forked from KolibriOS/kolibrios
ddk: 4.4
git-svn-id: svn://kolibrios.org@6082 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
@@ -28,13 +28,14 @@
|
||||
* to increment the sequence variables because an interrupt routine could
|
||||
* change the state of the data.
|
||||
*
|
||||
* Based on x86_64 vsyscall gettimeofday
|
||||
* Based on x86_64 vsyscall gettimeofday
|
||||
* by Keith Owens and Andrea Arcangeli
|
||||
*/
|
||||
|
||||
#include <linux/spinlock.h>
|
||||
//#include <linux/preempt.h>
|
||||
#include <linux/lockdep.h>
|
||||
#include <linux/compiler.h>
|
||||
#include <asm/processor.h>
|
||||
|
||||
/*
|
||||
@@ -108,7 +109,7 @@ static inline unsigned __read_seqcount_begin(const seqcount_t *s)
|
||||
unsigned ret;
|
||||
|
||||
repeat:
|
||||
ret = ACCESS_ONCE(s->sequence);
|
||||
ret = READ_ONCE(s->sequence);
|
||||
if (unlikely(ret & 1)) {
|
||||
cpu_relax();
|
||||
goto repeat;
|
||||
@@ -127,7 +128,7 @@ repeat:
|
||||
*/
|
||||
static inline unsigned raw_read_seqcount(const seqcount_t *s)
|
||||
{
|
||||
unsigned ret = ACCESS_ONCE(s->sequence);
|
||||
unsigned ret = READ_ONCE(s->sequence);
|
||||
smp_rmb();
|
||||
return ret;
|
||||
}
|
||||
@@ -179,7 +180,7 @@ static inline unsigned read_seqcount_begin(const seqcount_t *s)
|
||||
*/
|
||||
static inline unsigned raw_seqcount_begin(const seqcount_t *s)
|
||||
{
|
||||
unsigned ret = ACCESS_ONCE(s->sequence);
|
||||
unsigned ret = READ_ONCE(s->sequence);
|
||||
smp_rmb();
|
||||
return ret & ~1;
|
||||
}
|
||||
@@ -236,6 +237,79 @@ static inline void raw_write_seqcount_end(seqcount_t *s)
|
||||
/*
|
||||
* raw_write_seqcount_latch - redirect readers to even/odd copy
|
||||
* @s: pointer to seqcount_t
|
||||
*
|
||||
* The latch technique is a multiversion concurrency control method that allows
|
||||
* queries during non-atomic modifications. If you can guarantee queries never
|
||||
* interrupt the modification -- e.g. the concurrency is strictly between CPUs
|
||||
* -- you most likely do not need this.
|
||||
*
|
||||
* Where the traditional RCU/lockless data structures rely on atomic
|
||||
* modifications to ensure queries observe either the old or the new state the
|
||||
* latch allows the same for non-atomic updates. The trade-off is doubling the
|
||||
* cost of storage; we have to maintain two copies of the entire data
|
||||
* structure.
|
||||
*
|
||||
* Very simply put: we first modify one copy and then the other. This ensures
|
||||
* there is always one copy in a stable state, ready to give us an answer.
|
||||
*
|
||||
* The basic form is a data structure like:
|
||||
*
|
||||
* struct latch_struct {
|
||||
* seqcount_t seq;
|
||||
* struct data_struct data[2];
|
||||
* };
|
||||
*
|
||||
* Where a modification, which is assumed to be externally serialized, does the
|
||||
* following:
|
||||
*
|
||||
* void latch_modify(struct latch_struct *latch, ...)
|
||||
* {
|
||||
* smp_wmb(); <- Ensure that the last data[1] update is visible
|
||||
* latch->seq++;
|
||||
* smp_wmb(); <- Ensure that the seqcount update is visible
|
||||
*
|
||||
* modify(latch->data[0], ...);
|
||||
*
|
||||
* smp_wmb(); <- Ensure that the data[0] update is visible
|
||||
* latch->seq++;
|
||||
* smp_wmb(); <- Ensure that the seqcount update is visible
|
||||
*
|
||||
* modify(latch->data[1], ...);
|
||||
* }
|
||||
*
|
||||
* The query will have a form like:
|
||||
*
|
||||
* struct entry *latch_query(struct latch_struct *latch, ...)
|
||||
* {
|
||||
* struct entry *entry;
|
||||
* unsigned seq, idx;
|
||||
*
|
||||
* do {
|
||||
* seq = lockless_dereference(latch->seq);
|
||||
*
|
||||
* idx = seq & 0x01;
|
||||
* entry = data_query(latch->data[idx], ...);
|
||||
*
|
||||
* smp_rmb();
|
||||
* } while (seq != latch->seq);
|
||||
*
|
||||
* return entry;
|
||||
* }
|
||||
*
|
||||
* So during the modification, queries are first redirected to data[1]. Then we
|
||||
* modify data[0]. When that is complete, we redirect queries back to data[0]
|
||||
* and we can modify data[1].
|
||||
*
|
||||
* NOTE: The non-requirement for atomic modifications does _NOT_ include
|
||||
* the publishing of new entries in the case where data is a dynamic
|
||||
* data structure.
|
||||
*
|
||||
* An iteration might start in data[0] and get suspended long enough
|
||||
* to miss an entire modification sequence, once it resumes it might
|
||||
* observe the new entry.
|
||||
*
|
||||
* NOTE: When data is a dynamic data structure; one should use regular RCU
|
||||
* patterns to manage the lifetimes of the objects within.
|
||||
*/
|
||||
static inline void raw_write_seqcount_latch(seqcount_t *s)
|
||||
{
|
||||
@@ -266,13 +340,13 @@ static inline void write_seqcount_end(seqcount_t *s)
|
||||
}
|
||||
|
||||
/**
|
||||
* write_seqcount_barrier - invalidate in-progress read-side seq operations
|
||||
* write_seqcount_invalidate - invalidate in-progress read-side seq operations
|
||||
* @s: pointer to seqcount_t
|
||||
*
|
||||
* After write_seqcount_barrier, no read-side seq operations will complete
|
||||
* After write_seqcount_invalidate, no read-side seq operations will complete
|
||||
* successfully and see data older than this.
|
||||
*/
|
||||
static inline void write_seqcount_barrier(seqcount_t *s)
|
||||
static inline void write_seqcount_invalidate(seqcount_t *s)
|
||||
{
|
||||
smp_wmb();
|
||||
s->sequence+=2;
|
||||
|
Reference in New Issue
Block a user