kolibrios-gitea/drivers/sensors/coretmp/coretemp.c

508 lines
14 KiB
C
Raw Permalink Normal View History

#include <ddk.h>
#include <syscall.h>
#include <pci.h>
#define CPUID_VENDOR_LENGTH 3 /* 3 GPRs hold vendor ID */
#define CPUID_VENDOR_STR_LENGTH (CPUID_VENDOR_LENGTH * sizeof(uint32_t) + 1)
#define CPUID_BRAND_LENGTH 12 /* 12 GPRs hold vendor ID */
#define CPUID_BRAND_STR_LENGTH (CPUID_BRAND_LENGTH * sizeof(uint32_t) + 1)
typedef union {
unsigned char ch[48];
uint32_t uint[12];
struct {
uint32_t fill1:24; /* Bit 0 */
uint32_t l1_i_sz:8;
uint32_t fill2:24;
uint32_t l1_d_sz:8;
uint32_t fill3:16;
uint32_t l2_sz:16;
uint32_t fill4:18;
uint32_t l3_sz:14;
uint32_t fill5[8];
} amd;
} cpuid_cache_info_t;
/* Typedef for storing the CPUID Vendor String */
typedef union {
/* Note: the extra byte in the char array is for '\0'. */
char char_array[CPUID_VENDOR_STR_LENGTH];
uint32_t uint32_array[CPUID_VENDOR_LENGTH];
} cpuid_vendor_string_t;
/* Typedef for storing the CPUID Brand String */
typedef union {
/* Note: the extra byte in the char array is for '\0'. */
char char_array[CPUID_BRAND_STR_LENGTH];
uint32_t uint32_array[CPUID_BRAND_LENGTH];
} cpuid_brand_string_t;
/* Typedef for storing CPUID Version */
typedef union {
uint32_t flat;
struct {
uint32_t stepping:4; /* Bit 0 */
uint32_t model:4;
uint32_t family:4;
uint32_t processorType:2;
uint32_t reserved1514:2;
uint32_t extendedModel:4;
uint32_t extendedFamily:8;
uint32_t reserved3128:4; /* Bit 31 */
} bits;
} cpuid_version_t;
/* Typedef for storing CPUID Processor Information */
typedef union {
uint32_t flat;
struct {
uint32_t brandIndex:8; /* Bit 0 */
uint32_t cflushLineSize:8;
uint32_t logicalProcessorCount:8;
uint32_t apicID:8; /* Bit 31 */
} bits;
} cpuid_proc_info_t;
/* Typedef for storing CPUID Feature flags */
typedef union {
uint32_t flat;
struct {
uint32_t :1;
} bits;
} cpuid_custom_features;
/* Typedef for storing CPUID Feature flags */
typedef union {
uint32_t uint32_array[3];
struct {
uint32_t fpu:1; /* EDX feature flags, bit 0 */
uint32_t vme:1;
uint32_t de:1;
uint32_t pse:1;
uint32_t rdtsc:1;
uint32_t msr:1;
uint32_t pae:1;
uint32_t mce:1;
uint32_t cx8:1;
uint32_t apic:1;
uint32_t bit10:1;
uint32_t sep:1;
uint32_t mtrr:1;
uint32_t pge:1;
uint32_t mca:1;
uint32_t cmov:1;
uint32_t pat:1;
uint32_t pse36:1;
uint32_t psn:1;
uint32_t cflush:1;
uint32_t bit20:1;
uint32_t ds:1;
uint32_t acpi:1;
uint32_t mmx:1;
uint32_t fxsr:1;
uint32_t sse:1;
uint32_t sse2:1;
uint32_t ss:1;
uint32_t htt:1;
uint32_t tm:1;
uint32_t bit30:1;
uint32_t pbe:1; /* EDX feature flags, bit 31 */
uint32_t sse3:1; /* ECX feature flags, bit 0 */
uint32_t mulq:1;
uint32_t bit2:1;
uint32_t mon:1;
uint32_t dscpl:1;
uint32_t vmx:1;
uint32_t smx:1;
uint32_t eist:1;
uint32_t tm2:1;
uint32_t bits_9_31:23;
uint32_t bits0_28:29; /* EDX extended feature flags, bit 0 */
uint32_t lm:1; /* Long Mode */
uint32_t bits_30_31:2; /* EDX extended feature flags, bit 32 */
} bits;
} cpuid_feature_flags_t;
/* An overall structure to cache all of the CPUID information */
struct cpu_ident {
uint32_t max_cpuid;
uint32_t max_xcpuid;
uint32_t dts_pmp;
cpuid_version_t vers;
cpuid_proc_info_t info;
cpuid_feature_flags_t fid;
cpuid_vendor_string_t vend_id;
cpuid_brand_string_t brand_id;
cpuid_cache_info_t cache_info;
cpuid_custom_features custom;
};
struct cpuid4_eax {
uint32_t ctype:5;
uint32_t level:3;
uint32_t is_self_initializing:1;
uint32_t is_fully_associative:1;
uint32_t reserved:4;
uint32_t num_threads_sharing:12;
uint32_t num_cores_on_die:6;
};
struct cpuid4_ebx {
uint32_t coherency_line_size:12;
uint32_t physical_line_partition:10;
uint32_t ways_of_associativity:10;
};
struct cpuid4_ecx {
uint32_t number_of_sets:32;
};
unsigned imc_type=0;
struct cpu_ident cpu_id;
bool temp_out_disable=false;
#define PCI_CONF_TYPE_NONE 0
#define PCI_CONF_TYPE_1 1
#define PCI_CONF_TYPE_2 2
extern struct cpu_ident cpu_id;
static unsigned char pci_conf_type = PCI_CONF_TYPE_NONE;
#define PCI_CONF1_ADDRESS(bus, dev, fn, reg) \
(0x80000000 | (bus << 16) | (dev << 11) | (fn << 8) | (reg & ~3))
#define PCI_CONF2_ADDRESS(dev, reg) (unsigned short)(0xC000 | (dev << 8) | reg)
#define PCI_CONF3_ADDRESS(bus, dev, fn, reg) \
(0x80000000 | (((reg >> 8) & 0xF) << 24) | (bus << 16) | ((dev & 0x1F) << 11) | (fn << 8) | (reg & 0xFF))
int pci_conf_read(unsigned bus, unsigned dev, unsigned fn, unsigned reg, unsigned len, unsigned long *value)
{
int result;
if (!value || (bus > 255) || (dev > 31) || (fn > 7) || (reg > 255 && pci_conf_type != PCI_CONF_TYPE_1))
return -1;
result = -1;
switch(pci_conf_type) {
case PCI_CONF_TYPE_1:
if(reg < 256){
outl(PCI_CONF1_ADDRESS(bus, dev, fn, reg), 0xCF8);
}else{
outl(PCI_CONF3_ADDRESS(bus, dev, fn, reg), 0xCF8);
}
switch(len) {
case 1: *value = inb(0xCFC + (reg & 3)); result = 0; break;
case 2: *value = inw(0xCFC + (reg & 2)); result = 0; break;
case 4: *value = inl(0xCFC); result = 0; break;
}
break;
case PCI_CONF_TYPE_2:
outb(0xF0 | (fn << 1), 0xCF8);
outb(bus, 0xCFA);
switch(len) {
case 1: *value = inb(PCI_CONF2_ADDRESS(dev, reg)); result = 0; break;
case 2: *value = inw(PCI_CONF2_ADDRESS(dev, reg)); result = 0; break;
case 4: *value = inl(PCI_CONF2_ADDRESS(dev, reg)); result = 0; break;
}
outb(0, 0xCF8);
break;
}
return result;
}
void detect_imc(void)
{
// Check AMD IMC
if(cpu_id.vend_id.char_array[0] == 'A' && cpu_id.vers.bits.family == 0xF)
{
printk("extended family = %x\n", cpu_id.vers.bits.extendedFamily);
switch(cpu_id.vers.bits.extendedFamily)
{
case 0x0:
imc_type = 0x0100; // Old K8
break;
case 0x1:
case 0x2:
imc_type = 0x0101; // K10 (Family 10h & 11h)
break;
case 0x3:
imc_type = 0x0102; // A-Series APU (Family 12h)
break;
case 0x5:
imc_type = 0x0103; // C- / E- / Z- Series APU (Family 14h)
break;
case 0x6:
imc_type = 0x0104; // FX Series (Family 15h)
break;
case 0x7:
imc_type = 0x0105; // Kabini & related (Family 16h)
break;
}
return;
}
// Check Intel IMC
if(cpu_id.vend_id.char_array[0] == 'G' && cpu_id.vers.bits.family == 6 && cpu_id.vers.bits.extendedModel)
{
switch(cpu_id.vers.bits.model)
{
case 0x5:
if(cpu_id.vers.bits.extendedModel == 2) { imc_type = 0x0003; } // Core i3/i5 1st Gen 45 nm (NHM)
if(cpu_id.vers.bits.extendedModel == 3) { temp_out_disable=true; } // Atom Clover Trail
if(cpu_id.vers.bits.extendedModel == 4) { imc_type = 0x0007; } // HSW-ULT
break;
case 0x6:
if(cpu_id.vers.bits.extendedModel == 3) {
imc_type = 0x0009; // Atom Cedar Trail
temp_out_disable=true;
//v->fail_safe |= 4; // Disable Core temp
}
break;
case 0xA:
switch(cpu_id.vers.bits.extendedModel)
{
case 0x1:
imc_type = 0x0001; // Core i7 1st Gen 45 nm (NHME)
break;
case 0x2:
imc_type = 0x0004; // Core 2nd Gen (SNB)
break;
case 0x3:
imc_type = 0x0006; // Core 3nd Gen (IVB)
break;
}
break;
case 0xC:
switch(cpu_id.vers.bits.extendedModel)
{
case 0x1:
if(cpu_id.vers.bits.stepping > 9) { imc_type = 0x0008; } // Atom PineView
//v->fail_safe |= 4; // Disable Core temp
temp_out_disable=true;
break;
case 0x2:
imc_type = 0x0002; // Core i7 1st Gen 32 nm (WMR)
break;
case 0x3:
imc_type = 0x0007; // Core 4nd Gen (HSW)
break;
}
break;
case 0xD:
imc_type = 0x0005; // SNB-E
break;
case 0xE:
imc_type = 0x0001; // Core i7 1st Gen 45 nm (NHM)
break;
}
//if(imc_type) { tsc_invariable = 1; }
return;
}
}
static int pci_check_direct(void)
{
unsigned char tmpCFB;
unsigned int tmpCF8;
if (cpu_id.vend_id.char_array[0] == 'A' && cpu_id.vers.bits.family == 0xF) {
pci_conf_type = PCI_CONF_TYPE_1;
return 0;
} else {
/* Check if configuration type 1 works. */
pci_conf_type = PCI_CONF_TYPE_1;
tmpCFB = inb(0xCFB);
outb(0x01, 0xCFB);
tmpCF8 = inl(0xCF8);
outl(0x80000000, 0xCF8);
if ((inl(0xCF8) == 0x80000000) && (pci_sanity_check() == 0)) {
outl(tmpCF8, 0xCF8);
outb(tmpCFB, 0xCFB);
return 0;
}
outl(tmpCF8, 0xCF8);
/* Check if configuration type 2 works. */
pci_conf_type = PCI_CONF_TYPE_2;
outb(0x00, 0xCFB);
outb(0x00, 0xCF8);
outb(0x00, 0xCFA);
if (inb(0xCF8) == 0x00 && inb(0xCFA) == 0x00 && (pci_sanity_check() == 0)) {
outb(tmpCFB, 0xCFB);
return 0;
}
outb(tmpCFB, 0xCFB);
/* Nothing worked return an error */
pci_conf_type = PCI_CONF_TYPE_NONE;
return -1;
}
}
#define PCI_BASE_CLASS_BRIDGE 0x06
#define PCI_CLASS_BRIDGE_HOST 0x0600
#define PCI_CLASS_DEVICE 0x0a /* Device class */
int pci_sanity_check(void)
{
unsigned long value;
int result;
/* Do a trivial check to make certain we can see a host bridge.
* There are reportedly some buggy chipsets from intel and
* compaq where this test does not work, I will worry about
* that when we support them.
*/
result = pci_conf_read(0, 0, 0, PCI_CLASS_DEVICE, 2, &value);
if (result == 0) {
result = -1;
if (value == PCI_CLASS_BRIDGE_HOST) {
result = 0;
}
}
return result;
}
int pci_init(void)
{
int result;
/* For now just make certain we can directly
* use the pci functions.
*/
result = pci_check_direct();
return result;
}
void get_cpuid()
{
unsigned int *v, dummy[3];
char *p, *q;
/* Get max std cpuid & vendor ID */
cpuid(0x0, &cpu_id.max_cpuid, &cpu_id.vend_id.uint32_array[0],
&cpu_id.vend_id.uint32_array[2], &cpu_id.vend_id.uint32_array[1]);
cpu_id.vend_id.char_array[11] = 0;
/* Get processor family information & feature flags */
if (cpu_id.max_cpuid >= 1) {
cpuid(0x00000001, &cpu_id.vers.flat, &cpu_id.info.flat,
&cpu_id.fid.uint32_array[1], &cpu_id.fid.uint32_array[0]);
}
/* Get the digital thermal sensor & power management status bits */
if(cpu_id.max_cpuid >= 6) {
cpuid(0x00000006, &cpu_id.dts_pmp, &dummy[0], &dummy[1], &dummy[2]);
}
/* Get the max extended cpuid */
cpuid(0x80000000, &cpu_id.max_xcpuid, &dummy[0], &dummy[1], &dummy[2]);
/* Get extended feature flags, only save EDX */
if (cpu_id.max_xcpuid >= 0x80000001) {
cpuid(0x80000001, &dummy[0], &dummy[1],
&dummy[2], &cpu_id.fid.uint32_array[2]);
}
/* Get the brand ID */
if (cpu_id.max_xcpuid >= 0x80000004) {
v = (unsigned int *)&cpu_id.brand_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
cpu_id.brand_id.char_array[47] = 0;
}
/*
* Intel chips right-justify this string for some dumb reason;
* undo that brain damage:
*/
p = q = &cpu_id.brand_id.char_array[0];
while (*p == ' ')
p++;
if (p != q) {
while (*p)
*q++ = *p++;
while (q <= &cpu_id.brand_id.char_array[48])
*q++ = '\0'; /* Zero-pad the rest */
}
/* Get cache information */
switch(cpu_id.vend_id.char_array[0]) {
case 'A':
/* AMD Processors */
/* The cache information is only in ecx and edx so only save
* those registers */
if (cpu_id.max_xcpuid >= 0x80000005) {
cpuid(0x80000005, &dummy[0], &dummy[1],
&cpu_id.cache_info.uint[0], &cpu_id.cache_info.uint[1]);
}
if (cpu_id.max_xcpuid >= 0x80000006) {
cpuid(0x80000006, &dummy[0], &dummy[1],
&cpu_id.cache_info.uint[2], &cpu_id.cache_info.uint[3]);
}
break;
case 'G':
/* Intel Processors, Need to do this in init.c */
break;
}
/* Turn off mon bit since monitor based spin wait may not be reliable */
cpu_id.fid.bits.mon = 0;
}
void coretemp(void)
{
unsigned int msrl, msrh;
unsigned int tjunc, tabs, tnow;
unsigned long rtcr;
long amd_raw_temp=524322;
// Only enable coretemp if IMC is known
if(imc_type == 0) { return; }
tnow = 0;
// Intel CPU
if(cpu_id.vend_id.char_array[0] == 'G' && cpu_id.max_cpuid >= 6)
{
if(cpu_id.dts_pmp & 1){
rdmsr(MSR_IA32_THERM_STATUS, msrl, msrh);
tabs = ((msrl >> 16) & 0x7F);
rdmsr(MSR_IA32_TEMPERATURE_TARGET, msrl, msrh);
tjunc = ((msrl >> 16) & 0x7F);
if(tjunc < 50 || tjunc > 125) { tjunc = 90; } // assume Tjunc = 90°C if boggus value received.
tnow = tjunc - tabs;
//dprint(LINE_CPU+1, 30, v->check_temp, 3, 0);
printk("temp=%d\n", tnow);
}
return;
}
// AMD CPU
if(cpu_id.vend_id.char_array[0] == 'A' && cpu_id.vers.bits.extendedFamily > 0)
{
pci_conf_read(0, 24, 3, 0xA4, 4, &rtcr);
amd_raw_temp = ((rtcr >> 21) & 0x7FF);
printk("temp=%d\n", amd_raw_temp/8);
}
}
unsigned drvEntry(int action, char *cmdline){
get_cpuid();
pci_init();
detect_imc();
if(!temp_out_disable){
coretemp();
}
}