forked from KolibriOS/kolibrios
libc.obj:
- Formatted by clang-format (WebKit-style). - Removed unnecessary errno linux. - Added KOS error codes. - String functions have been replaced with more optimal ones for x86. - Changed wrappers for 70 sysfunction. git-svn-id: svn://kolibrios.org@9765 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
@@ -1,8 +1,7 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
#include <math.h>
|
||||
|
||||
double
|
||||
acosh(double x)
|
||||
double acosh(double x)
|
||||
{
|
||||
return log(x + sqrt(x*x - 1));
|
||||
}
|
||||
return log(x + sqrt(x * x - 1));
|
||||
}
|
@@ -1,9 +1,7 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
#include <math.h>
|
||||
|
||||
double
|
||||
asinh(double x)
|
||||
double asinh(double x)
|
||||
{
|
||||
return x>0 ? log(x + sqrt(x*x + 1)) : -log(sqrt(x*x+1)-x);
|
||||
return x > 0 ? log(x + sqrt(x * x + 1)) : -log(sqrt(x * x + 1) - x);
|
||||
}
|
||||
|
||||
|
@@ -30,7 +30,7 @@ doit:
|
||||
fpatan
|
||||
ret
|
||||
isanan:
|
||||
movl $1, _errno
|
||||
movl $1, __errno
|
||||
fstp %st(0)
|
||||
fstp %st(0)
|
||||
fldl nan
|
||||
|
@@ -1,8 +1,7 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
#include <math.h>
|
||||
|
||||
double
|
||||
atanh(double x)
|
||||
double atanh(double x)
|
||||
{
|
||||
return log((1+x)/(1-x)) / 2.0;
|
||||
return log((1 + x) / (1 - x)) / 2.0;
|
||||
}
|
||||
|
@@ -3,6 +3,6 @@
|
||||
|
||||
double cosh(double x)
|
||||
{
|
||||
const double ebig = exp(fabs(x));
|
||||
return (ebig + 1.0/ebig) / 2.0;
|
||||
const double ebig = exp(fabs(x));
|
||||
return (ebig + 1.0 / ebig) / 2.0;
|
||||
}
|
||||
|
@@ -1,26 +1,25 @@
|
||||
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
|
||||
#include <math.h>
|
||||
|
||||
double
|
||||
frexp(double x, int *exptr)
|
||||
double frexp(double x, int* exptr)
|
||||
{
|
||||
union {
|
||||
double d;
|
||||
unsigned char c[8];
|
||||
} u;
|
||||
union {
|
||||
double d;
|
||||
unsigned char c[8];
|
||||
} u;
|
||||
|
||||
u.d = x;
|
||||
/*
|
||||
* The format of the number is:
|
||||
* Sign, 12 exponent bits, 51 mantissa bits
|
||||
* The exponent is 1023 biased and there is an implicit zero.
|
||||
* We get the exponent from the upper bits and set the exponent
|
||||
* to 0x3fe (1022).
|
||||
*/
|
||||
*exptr = (int)(((u.c[7] & 0x7f) << 4) | (u.c[6] >> 4)) - 1022;
|
||||
u.c[7] &= 0x80;
|
||||
u.c[7] |= 0x3f;
|
||||
u.c[6] &= 0x0f;
|
||||
u.c[6] |= 0xe0;
|
||||
return u.d;
|
||||
u.d = x;
|
||||
/*
|
||||
* The format of the number is:
|
||||
* Sign, 12 exponent bits, 51 mantissa bits
|
||||
* The exponent is 1023 biased and there is an implicit zero.
|
||||
* We get the exponent from the upper bits and set the exponent
|
||||
* to 0x3fe (1022).
|
||||
*/
|
||||
*exptr = (int)(((u.c[7] & 0x7f) << 4) | (u.c[6] >> 4)) - 1022;
|
||||
u.c[7] &= 0x80;
|
||||
u.c[7] |= 0x3f;
|
||||
u.c[6] &= 0x0f;
|
||||
u.c[6] |= 0xe0;
|
||||
return u.d;
|
||||
}
|
||||
|
@@ -17,84 +17,80 @@
|
||||
*/
|
||||
|
||||
/// #include <float.h>
|
||||
#include <math.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include <math.h>
|
||||
|
||||
/* Approximate square roots of DBL_MAX and DBL_MIN. Numbers
|
||||
between these two shouldn't neither overflow nor underflow
|
||||
when squared. */
|
||||
#define __SQRT_DBL_MAX 1.3e+154
|
||||
#define __SQRT_DBL_MIN 2.3e-162
|
||||
|
||||
double
|
||||
hypot(double x, double y)
|
||||
|
||||
double hypot(double x, double y)
|
||||
{
|
||||
double abig = fabs(x), asmall = fabs(y);
|
||||
double ratio;
|
||||
|
||||
/* Make abig = max(|x|, |y|), asmall = min(|x|, |y|). */
|
||||
if (abig < asmall)
|
||||
{
|
||||
double temp = abig;
|
||||
|
||||
abig = asmall;
|
||||
asmall = temp;
|
||||
double abig = fabs(x), asmall = fabs(y);
|
||||
double ratio;
|
||||
|
||||
/* Make abig = max(|x|, |y|), asmall = min(|x|, |y|). */
|
||||
if (abig < asmall) {
|
||||
double temp = abig;
|
||||
|
||||
abig = asmall;
|
||||
asmall = temp;
|
||||
}
|
||||
|
||||
/* Trivial case. */
|
||||
if (asmall == 0.)
|
||||
return abig;
|
||||
|
||||
/* Scale the numbers as much as possible by using its ratio.
|
||||
For example, if both ABIG and ASMALL are VERY small, then
|
||||
X^2 + Y^2 might be VERY inaccurate due to loss of
|
||||
significant digits. Dividing ASMALL by ABIG scales them
|
||||
to a certain degree, so that accuracy is better. */
|
||||
|
||||
if ((ratio = asmall / abig) > __SQRT_DBL_MIN && abig < __SQRT_DBL_MAX)
|
||||
return abig * sqrt(1.0 + ratio*ratio);
|
||||
else
|
||||
{
|
||||
/* Slower but safer algorithm due to Moler and Morrison. Never
|
||||
produces any intermediate result greater than roughly the
|
||||
larger of X and Y. Should converge to machine-precision
|
||||
accuracy in 3 iterations. */
|
||||
|
||||
double r = ratio*ratio, t, s, p = abig, q = asmall;
|
||||
|
||||
do {
|
||||
t = 4. + r;
|
||||
if (t == 4.)
|
||||
break;
|
||||
s = r / t;
|
||||
p += 2. * s * p;
|
||||
q *= s;
|
||||
r = (q / p) * (q / p);
|
||||
} while (1);
|
||||
|
||||
return p;
|
||||
|
||||
/* Trivial case. */
|
||||
if (asmall == 0.)
|
||||
return abig;
|
||||
|
||||
/* Scale the numbers as much as possible by using its ratio.
|
||||
For example, if both ABIG and ASMALL are VERY small, then
|
||||
X^2 + Y^2 might be VERY inaccurate due to loss of
|
||||
significant digits. Dividing ASMALL by ABIG scales them
|
||||
to a certain degree, so that accuracy is better. */
|
||||
|
||||
if ((ratio = asmall / abig) > __SQRT_DBL_MIN && abig < __SQRT_DBL_MAX)
|
||||
return abig * sqrt(1.0 + ratio * ratio);
|
||||
else {
|
||||
/* Slower but safer algorithm due to Moler and Morrison. Never
|
||||
produces any intermediate result greater than roughly the
|
||||
larger of X and Y. Should converge to machine-precision
|
||||
accuracy in 3 iterations. */
|
||||
|
||||
double r = ratio * ratio, t, s, p = abig, q = asmall;
|
||||
|
||||
do {
|
||||
t = 4. + r;
|
||||
if (t == 4.)
|
||||
break;
|
||||
s = r / t;
|
||||
p += 2. * s * p;
|
||||
q *= s;
|
||||
r = (q / p) * (q / p);
|
||||
} while (1);
|
||||
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef TEST
|
||||
|
||||
|
||||
#ifdef TEST
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
int
|
||||
main(void)
|
||||
|
||||
int main(void)
|
||||
{
|
||||
printf("hypot(3, 4) =\t\t\t %25.17e\n", hypot(3., 4.));
|
||||
printf("hypot(3*10^150, 4*10^150) =\t %25.17g\n", hypot(3.e+150, 4.e+150));
|
||||
printf("hypot(3*10^306, 4*10^306) =\t %25.17g\n", hypot(3.e+306, 4.e+306));
|
||||
printf("hypot(3*10^-320, 4*10^-320) =\t %25.17g\n",
|
||||
hypot(3.e-320, 4.e-320));
|
||||
printf("hypot(0.7*DBL_MAX, 0.7*DBL_MAX) =%25.17g\n",
|
||||
hypot(0.7*DBL_MAX, 0.7*DBL_MAX));
|
||||
printf("hypot(DBL_MAX, 1.0) =\t\t %25.17g\n", hypot(DBL_MAX, 1.0));
|
||||
printf("hypot(1.0, DBL_MAX) =\t\t %25.17g\n", hypot(1.0, DBL_MAX));
|
||||
printf("hypot(0.0, DBL_MAX) =\t\t %25.17g\n", hypot(0.0, DBL_MAX));
|
||||
|
||||
return 0;
|
||||
printf("hypot(3, 4) =\t\t\t %25.17e\n", hypot(3., 4.));
|
||||
printf("hypot(3*10^150, 4*10^150) =\t %25.17g\n", hypot(3.e+150, 4.e+150));
|
||||
printf("hypot(3*10^306, 4*10^306) =\t %25.17g\n", hypot(3.e+306, 4.e+306));
|
||||
printf("hypot(3*10^-320, 4*10^-320) =\t %25.17g\n",
|
||||
hypot(3.e-320, 4.e-320));
|
||||
printf("hypot(0.7*DBL_MAX, 0.7*DBL_MAX) =%25.17g\n",
|
||||
hypot(0.7 * DBL_MAX, 0.7 * DBL_MAX));
|
||||
printf("hypot(DBL_MAX, 1.0) =\t\t %25.17g\n", hypot(DBL_MAX, 1.0));
|
||||
printf("hypot(1.0, DBL_MAX) =\t\t %25.17g\n", hypot(1.0, DBL_MAX));
|
||||
printf("hypot(0.0, DBL_MAX) =\t\t %25.17g\n", hypot(0.0, DBL_MAX));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
@@ -2,31 +2,27 @@
|
||||
/* Copyright (C) 1995 DJ Delorie, see COPYING.DJ for details */
|
||||
#include <math.h>
|
||||
|
||||
double
|
||||
ldexp(double v, int e)
|
||||
double ldexp(double v, int e)
|
||||
{
|
||||
double two = 2.0;
|
||||
double two = 2.0;
|
||||
|
||||
if (e < 0)
|
||||
{
|
||||
e = -e; /* This just might overflow on two-complement machines. */
|
||||
if (e < 0) return 0.0;
|
||||
while (e > 0)
|
||||
{
|
||||
if (e & 1) v /= two;
|
||||
two *= two;
|
||||
e >>= 1;
|
||||
if (e < 0) {
|
||||
e = -e; /* This just might overflow on two-complement machines. */
|
||||
if (e < 0)
|
||||
return 0.0;
|
||||
while (e > 0) {
|
||||
if (e & 1)
|
||||
v /= two;
|
||||
two *= two;
|
||||
e >>= 1;
|
||||
}
|
||||
} else if (e > 0) {
|
||||
while (e > 0) {
|
||||
if (e & 1)
|
||||
v *= two;
|
||||
two *= two;
|
||||
e >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (e > 0)
|
||||
{
|
||||
while (e > 0)
|
||||
{
|
||||
if (e & 1) v *= two;
|
||||
two *= two;
|
||||
e >>= 1;
|
||||
}
|
||||
}
|
||||
return v;
|
||||
return v;
|
||||
}
|
||||
|
||||
|
@@ -3,14 +3,11 @@
|
||||
|
||||
double sinh(double x)
|
||||
{
|
||||
if(x >= 0.0)
|
||||
{
|
||||
const double epos = exp(x);
|
||||
return (epos - 1.0/epos) / 2.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
const double eneg = exp(-x);
|
||||
return (1.0/eneg - eneg) / 2.0;
|
||||
}
|
||||
if (x >= 0.0) {
|
||||
const double epos = exp(x);
|
||||
return (epos - 1.0 / epos) / 2.0;
|
||||
} else {
|
||||
const double eneg = exp(-x);
|
||||
return (1.0 / eneg - eneg) / 2.0;
|
||||
}
|
||||
}
|
||||
|
@@ -3,15 +3,13 @@
|
||||
|
||||
double tanh(double x)
|
||||
{
|
||||
if (x > 50)
|
||||
return 1;
|
||||
else if (x < -50)
|
||||
return -1;
|
||||
else
|
||||
{
|
||||
const double ebig = exp(x);
|
||||
const double esmall = 1.0/ebig;
|
||||
return (ebig - esmall) / (ebig + esmall);
|
||||
}
|
||||
if (x > 50)
|
||||
return 1;
|
||||
else if (x < -50)
|
||||
return -1;
|
||||
else {
|
||||
const double ebig = exp(x);
|
||||
const double esmall = 1.0 / ebig;
|
||||
return (ebig - esmall) / (ebig + esmall);
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user