric_constants<_Tp>::__pi());
__Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
+ _Tp(2) * __I_nu
/ __numeric_constants<_Tp>::__sqrt3());
}
else if (__x < _Tp(0))
{
_Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;
__bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
__Ai = __rootx * (__J_nu
- __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
__Bi = -__rootx * (__N_nu
+ __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
__bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
__Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
+ __J_nu) / _Tp(2);
__Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
- __N_nu) / _Tp(2);
}
else
{
// Reference:
// Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
// The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
__Ai = _Tp(0.35502805388781723926L);
__Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();
// Reference:
// Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
// The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
__Aip = -_Tp(0.25881940379280679840L);
__Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
}
return;
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC

View File

@@ -0,0 +1,124 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/poly_hermite.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// Ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications, Section 22 pp. 773-802
#ifndef _GLIBCXX_TR1_POLY_HERMITE_TCC
#define _GLIBCXX_TR1_POLY_HERMITE_TCC 1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief This routine returns the Hermite polynomial
* of order n: \f$ H_n(x) \f$ by recursion on n.
*
* The Hermite polynomial is defined by:
* @f[
* H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
* @f]
*
* @param __n The order of the Hermite polynomial.
* @param __x The argument of the Hermite polynomial.
* @return The value of the Hermite polynomial of order n
* and argument x.
*/
template<typename _Tp>
_Tp
__poly_hermite_recursion(unsigned int __n, _Tp __x)
{
// Compute H_0.
_Tp __H_0 = 1;
if (__n == 0)
return __H_0;
// Compute H_1.
_Tp __H_1 = 2 * __x;
if (__n == 1)
return __H_1;
// Compute H_n.
_Tp __H_n, __H_nm1, __H_nm2;
unsigned int __i;
for (__H_nm2 = __H_0, __H_nm1 = __H_1, __i = 2; __i <= __n; ++__i)
{
__H_n = 2 * (__x * __H_nm1 - (__i - 1) * __H_nm2);
__H_nm2 = __H_nm1;
__H_nm1 = __H_n;
}
return __H_n;
}
/**
* @brief This routine returns the Hermite polynomial
* of order n: \f$ H_n(x) \f$.
*
* The Hermite polynomial is defined by:
* @f[
* H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
* @f]
*
* @param __n The order of the Hermite polynomial.
* @param __x The argument of the Hermite polynomial.
* @return The value of the Hermite polynomial of order n
* and argument x.
*/
template<typename _Tp>
inline _Tp
__poly_hermite(unsigned int __n, _Tp __x)
{
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __poly_hermite_recursion(__n, __x);
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_POLY_HERMITE_TCC

View File

@@ -0,0 +1,319 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/poly_laguerre.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// Ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 13, pp. 509-510, Section 22 pp. 773-802
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief This routine returns the associated Laguerre polynomial
* of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
* Abramowitz & Stegun, 13.5.21
*
* @param __n The order of the Laguerre function.
* @param __alpha The degree of the Laguerre function.
* @param __x The argument of the Laguerre function.
* @return The value of the Laguerre function of order n,
* degree @f$ \alpha @f$, and argument x.
*
* This is from the GNU Scientific Library.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
{
const _Tp __a = -_Tp(__n);
const _Tp __b = _Tp(__alpha1) + _Tp(1);
const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
const _Tp __cos2th = __x / __eta;
const _Tp __sin2th = _Tp(1) - __cos2th;
const _Tp __th = std::acos(std::sqrt(__cos2th));
const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
* __numeric_constants<_Tp>::__pi_2()
* __eta * __eta * __cos2th * __sin2th;
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
#else
const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
#endif
_Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
* std::log(_Tp(0.25L) * __x * __eta);
_Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
_Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
+ __pre_term1 - __pre_term2;
_Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
_Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
* (_Tp(2) * __th
- std::sin(_Tp(2) * __th))
+ __numeric_constants<_Tp>::__pi_4());
_Tp __ser = __ser_term1 + __ser_term2;
return std::exp(__lnpre) * __ser;
}
/**
* @brief Evaluate the polynomial based on the confluent hypergeometric
* function in a safe way, with no restriction on the arguments.
*
* The associated Laguerre function is defined by
* @f[
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
* _1F_1(-n; \alpha + 1; x)
* @f]
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
*
* This function assumes x != 0.
*
* This is from the GNU Scientific Library.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
{
const _Tp __b = _Tp(__alpha1) + _Tp(1);
const _Tp __mx = -__x;
const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
: ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
// Get |x|^n/n!
_Tp __tc = _Tp(1);
const _Tp __ax = std::abs(__x);
for (unsigned int __k = 1; __k <= __n; ++__k)
__tc *= (__ax / __k);
_Tp __term = __tc * __tc_sgn;
_Tp __sum = __term;
for (int __k = int(__n) - 1; __k >= 0; --__k)
{
__term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
* _Tp(__k + 1) / __mx;
__sum += __term;
}
return __sum;
}
/**
* @brief This routine returns the associated Laguerre polynomial
* of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
* by recursion.
*
* The associated Laguerre function is defined by
* @f[
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
* _1F_1(-n; \alpha + 1; x)
* @f]
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
*
* The associated Laguerre polynomial is defined for integral
* @f$ \alpha = m @f$ by:
* @f[
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
* @f]
* where the Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre function.
* @param __alpha The degree of the Laguerre function.
* @param __x The argument of the Laguerre function.
* @return The value of the Laguerre function of order n,
* degree @f$ \alpha @f$, and argument x.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
{
// Compute l_0.
_Tp __l_0 = _Tp(1);
if (__n == 0)
return __l_0;
// Compute l_1^alpha.
_Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
if (__n == 1)
return __l_1;
// Compute l_n^alpha by recursion on n.
_Tp __l_n2 = __l_0;
_Tp __l_n1 = __l_1;
_Tp __l_n = _Tp(0);
for (unsigned int __nn = 2; __nn <= __n; ++__nn)
{
__l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
* __l_n1 / _Tp(__nn)
- (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
__l_n2 = __l_n1;
__l_n1 = __l_n;
}
return __l_n;
}
/**
* @brief This routine returns the associated Laguerre polynomial
* of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
*
* The associated Laguerre function is defined by
* @f[
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
* _1F_1(-n; \alpha + 1; x)
* @f]
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
*
* The associated Laguerre polynomial is defined for integral
* @f$ \alpha = m @f$ by:
* @f[
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
* @f]
* where the Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre function.
* @param __alpha The degree of the Laguerre function.
* @param __x The argument of the Laguerre function.
* @return The value of the Laguerre function of order n,
* degree @f$ \alpha @f$, and argument x.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
{
if (__x < _Tp(0))
std::__throw_domain_error(__N("Negative argument "
"in __poly_laguerre."));
// Return NaN on NaN input.
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__n == 0)
return _Tp(1);
else if (__n == 1)
return _Tp(1) + _Tp(__alpha1) - __x;
else if (__x == _Tp(0))
{
_Tp __prod = _Tp(__alpha1) + _Tp(1);
for (unsigned int __k = 2; __k <= __n; ++__k)
__prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
return __prod;
}
else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
&& __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
return __poly_laguerre_large_n(__n, __alpha1, __x);
else if (_Tp(__alpha1) >= _Tp(0)
|| (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
return __poly_laguerre_recursion(__n, __alpha1, __x);
else
return __poly_laguerre_hyperg(__n, __alpha1, __x);
}
/**
* @brief This routine returns the associated Laguerre polynomial
* of order n, degree m: @f$ L_n^m(x) @f$.
*
* The associated Laguerre polynomial is defined for integral
* @f$ \alpha = m @f$ by:
* @f[
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
* @f]
* where the Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre polynomial.
* @param __m The degree of the Laguerre polynomial.
* @param __x The argument of the Laguerre polynomial.
* @return The value of the associated Laguerre polynomial of order n,
* degree m, and argument x.
*/
template<typename _Tp>
inline _Tp
__assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
{ return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }
/**
* @brief This routine returns the Laguerre polynomial
* of order n: @f$ L_n(x) @f$.
*
* The Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre polynomial.
* @param __x The argument of the Laguerre polynomial.
* @return The value of the Laguerre polynomial of order n
* and argument x.
*/
template<typename _Tp>
inline _Tp
__laguerre(unsigned int __n, _Tp __x)
{ return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC

View File

@@ -0,0 +1,50 @@
// random number generation -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/**
* @file tr1/random
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_RANDOM
#define _GLIBCXX_TR1_RANDOM 1
#pragma GCC system_header
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <iosfwd>
#include <limits>
#include <ext/type_traits.h>
#include <ext/numeric_traits.h>
#include <bits/concept_check.h>
#include <debug/debug.h>
#include <tr1/type_traits>
#include <tr1/cmath>
#include <tr1/random.h>
#include <tr1/random.tcc>
#endif // _GLIBCXX_TR1_RANDOM

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,433 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/riemann_zeta.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// Ed. by Milton Abramowitz and Irene A. Stegun,
// Dover Publications, New-York, Section 5, pp. 807-808.
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Gamma, Exploring Euler's Constant, Julian Havil,
// Princeton, 2003.
#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
#include "special_function_util.h"
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
* by summation for s > 1.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_sum(_Tp __s)
{
// A user shouldn't get to this.
if (__s < _Tp(1))
std::__throw_domain_error(__N("Bad argument in zeta sum."));
const unsigned int max_iter = 10000;
_Tp __zeta = _Tp(0);
for (unsigned int __k = 1; __k < max_iter; ++__k)
{
_Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
if (__term < std::numeric_limits<_Tp>::epsilon())
{
break;
}
__zeta += __term;
}
return __zeta;
}
/**
* @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$
* by an alternate series for s > 0.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_alt(_Tp __s)
{
_Tp __sgn = _Tp(1);
_Tp __zeta = _Tp(0);
for (unsigned int __i = 1; __i < 10000000; ++__i)
{
_Tp __term = __sgn / std::pow(__i, __s);
if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
break;
__zeta += __term;
__sgn *= _Tp(-1);
}
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
return __zeta;
}
/**
* @brief Evaluate the Riemann zeta function by series for all s != 1.
* Convergence is great until largish negative numbers.
* Then the convergence of the > 0 sum gets better.
*
* The series is:
* \f[
* \zeta(s) = \frac{1}{1-2^{1-s}}
* \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
* \f]
* Havil 2003, p. 206.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_glob(_Tp __s)
{
_Tp __zeta = _Tp(0);
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
// Max e exponent before overflow.
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
// This series works until the binomial coefficient blows up
// so use reflection.
if (__s < _Tp(0))
{
#if _GLIBCXX_USE_C99_MATH_TR1
if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
return _Tp(0);
else
#endif
{
_Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
__zeta *= std::pow(_Tp(2)
* __numeric_constants<_Tp>::__pi(), __s)
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
* std::exp(std::tr1::lgamma(_Tp(1) - __s))
#else
* std::exp(__log_gamma(_Tp(1) - __s))
#endif
/ __numeric_constants<_Tp>::__pi();
return __zeta;
}
}
_Tp __num = _Tp(0.5L);
const unsigned int __maxit = 10000;
for (unsigned int __i = 0; __i < __maxit; ++__i)
{
bool __punt = false;
_Tp __sgn = _Tp(1);
_Tp __term = _Tp(0);
for (unsigned int __j = 0; __j <= __i; ++__j)
{
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
- std::tr1::lgamma(_Tp(1 + __j))
- std::tr1::lgamma(_Tp(1 + __i - __j));
#else
_Tp __bincoeff = __log_gamma(_Tp(1 + __i))
- __log_gamma(_Tp(1 + __j))
- __log_gamma(_Tp(1 + __i - __j));
#endif
if (__bincoeff > __max_bincoeff)
{
// This only gets hit for x << 0.
__punt = true;
break;
}
__bincoeff = std::exp(__bincoeff);
__term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
__sgn *= _Tp(-1);
}
if (__punt)
break;
__term *= __num;
__zeta += __term;
if (std::abs(__term/__zeta) < __eps)
break;
__num *= _Tp(0.5L);
}
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
return __zeta;
}
/**
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
* using the product over prime factors.
* \f[
* \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
* \f]
* where @f$ {p_i} @f$ are the prime numbers.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_product(_Tp __s)
{
static const _Tp __prime[] = {
_Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
_Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
_Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
_Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
};
static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
_Tp __zeta = _Tp(1);
for (unsigned int __i = 0; __i < __num_primes; ++__i)
{
const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
__zeta *= __fact;
if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
break;
}
__zeta = _Tp(1) / __zeta;
return __zeta;
}
/**
* @brief Return the Riemann zeta function @f$ \zeta(s) @f$.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
* \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
* \Gamma (1 - s) \zeta (1 - s) for s < 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta(_Tp __s)
{
if (__isnan(__s))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__s == _Tp(1))
return std::numeric_limits<_Tp>::infinity();
else if (__s < -_Tp(19))
{
_Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
__zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
* std::exp(std::tr1::lgamma(_Tp(1) - __s))
#else
* std::exp(__log_gamma(_Tp(1) - __s))
#endif
/ __numeric_constants<_Tp>::__pi();
return __zeta;
}
else if (__s < _Tp(20))
{
// Global double sum or McLaurin?
bool __glob = true;
if (__glob)
return __riemann_zeta_glob(__s);
else
{
if (__s > _Tp(1))
return __riemann_zeta_sum(__s);
else
{
_Tp __zeta = std::pow(_Tp(2)
* __numeric_constants<_Tp>::__pi(), __s)
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
* std::tr1::tgamma(_Tp(1) - __s)
#else
* std::exp(__log_gamma(_Tp(1) - __s))
#endif
* __riemann_zeta_sum(_Tp(1) - __s);
return __zeta;
}
}
}
else
return __riemann_zeta_product(__s);
}
/**
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
* for all s != 1 and x > -1.
*
* The Hurwitz zeta function is defined by:
* @f[
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
* @f]
* The Riemann zeta function is a special case:
* @f[
* \zeta(s) = \zeta(1,s)
* @f]
*
* This functions uses the double sum that converges for s != 1
* and x > -1:
* @f[
* \zeta(x,s) = \frac{1}{s-1}
* \sum_{n=0}^{\infty} \frac{1}{n + 1}
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
* @f]
*/
template<typename _Tp>
_Tp
__hurwitz_zeta_glob(_Tp __a, _Tp __s)
{
_Tp __zeta = _Tp(0);
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
// Max e exponent before overflow.
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
const unsigned int __maxit = 10000;
for (unsigned int __i = 0; __i < __maxit; ++__i)
{
bool __punt = false;
_Tp __sgn = _Tp(1);
_Tp __term = _Tp(0);
for (unsigned int __j = 0; __j <= __i; ++__j)
{
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
- std::tr1::lgamma(_Tp(1 + __j))
- std::tr1::lgamma(_Tp(1 + __i - __j));
#else
_Tp __bincoeff = __log_gamma(_Tp(1 + __i))
- __log_gamma(_Tp(1 + __j))
- __log_gamma(_Tp(1 + __i - __j));
#endif
if (__bincoeff > __max_bincoeff)
{
// This only gets hit for x << 0.
__punt = true;
break;
}
__bincoeff = std::exp(__bincoeff);
__term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
__sgn *= _Tp(-1);
}
if (__punt)
break;
__term /= _Tp(__i + 1);
if (std::abs(__term / __zeta) < __eps)
break;
__zeta += __term;
}
__zeta /= __s - _Tp(1);
return __zeta;
}
/**
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
* for all s != 1 and x > -1.
*
* The Hurwitz zeta function is defined by:
* @f[
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
* @f]
* The Riemann zeta function is a special case:
* @f[
* \zeta(s) = \zeta(1,s)
* @f]
*/
template<typename _Tp>
inline _Tp
__hurwitz_zeta(_Tp __a, _Tp __s)
{ return __hurwitz_zeta_glob(__a, __s); }
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,135 @@
// Special functions -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/special_function_util.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based on numerous mathematics books.
#ifndef _GLIBCXX_TR1_SPECIAL_FUNCTION_UTIL_H
#define _GLIBCXX_TR1_SPECIAL_FUNCTION_UTIL_H 1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/// A class to encapsulate type dependent floating point
/// constants. Not everything will be able to be expressed as
/// type logic.
template<typename _Tp>
struct __floating_point_constant
{
static const _Tp __value;
};
/// A structure for numeric constants.
template<typename _Tp>
struct __numeric_constants
{
/// Constant @f$ \pi @f$.
static _Tp __pi() throw()
{ return static_cast<_Tp>(3.1415926535897932384626433832795029L); }
/// Constant @f$ \pi / 2 @f$.
static _Tp __pi_2() throw()
{ return static_cast<_Tp>(1.5707963267948966192313216916397514L); }
/// Constant @f$ \pi / 3 @f$.
static _Tp __pi_3() throw()
{ return static_cast<_Tp>(1.0471975511965977461542144610931676L); }
/// Constant @f$ \pi / 4 @f$.
static _Tp __pi_4() throw()
{ return static_cast<_Tp>(0.7853981633974483096156608458198757L); }
/// Constant @f$ 1 / \pi @f$.
static _Tp __1_pi() throw()
{ return static_cast<_Tp>(0.3183098861837906715377675267450287L); }
/// Constant @f$ 2 / \sqrt(\pi) @f$.
static _Tp __2_sqrtpi() throw()
{ return static_cast<_Tp>(1.1283791670955125738961589031215452L); }
/// Constant @f$ \sqrt(2) @f$.
static _Tp __sqrt2() throw()
{ return static_cast<_Tp>(1.4142135623730950488016887242096981L); }
/// Constant @f$ \sqrt(3) @f$.
static _Tp __sqrt3() throw()
{ return static_cast<_Tp>(1.7320508075688772935274463415058723L); }
/// Constant @f$ \sqrt(\pi/2) @f$.
static _Tp __sqrtpio2() throw()
{ return static_cast<_Tp>(1.2533141373155002512078826424055226L); }
/// Constant @f$ 1 / sqrt(2) @f$.
static _Tp __sqrt1_2() throw()
{ return static_cast<_Tp>(0.7071067811865475244008443621048490L); }
/// Constant @f$ \log(\pi) @f$.
static _Tp __lnpi() throw()
{ return static_cast<_Tp>(1.1447298858494001741434273513530587L); }
/// Constant Euler's constant @f$ \gamma_E @f$.
static _Tp __gamma_e() throw()
{ return static_cast<_Tp>(0.5772156649015328606065120900824024L); }
/// Constant Euler-Mascheroni @f$ e @f$
static _Tp __euler() throw()
{ return static_cast<_Tp>(2.7182818284590452353602874713526625L); }
};
#if _GLIBCXX_USE_C99_MATH && !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
/// This is a wrapper for the isnan function. Otherwise, for NaN,
/// all comparisons result in false. If/when we build a std::isnan
/// out of intrinsics, this will disappear completely in favor of
/// std::isnan.
template<typename _Tp>
inline bool __isnan(_Tp __x)
{ return std::isnan(__x); }
#else
template<typename _Tp>
inline bool __isnan(const _Tp __x)
{ return __builtin_isnan(__x); }
template<>
inline bool __isnan<float>(float __x)
{ return __builtin_isnanf(__x); }
template<>
inline bool __isnan<long double>(long double __x)
{ return __builtin_isnanl(__x); }
#endif
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
}
}
#endif // _GLIBCXX_TR1_SPECIAL_FUNCTION_UTIL_H

View File

@@ -0,0 +1,34 @@
// TR1 stdarg.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/stdarg.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_STDARG_H
#define _TR1_STDARG_H 1
#include <tr1/cstdarg>
#endif

View File

@@ -0,0 +1,34 @@
// TR1 stdbool.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/stdbool.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_STDBOOL_H
#define _TR1_STDBOOL_H 1
#include <tr1/cstdbool>
#endif

View File

@@ -0,0 +1,34 @@
// TR1 stdint.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/stdint.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_STDINT_H
#define _TR1_STDINT_H 1
#include <tr1/cstdint>
#endif

View File

@@ -0,0 +1,34 @@
// TR1 stdio.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/stdio.h
* This is a TR1 C++ Library header.
*/
#ifndef _TR1_STDIO_H
#define _TR1_STDIO_H 1
#include <tr1/cstdio>
#endif

View File

@@ -0,0 +1,52 @@
// TR1 stdlib.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/stdlib.h
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_STDLIB_H
#define _GLIBCXX_TR1_STDLIB_H 1
#include <tr1/cstdlib>
#if _GLIBCXX_HOSTED
#if _GLIBCXX_USE_C99
using std::tr1::atoll;
using std::tr1::strtoll;
using std::tr1::strtoull;
using std::tr1::abs;
#if !_GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
using std::tr1::div;
#endif
#endif
#endif
#endif // _GLIBCXX_TR1_STDLIB_H

View File

@@ -0,0 +1,34 @@
// TR1 tgmath.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/tgmath.h
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_TGMATH_H
#define _GLIBCXX_TR1_TGMATH_H 1
#include <tr1/ctgmath>
#endif // _GLIBCXX_TR1_TGMATH_H

View File

@@ -0,0 +1,426 @@
// class template tuple -*- C++ -*-
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/tuple
* This is a TR1 C++ Library header.
*/
// Chris Jefferson <chris@bubblescope.net>
// Variadic Templates support by Douglas Gregor <doug.gregor@gmail.com>
#ifndef _GLIBCXX_TR1_TUPLE
#define _GLIBCXX_TR1_TUPLE 1
#pragma GCC system_header
#include <utility>
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// Adds a const reference to a non-reference type.
template<typename _Tp>
struct __add_c_ref
{ typedef const _Tp& type; };
template<typename _Tp>
struct __add_c_ref<_Tp&>
{ typedef _Tp& type; };
// Adds a reference to a non-reference type.
template<typename _Tp>
struct __add_ref
{ typedef _Tp& type; };
template<typename _Tp>
struct __add_ref<_Tp&>
{ typedef _Tp& type; };
/**
* Contains the actual implementation of the @c tuple template, stored
* as a recursive inheritance hierarchy from the first element (most
* derived class) to the last (least derived class). The @c Idx
* parameter gives the 0-based index of the element stored at this
* point in the hierarchy; we use it to implement a constant-time
* get() operation.
*/
template<int _Idx, typename... _Elements>
struct _Tuple_impl;
/**
* Zero-element tuple implementation. This is the basis case for the
* inheritance recursion.
*/
template<int _Idx>
struct _Tuple_impl<_Idx> { };
/**
* Recursive tuple implementation. Here we store the @c Head element
* and derive from a @c Tuple_impl containing the remaining elements
* (which contains the @c Tail).
*/
template<int _Idx, typename _Head, typename... _Tail>
struct _Tuple_impl<_Idx, _Head, _Tail...>
: public _Tuple_impl<_Idx + 1, _Tail...>
{
typedef _Tuple_impl<_Idx + 1, _Tail...> _Inherited;
_Head _M_head;
_Inherited& _M_tail() { return *this; }
const _Inherited& _M_tail() const { return *this; }
_Tuple_impl() : _Inherited(), _M_head() { }
explicit
_Tuple_impl(typename __add_c_ref<_Head>::type __head,
typename __add_c_ref<_Tail>::type... __tail)
: _Inherited(__tail...), _M_head(__head) { }
template<typename... _UElements>
_Tuple_impl(const _Tuple_impl<_Idx, _UElements...>& __in)
: _Inherited(__in._M_tail()), _M_head(__in._M_head) { }
_Tuple_impl(const _Tuple_impl& __in)
: _Inherited(__in._M_tail()), _M_head(__in._M_head) { }
template<typename... _UElements>
_Tuple_impl&
operator=(const _Tuple_impl<_Idx, _UElements...>& __in)
{
_M_head = __in._M_head;
_M_tail() = __in._M_tail();
return *this;
}
_Tuple_impl&
operator=(const _Tuple_impl& __in)
{
_M_head = __in._M_head;
_M_tail() = __in._M_tail();
return *this;
}
};
template<typename... _Elements>
class tuple : public _Tuple_impl<0, _Elements...>
{
typedef _Tuple_impl<0, _Elements...> _Inherited;
public:
tuple() : _Inherited() { }
explicit
tuple(typename __add_c_ref<_Elements>::type... __elements)
: _Inherited(__elements...) { }
template<typename... _UElements>
tuple(const tuple<_UElements...>& __in)
: _Inherited(__in) { }
tuple(const tuple& __in)
: _Inherited(__in) { }
template<typename... _UElements>
tuple&
operator=(const tuple<_UElements...>& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
tuple&
operator=(const tuple& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
};
template<> class tuple<> { };
// 2-element tuple, with construction and assignment from a pair.
template<typename _T1, typename _T2>
class tuple<_T1, _T2> : public _Tuple_impl<0, _T1, _T2>
{
typedef _Tuple_impl<0, _T1, _T2> _Inherited;
public:
tuple() : _Inherited() { }
explicit
tuple(typename __add_c_ref<_T1>::type __a1,
typename __add_c_ref<_T2>::type __a2)
: _Inherited(__a1, __a2) { }
template<typename _U1, typename _U2>
tuple(const tuple<_U1, _U2>& __in)
: _Inherited(__in) { }
tuple(const tuple& __in)
: _Inherited(__in) { }
template<typename _U1, typename _U2>
tuple(const pair<_U1, _U2>& __in)
: _Inherited(_Tuple_impl<0,
typename __add_c_ref<_U1>::type,
typename __add_c_ref<_U2>::type>(__in.first,
__in.second))
{ }
template<typename _U1, typename _U2>
tuple&
operator=(const tuple<_U1, _U2>& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
tuple&
operator=(const tuple& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
template<typename _U1, typename _U2>
tuple&
operator=(const pair<_U1, _U2>& __in)
{
this->_M_head = __in.first;
this->_M_tail()._M_head = __in.second;
return *this;
}
};
/// Gives the type of the ith element of a given tuple type.
template<int __i, typename _Tp>
struct tuple_element;
/**
* Recursive case for tuple_element: strip off the first element in
* the tuple and retrieve the (i-1)th element of the remaining tuple.
*/
template<int __i, typename _Head, typename... _Tail>
struct tuple_element<__i, tuple<_Head, _Tail...> >
: tuple_element<__i - 1, tuple<_Tail...> > { };
/**
* Basis case for tuple_element: The first element is the one we're seeking.
*/
template<typename _Head, typename... _Tail>
struct tuple_element<0, tuple<_Head, _Tail...> >
{
typedef _Head type;
};
/// Finds the size of a given tuple type.
template<typename _Tp>
struct tuple_size;
/// class tuple_size
template<typename... _Elements>
struct tuple_size<tuple<_Elements...> >
{
static const int value = sizeof...(_Elements);
};
template<typename... _Elements>
const int tuple_size<tuple<_Elements...> >::value;
template<int __i, typename _Head, typename... _Tail>
inline typename __add_ref<_Head>::type
__get_helper(_Tuple_impl<__i, _Head, _Tail...>& __t)
{
return __t._M_head;
}
template<int __i, typename _Head, typename... _Tail>
inline typename __add_c_ref<_Head>::type
__get_helper(const _Tuple_impl<__i, _Head, _Tail...>& __t)
{
return __t._M_head;
}
// Return a reference (const reference) to the ith element of a tuple.
// Any const or non-const ref elements are returned with their original type.
template<int __i, typename... _Elements>
inline typename __add_ref<
typename tuple_element<__i, tuple<_Elements...> >::type
>::type
get(tuple<_Elements...>& __t)
{
return __get_helper<__i>(__t);
}
template<int __i, typename... _Elements>
inline typename __add_c_ref<
typename tuple_element<__i, tuple<_Elements...> >::type
>::type
get(const tuple<_Elements...>& __t)
{
return __get_helper<__i>(__t);
}
// This class helps construct the various comparison operations on tuples
template<int __check_equal_size, int __i, int __j,
typename _Tp, typename _Up>
struct __tuple_compare;
template<int __i, int __j, typename _Tp, typename _Up>
struct __tuple_compare<0, __i, __j, _Tp, _Up>
{
static bool __eq(const _Tp& __t, const _Up& __u)
{
return (get<__i>(__t) == get<__i>(__u) &&
__tuple_compare<0, __i+1, __j, _Tp, _Up>::__eq(__t, __u));
}
static bool __less(const _Tp& __t, const _Up& __u)
{
return ((get<__i>(__t) < get<__i>(__u))
|| !(get<__i>(__u) < get<__i>(__t)) &&
__tuple_compare<0, __i+1, __j, _Tp, _Up>::__less(__t, __u));
}
};
template<int __i, typename _Tp, typename _Up>
struct __tuple_compare<0, __i, __i, _Tp, _Up>
{
static bool __eq(const _Tp&, const _Up&)
{ return true; }
static bool __less(const _Tp&, const _Up&)
{ return false; }
};
template<typename... _TElements, typename... _UElements>
bool
operator==(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{
typedef tuple<_TElements...> _Tp;
typedef tuple<_UElements...> _Up;
return (__tuple_compare<tuple_size<_Tp>::value - tuple_size<_Up>::value,
0, tuple_size<_Tp>::value, _Tp, _Up>::__eq(__t, __u));
}
template<typename... _TElements, typename... _UElements>
bool
operator<(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{
typedef tuple<_TElements...> _Tp;
typedef tuple<_UElements...> _Up;
return (__tuple_compare<tuple_size<_Tp>::value - tuple_size<_Up>::value,
0, tuple_size<_Tp>::value, _Tp, _Up>::__less(__t, __u));
}
template<typename... _TElements, typename... _UElements>
inline bool
operator!=(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return !(__t == __u); }
template<typename... _TElements, typename... _UElements>
inline bool
operator>(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return __u < __t; }
template<typename... _TElements, typename... _UElements>
inline bool
operator<=(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return !(__u < __t); }
template<typename... _TElements, typename... _UElements>
inline bool
operator>=(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return !(__t < __u); }
template<typename _Tp>
class reference_wrapper;
// Helper which adds a reference to a type when given a reference_wrapper
template<typename _Tp>
struct __strip_reference_wrapper
{
typedef _Tp __type;
};
template<typename _Tp>
struct __strip_reference_wrapper<reference_wrapper<_Tp> >
{
typedef _Tp& __type;
};
template<typename _Tp>
struct __strip_reference_wrapper<const reference_wrapper<_Tp> >
{
typedef _Tp& __type;
};
template<typename... _Elements>
inline tuple<typename __strip_reference_wrapper<_Elements>::__type...>
make_tuple(_Elements... __args)
{
typedef tuple<typename __strip_reference_wrapper<_Elements>::__type...>
__result_type;
return __result_type(__args...);
}
template<typename... _Elements>
inline tuple<_Elements&...>
tie(_Elements&... __args)
{
return tuple<_Elements&...>(__args...);
}
// A class (and instance) which can be used in 'tie' when an element
// of a tuple is not required
struct _Swallow_assign
{
template<class _Tp>
_Swallow_assign&
operator=(const _Tp&)
{ return *this; }
};
// TODO: Put this in some kind of shared file.
namespace
{
_Swallow_assign ignore;
}; // anonymous namespace
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_TUPLE

View File

@@ -0,0 +1,687 @@
// TR1 type_traits -*- C++ -*-
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/type_traits
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_TYPE_TRAITS
#define _GLIBCXX_TR1_TYPE_TRAITS 1
#pragma GCC system_header
#include <bits/c++config.h>
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @addtogroup metaprogramming
* @{
*/
struct __sfinae_types
{
typedef char __one;
typedef struct { char __arr[2]; } __two;
};
#define _DEFINE_SPEC_0_HELPER \
template<>
#define _DEFINE_SPEC_1_HELPER \
template<typename _Tp>
#define _DEFINE_SPEC_2_HELPER \
template<typename _Tp, typename _Cp>
#define _DEFINE_SPEC(_Order, _Trait, _Type, _Value) \
_DEFINE_SPEC_##_Order##_HELPER \
struct _Trait<_Type> \
: public integral_constant<bool, _Value> { };
// helper classes [4.3].
/// integral_constant
template<typename _Tp, _Tp __v>
struct integral_constant
{
static const _Tp value = __v;
typedef _Tp value_type;
typedef integral_constant<_Tp, __v> type;
};
/// typedef for true_type
typedef integral_constant<bool, true> true_type;
/// typedef for false_type
typedef integral_constant<bool, false> false_type;
template<typename _Tp, _Tp __v>
const _Tp integral_constant<_Tp, __v>::value;
/// remove_cv
template<typename>
struct remove_cv;
template<typename>
struct __is_void_helper
: public false_type { };
_DEFINE_SPEC(0, __is_void_helper, void, true)
// primary type categories [4.5.1].
/// is_void
template<typename _Tp>
struct is_void
: public integral_constant<bool, (__is_void_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
template<typename>
struct __is_integral_helper
: public false_type { };
_DEFINE_SPEC(0, __is_integral_helper, bool, true)
_DEFINE_SPEC(0, __is_integral_helper, char, true)
_DEFINE_SPEC(0, __is_integral_helper, signed char, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned char, true)
#ifdef _GLIBCXX_USE_WCHAR_T
_DEFINE_SPEC(0, __is_integral_helper, wchar_t, true)
#endif
_DEFINE_SPEC(0, __is_integral_helper, short, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned short, true)
_DEFINE_SPEC(0, __is_integral_helper, int, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned int, true)
_DEFINE_SPEC(0, __is_integral_helper, long, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned long, true)
_DEFINE_SPEC(0, __is_integral_helper, long long, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned long long, true)
/// is_integral
template<typename _Tp>
struct is_integral
: public integral_constant<bool, (__is_integral_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
template<typename>
struct __is_floating_point_helper
: public false_type { };
_DEFINE_SPEC(0, __is_floating_point_helper, float, true)
_DEFINE_SPEC(0, __is_floating_point_helper, double, true)
_DEFINE_SPEC(0, __is_floating_point_helper, long double, true)
/// is_floating_point
template<typename _Tp>
struct is_floating_point
: public integral_constant<bool, (__is_floating_point_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
/// is_array
template<typename>
struct is_array
: public false_type { };
template<typename _Tp, std::size_t _Size>
struct is_array<_Tp[_Size]>
: public true_type { };
template<typename _Tp>
struct is_array<_Tp[]>
: public true_type { };
template<typename>
struct __is_pointer_helper
: public false_type { };
_DEFINE_SPEC(1, __is_pointer_helper, _Tp*, true)
/// is_pointer
template<typename _Tp>
struct is_pointer
: public integral_constant<bool, (__is_pointer_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
/// is_reference
template<typename _Tp>
struct is_reference;
/// is_function
template<typename _Tp>
struct is_function;
template<typename>
struct __is_member_object_pointer_helper
: public false_type { };
_DEFINE_SPEC(2, __is_member_object_pointer_helper, _Tp _Cp::*,
!is_function<_Tp>::value)
/// is_member_object_pointer
template<typename _Tp>
struct is_member_object_pointer
: public integral_constant<bool, (__is_member_object_pointer_helper<
typename remove_cv<_Tp>::type>::value)>
{ };
template<typename>
struct __is_member_function_pointer_helper
: public false_type { };
_DEFINE_SPEC(2, __is_member_function_pointer_helper, _Tp _Cp::*,
is_function<_Tp>::value)
/// is_member_function_pointer
template<typename _Tp>
struct is_member_function_pointer
: public integral_constant<bool, (__is_member_function_pointer_helper<
typename remove_cv<_Tp>::type>::value)>
{ };
/// is_enum
template<typename _Tp>
struct is_enum
: public integral_constant<bool, __is_enum(_Tp)>
{ };
/// is_union
template<typename _Tp>
struct is_union
: public integral_constant<bool, __is_union(_Tp)>
{ };
/// is_class
template<typename _Tp>
struct is_class
: public integral_constant<bool, __is_class(_Tp)>
{ };
/// is_function
template<typename>
struct is_function
: public false_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...)>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......)>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...) const>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......) const>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...) volatile>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......) volatile>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...) const volatile>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......) const volatile>
: public true_type { };
// composite type traits [4.5.2].
/// is_arithmetic
template<typename _Tp>
struct is_arithmetic
: public integral_constant<bool, (is_integral<_Tp>::value
|| is_floating_point<_Tp>::value)>
{ };
/// is_fundamental
template<typename _Tp>
struct is_fundamental
: public integral_constant<bool, (is_arithmetic<_Tp>::value
|| is_void<_Tp>::value)>
{ };
/// is_object
template<typename _Tp>
struct is_object
: public integral_constant<bool, !(is_function<_Tp>::value
|| is_reference<_Tp>::value
|| is_void<_Tp>::value)>
{ };
/// is_member_pointer
template<typename _Tp>
struct is_member_pointer;
/// is_scalar
template<typename _Tp>
struct is_scalar
: public integral_constant<bool, (is_arithmetic<_Tp>::value
|| is_enum<_Tp>::value
|| is_pointer<_Tp>::value
|| is_member_pointer<_Tp>::value)>
{ };
/// is_compound
template<typename _Tp>
struct is_compound
: public integral_constant<bool, !is_fundamental<_Tp>::value> { };
/// is_member_pointer
template<typename _Tp>
struct __is_member_pointer_helper
: public false_type { };
_DEFINE_SPEC(2, __is_member_pointer_helper, _Tp _Cp::*, true)
template<typename _Tp>
struct is_member_pointer
: public integral_constant<bool, (__is_member_pointer_helper<
typename remove_cv<_Tp>::type>::value)>
{ };
// type properties [4.5.3].
/// is_const
template<typename>
struct is_const
: public false_type { };
template<typename _Tp>
struct is_const<_Tp const>
: public true_type { };
/// is_volatile
template<typename>
struct is_volatile
: public false_type { };
template<typename _Tp>
struct is_volatile<_Tp volatile>
: public true_type { };
/// is_empty
template<typename _Tp>
struct is_empty
: public integral_constant<bool, __is_empty(_Tp)>
{ };
/// is_polymorphic
template<typename _Tp>
struct is_polymorphic
: public integral_constant<bool, __is_polymorphic(_Tp)>
{ };
/// is_abstract
template<typename _Tp>
struct is_abstract
: public integral_constant<bool, __is_abstract(_Tp)>
{ };
/// has_virtual_destructor
template<typename _Tp>
struct has_virtual_destructor
: public integral_constant<bool, __has_virtual_destructor(_Tp)>
{ };
/// alignment_of
template<typename _Tp>
struct alignment_of
: public integral_constant<std::size_t, __alignof__(_Tp)> { };
/// rank
template<typename>
struct rank
: public integral_constant<std::size_t, 0> { };
template<typename _Tp, std::size_t _Size>
struct rank<_Tp[_Size]>
: public integral_constant<std::size_t, 1 + rank<_Tp>::value> { };
template<typename _Tp>
struct rank<_Tp[]>
: public integral_constant<std::size_t, 1 + rank<_Tp>::value> { };
/// extent
template<typename, unsigned _Uint = 0>
struct extent
: public integral_constant<std::size_t, 0> { };
template<typename _Tp, unsigned _Uint, std::size_t _Size>
struct extent<_Tp[_Size], _Uint>
: public integral_constant<std::size_t,
_Uint == 0 ? _Size : extent<_Tp,
_Uint - 1>::value>
{ };
template<typename _Tp, unsigned _Uint>
struct extent<_Tp[], _Uint>
: public integral_constant<std::size_t,
_Uint == 0 ? 0 : extent<_Tp,
_Uint - 1>::value>
{ };
// relationships between types [4.6].
/// is_same
template<typename, typename>
struct is_same
: public false_type { };
template<typename _Tp>
struct is_same<_Tp, _Tp>
: public true_type { };
// const-volatile modifications [4.7.1].
/// remove_const
template<typename _Tp>
struct remove_const
{ typedef _Tp type; };
template<typename _Tp>
struct remove_const<_Tp const>
{ typedef _Tp type; };
/// remove_volatile
template<typename _Tp>
struct remove_volatile
{ typedef _Tp type; };
template<typename _Tp>
struct remove_volatile<_Tp volatile>
{ typedef _Tp type; };
/// remove_cv
template<typename _Tp>
struct remove_cv
{
typedef typename
remove_const<typename remove_volatile<_Tp>::type>::type type;
};
/// add_const
template<typename _Tp>
struct add_const
{ typedef _Tp const type; };
/// add_volatile
template<typename _Tp>
struct add_volatile
{ typedef _Tp volatile type; };
/// add_cv
template<typename _Tp>
struct add_cv
{
typedef typename
add_const<typename add_volatile<_Tp>::type>::type type;
};
// array modifications [4.7.3].
/// remove_extent
template<typename _Tp>
struct remove_extent
{ typedef _Tp type; };
template<typename _Tp, std::size_t _Size>
struct remove_extent<_Tp[_Size]>
{ typedef _Tp type; };
template<typename _Tp>
struct remove_extent<_Tp[]>
{ typedef _Tp type; };
/// remove_all_extents
template<typename _Tp>
struct remove_all_extents
{ typedef _Tp type; };
template<typename _Tp, std::size_t _Size>
struct remove_all_extents<_Tp[_Size]>
{ typedef typename remove_all_extents<_Tp>::type type; };
template<typename _Tp>
struct remove_all_extents<_Tp[]>
{ typedef typename remove_all_extents<_Tp>::type type; };
// pointer modifications [4.7.4].
template<typename _Tp, typename>
struct __remove_pointer_helper
{ typedef _Tp type; };
template<typename _Tp, typename _Up>
struct __remove_pointer_helper<_Tp, _Up*>
{ typedef _Up type; };
/// remove_pointer
template<typename _Tp>
struct remove_pointer
: public __remove_pointer_helper<_Tp, typename remove_cv<_Tp>::type>
{ };
template<typename>
struct remove_reference;
/// add_pointer
template<typename _Tp>
struct add_pointer
{ typedef typename remove_reference<_Tp>::type* type; };
template<typename>
struct is_reference
: public false_type { };
template<typename _Tp>
struct is_reference<_Tp&>
: public true_type { };
template<typename _Tp>
struct is_pod
: public integral_constant<bool, __is_pod(_Tp) || is_void<_Tp>::value>
{ };
template<typename _Tp>
struct has_trivial_constructor
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
template<typename _Tp>
struct has_trivial_copy
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
template<typename _Tp>
struct has_trivial_assign
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
template<typename _Tp>
struct has_trivial_destructor
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
template<typename _Tp>
struct has_nothrow_constructor
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
template<typename _Tp>
struct has_nothrow_copy
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
template<typename _Tp>
struct has_nothrow_assign
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
template<typename>
struct __is_signed_helper
: public false_type { };
_DEFINE_SPEC(0, __is_signed_helper, signed char, true)
_DEFINE_SPEC(0, __is_signed_helper, short, true)
_DEFINE_SPEC(0, __is_signed_helper, int, true)
_DEFINE_SPEC(0, __is_signed_helper, long, true)
_DEFINE_SPEC(0, __is_signed_helper, long long, true)
template<typename _Tp>
struct is_signed
: public integral_constant<bool, (__is_signed_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
template<typename>
struct __is_unsigned_helper
: public false_type { };
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned char, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned short, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned int, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned long, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned long long, true)
template<typename _Tp>
struct is_unsigned
: public integral_constant<bool, (__is_unsigned_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
template<typename _Base, typename _Derived>
struct __is_base_of_helper
{
typedef typename remove_cv<_Base>::type _NoCv_Base;
typedef typename remove_cv<_Derived>::type _NoCv_Derived;
static const bool __value = (is_same<_Base, _Derived>::value
|| (__is_base_of(_Base, _Derived)
&& !is_same<_NoCv_Base,
_NoCv_Derived>::value));
};
template<typename _Base, typename _Derived>
struct is_base_of
: public integral_constant<bool,
__is_base_of_helper<_Base, _Derived>::__value>
{ };
template<typename _From, typename _To>
struct __is_convertible_simple
: public __sfinae_types
{
private:
static __one __test(_To);
static __two __test(...);
static _From __makeFrom();
public:
static const bool __value = sizeof(__test(__makeFrom())) == 1;
};
template<typename _Tp>
struct add_reference;
template<typename _Tp>
struct __is_int_or_cref
{
typedef typename remove_reference<_Tp>::type __rr_Tp;
static const bool __value = (is_integral<_Tp>::value
|| (is_integral<__rr_Tp>::value
&& is_const<__rr_Tp>::value
&& !is_volatile<__rr_Tp>::value));
};
template<typename _From, typename _To,
bool = (is_void<_From>::value || is_void<_To>::value
|| is_function<_To>::value || is_array<_To>::value
// This special case is here only to avoid warnings.
|| (is_floating_point<typename
remove_reference<_From>::type>::value
&& __is_int_or_cref<_To>::__value))>
struct __is_convertible_helper
{
// "An imaginary lvalue of type From...".
static const bool __value = (__is_convertible_simple<typename
add_reference<_From>::type, _To>::__value);
};
template<typename _From, typename _To>
struct __is_convertible_helper<_From, _To, true>
{ static const bool __value = (is_void<_To>::value
|| (__is_int_or_cref<_To>::__value
&& !is_void<_From>::value)); };
template<typename _From, typename _To>
struct is_convertible
: public integral_constant<bool,
__is_convertible_helper<_From, _To>::__value>
{ };
// reference modifications [4.7.2].
template<typename _Tp>
struct remove_reference
{ typedef _Tp type; };
template<typename _Tp>
struct remove_reference<_Tp&>
{ typedef _Tp type; };
// NB: Careful with reference to void.
template<typename _Tp, bool = (is_void<_Tp>::value
|| is_reference<_Tp>::value)>
struct __add_reference_helper
{ typedef _Tp& type; };
template<typename _Tp>
struct __add_reference_helper<_Tp, true>
{ typedef _Tp type; };
template<typename _Tp>
struct add_reference
: public __add_reference_helper<_Tp>
{ };
// other transformations [4.8].
template<std::size_t _Len, std::size_t _Align>
struct aligned_storage
{
union type
{
unsigned char __data[_Len];
struct __attribute__((__aligned__((_Align)))) { } __align;
};
};
#undef _DEFINE_SPEC_0_HELPER
#undef _DEFINE_SPEC_1_HELPER
#undef _DEFINE_SPEC_2_HELPER
#undef _DEFINE_SPEC
/// @} group metaprogramming
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_TYPE_TRAITS

View File

@@ -0,0 +1,44 @@
// TR1 unordered_map -*- C++ -*-
// Copyright (C) 2005-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/unordered_map
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_UNORDERED_MAP
#define _GLIBCXX_TR1_UNORDERED_MAP 1
#pragma GCC system_header
#include <utility>
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_function.h> // equal_to, _Identity, _Select1st
#include <bits/stringfwd.h>
#include <tr1/type_traits>
#include <tr1/functional_hash.h>
#include <tr1/hashtable.h>
#include <tr1/unordered_map.h>
#endif // _GLIBCXX_TR1_UNORDERED_MAP

View File

@@ -0,0 +1,278 @@
// TR1 unordered_map implementation -*- C++ -*-
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/unordered_map.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/unordered_map}
*/
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// NB: When we get typedef templates these class definitions
// will be unnecessary.
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
bool __cache_hash_code = false>
class __unordered_map
: public _Hashtable<_Key, std::pair<const _Key, _Tp>, _Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, true>
{
typedef _Hashtable<_Key, std::pair<const _Key, _Tp>, _Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, true>
_Base;
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
__unordered_map(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
template<typename _InputIterator>
__unordered_map(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
};
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
bool __cache_hash_code = false>
class __unordered_multimap
: public _Hashtable<_Key, std::pair<const _Key, _Tp>,
_Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, false>
{
typedef _Hashtable<_Key, std::pair<const _Key, _Tp>,
_Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, false>
_Base;
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
__unordered_multimap(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
template<typename _InputIterator>
__unordered_multimap(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
};
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_map<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __x,
__unordered_map<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_multimap<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __x,
__unordered_multimap<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
/**
* @brief A standard container composed of unique keys (containing
* at most one of each key value) that associates values of another type
* with the keys.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Key Type of key objects.
* @param Tp Type of mapped objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*
* The resulting value type of the container is std::pair<const Key, Tp>.
*/
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
class unordered_map
: public __unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>
{
typedef __unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc> _Base;
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
unordered_map(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
template<typename _InputIterator>
unordered_map(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
};
/**
* @brief A standard container composed of equivalent keys
* (possibly containing multiple of each key value) that associates
* values of another type with the keys.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Key Type of key objects.
* @param Tp Type of mapped objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*
* The resulting value type of the container is std::pair<const Key, Tp>.
*/
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
class unordered_multimap
: public __unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>
{
typedef __unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc> _Base;
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
unordered_multimap(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
template<typename _InputIterator>
unordered_multimap(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
};
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_VERSION
}
}

View File

@@ -0,0 +1,44 @@
// TR1 unordered_set -*- C++ -*-
// Copyright (C) 2005-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/unordered_set
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_UNORDERED_SET
#define _GLIBCXX_TR1_UNORDERED_SET 1
#pragma GCC system_header
#include <utility>
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_function.h> // equal_to, _Identity, _Select1st
#include <bits/stringfwd.h>
#include <tr1/type_traits>
#include <tr1/functional_hash.h>
#include <tr1/hashtable.h>
#include <tr1/unordered_set.h>
#endif // _GLIBCXX_TR1_UNORDERED_SET

View File

@@ -0,0 +1,267 @@
// TR1 unordered_set implementation -*- C++ -*-
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/unordered_set.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/unordered_set}
*/
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// NB: When we get typedef templates these class definitions
// will be unnecessary.
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value>,
bool __cache_hash_code = false>
class __unordered_set
: public _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, true>
{
typedef _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, true>
_Base;
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
__unordered_set(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
template<typename _InputIterator>
__unordered_set(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
};
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value>,
bool __cache_hash_code = false>
class __unordered_multiset
: public _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, false>
{
typedef _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, false>
_Base;
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
__unordered_multiset(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
template<typename _InputIterator>
__unordered_multiset(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
};
template<class _Value, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_set<_Value, _Hash, _Pred, _Alloc, __cache_hash_code>& __x,
__unordered_set<_Value, _Hash, _Pred, _Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
template<class _Value, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_multiset<_Value, _Hash, _Pred,
_Alloc, __cache_hash_code>& __x,
__unordered_multiset<_Value, _Hash, _Pred,
_Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
/**
* @brief A standard container composed of unique keys (containing
* at most one of each key value) in which the elements' keys are
* the elements themselves.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Value Type of key objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*/
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value> >
class unordered_set
: public __unordered_set<_Value, _Hash, _Pred, _Alloc>
{
typedef __unordered_set<_Value, _Hash, _Pred, _Alloc> _Base;
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
unordered_set(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
template<typename _InputIterator>
unordered_set(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
};
/**
* @brief A standard container composed of equivalent keys
* (possibly containing multiple of each key value) in which the
* elements' keys are the elements themselves.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Value Type of key objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*/
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value> >
class unordered_multiset
: public __unordered_multiset<_Value, _Hash, _Pred, _Alloc>
{
typedef __unordered_multiset<_Value, _Hash, _Pred, _Alloc> _Base;
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
explicit
unordered_multiset(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
template<typename _InputIterator>
unordered_multiset(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
};
template<class _Value, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_set<_Value, _Hash, _Pred, _Alloc>& __x,
unordered_set<_Value, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
template<class _Value, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __x,
unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_VERSION
}
}

View File

@@ -0,0 +1,108 @@
// TR1 utility -*- C++ -*-
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/utility
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_UTILITY
#define _GLIBCXX_TR1_UTILITY 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <bits/stl_relops.h>
#include <bits/stl_pair.h>
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<class _Tp>
class tuple_size;
template<int _Int, class _Tp>
class tuple_element;
// Various functions which give std::pair a tuple-like interface.
template<class _Tp1, class _Tp2>
struct tuple_size<std::pair<_Tp1, _Tp2> >
{ static const int value = 2; };
template<class _Tp1, class _Tp2>
const int
tuple_size<std::pair<_Tp1, _Tp2> >::value;
template<class _Tp1, class _Tp2>
struct tuple_element<0, std::pair<_Tp1, _Tp2> >
{ typedef _Tp1 type; };
template<class _Tp1, class _Tp2>
struct tuple_element<1, std::pair<_Tp1, _Tp2> >
{ typedef _Tp2 type; };
template<int _Int>
struct __pair_get;
template<>
struct __pair_get<0>
{
template<typename _Tp1, typename _Tp2>
static _Tp1& __get(std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.first; }
template<typename _Tp1, typename _Tp2>
static const _Tp1& __const_get(const std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.first; }
};
template<>
struct __pair_get<1>
{
template<typename _Tp1, typename _Tp2>
static _Tp2& __get(std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.second; }
template<typename _Tp1, typename _Tp2>
static const _Tp2& __const_get(const std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.second; }
};
template<int _Int, class _Tp1, class _Tp2>
inline typename tuple_element<_Int, std::pair<_Tp1, _Tp2> >::type&
get(std::pair<_Tp1, _Tp2>& __in)
{ return __pair_get<_Int>::__get(__in); }
template<int _Int, class _Tp1, class _Tp2>
inline const typename tuple_element<_Int, std::pair<_Tp1, _Tp2> >::type&
get(const std::pair<_Tp1, _Tp2>& __in)
{ return __pair_get<_Int>::__const_get(__in); }
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_UTILITY

View File

@@ -0,0 +1,34 @@
// TR1 wchar.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/wchar.h
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_WCHAR_H
#define _GLIBCXX_TR1_WCHAR_H 1
#include <tr1/cwchar>
#endif // _GLIBCXX_TR1_WCHAR_H

View File

@@ -0,0 +1,34 @@
// TR1 wctype.h -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/wctype.h
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_WCTYPE_H
#define _GLIBCXX_TR1_WCTYPE_H 1
#include <tr1/cwctype>
#endif // _GLIBCXX_TR1_WCTYPE_H