kolibrios-gitea/programs/demos/life2/include/memheap.h

627 lines
18 KiB
C
Raw Normal View History

#ifndef __MEMORY_HEAP_RBTREE_H_INCLUDED_
#define __MEMORY_HEAP_RBTREE_H_INCLUDED_
namespace MemoryHeap
{
typedef unsigned int TMemItem;
enum {NumTreeSmall = 8 * sizeof(TMemItem)};
// Memory heap interface.
struct TFreeSpace
{
TMemItem Small[NumTreeSmall], Min, SmallMask;
};
struct TMemBlock
{
TMemItem *Begin;
};
bool BlockValid(const TMemBlock &block); // Is the given memory block valid?
void *BlockBegin(const TMemBlock &block); // Return the beginning address of the block.
void *BlockEnd(const TMemBlock &block); // Return the ending address of the block.
TFreeSpace &BlockFreeSpace(const TMemBlock &block); // Return the free space of the block.
void InitFreeSpace(TFreeSpace &fs); // Initialize the free space.
TMemBlock NullBlock(); // Return null invalid block.
TMemBlock CreateBlock(void *begin, void *end, TFreeSpace &fs);
// Create a memory block with the given begin and end and add free space of it to (fs),
//_ give (BlockAddSize) bytes of the block for it's data.
//_ (Program can alloc (end - begin - BlockAddSize) bytes after it,
//_ that must be not less than (MemMinSize) ).
TMemBlock CreateBlock(void *begin, void *end);
// Create a memory block with the given begin and end and new free space for it,
//_ give (BlockAddSizeFS) bytes of the block for it's data.
//_ (Program can alloc (end - begin - BlockAddSizeFS) bytes after it,
//_ that must be not less than (MemMinSize) ).
void ResizeBlock(TMemBlock block, void *new_end); // Resize the memory block to the given new end.
void RemoveBlock(TMemBlock block); // Remove the given memory block.
void *BlockEndFor(TMemBlock block, unsigned int size);
// Return the new end of the block needed for (ResizeBlock) to alloc the given size of memory.
unsigned int BlockSize(TMemBlock block); // Return the size of the given block.
unsigned int MemSize(void *mem); // Return the size of the allocced memory.
void *Alloc(TFreeSpace &fs, unsigned int size);
// Alloc a memory in the given free space, give (MemAddSize) bytes for it's data.
void *ReAlloc(TFreeSpace &fs, unsigned int size, void *mem);
// ReAlloc the given memory, it must lie in the block with the given free space.
void Free(TFreeSpace &fs, void *mem);
// Free the given memory, it must lie in the block with the given free space.
// Macro definitions.
#define MEMORY_HEAP_ALIGN_DOWN(s) (MemoryHeap::TMemItem(s) & ~(MemoryHeap::MemAlign - 1))
#define MEMORY_HEAP_ALIGN_UP(s) ((MemoryHeap::TMemItem(s) + (MemoryHeap::MemAlign - 1)) & ~(MemoryHeap::MemAlign - 1))
#define MEMORY_HEAP_ITEM(s,k) ( ((MemoryHeap::TMemItem*)(s))[(k)] )
#define MEMORY_HEAP_NEXT(s) (MEMORY_HEAP_ITEM((s),-1))
#define MEMORY_HEAP_PREV(s) (MEMORY_HEAP_ITEM((s),-2))
#define MEMORY_HEAP_FREE(s) (MEMORY_HEAP_ITEM((s),-1) & 1)
// Constants.
enum {MemAlign = sizeof(TMemItem)};
enum {MemAddSize = MEMORY_HEAP_ALIGN_UP(2 * sizeof(TMemItem))};
enum {BlockEndSize = MemAddSize};
enum {BlockAddSize = MEMORY_HEAP_ALIGN_UP(4 * sizeof(TMemItem)) + BlockEndSize};
enum {BlockAddSizeFS = BlockAddSize + BlockEndSize + MEMORY_HEAP_ALIGN_UP(sizeof(TFreeSpace))};
enum {MemMinSize = MEMORY_HEAP_ALIGN_UP(2 * sizeof(TMemItem))};
// Inline functions.
inline bool BlockValid(const TMemBlock &block) {return block.Begin != 0;}
inline void *BlockBegin(const TMemBlock &block) {return (void*)block.Begin;}
inline void *BlockEnd(const TMemBlock &block) {return block.Begin ? (void*)block.Begin[1] : 0;}
inline TFreeSpace &BlockFreeSpace(const TMemBlock &block) {return *(TFreeSpace*)block.Begin[0];}
inline TMemBlock NullBlock() {TMemBlock block; block.Begin = 0; return block;}
inline void *BlockEndFor(TMemBlock block, unsigned int size)
{
TMemItem last = (TMemItem)block.Begin[1];
TMemItem prevlast = MEMORY_HEAP_PREV(last);
return (void*)( (MEMORY_HEAP_FREE(prevlast) ? prevlast : last) + MemAddSize +
((size <= MemMinSize) ? MemMinSize : MEMORY_HEAP_ALIGN_UP(size)) );
}
inline unsigned int BlockSize(TMemBlock block)
{
if (!block.Begin) return 0;
return (unsigned int)(block.Begin[1] - (TMemItem)block.Begin);
}
inline unsigned int MemSize(void *mem)
{
if (!mem) return 0;
TMemItem c = (TMemItem)mem;
return MEMORY_HEAP_NEXT(c) - c - MemAddSize;
}
// Free space item functions.
TMemItem _FirstNotZeroBit(TMemItem i)
{
TMemItem r = 0;
while ((i >>= 1) != 0) r++;
return r;
}
void _RBTreeRotate(TMemItem parent, TMemItem item, int side)
{
TMemItem temp = MEMORY_HEAP_ITEM(parent,0);
MEMORY_HEAP_ITEM(item,0) = temp;
if (temp)
{
if (MEMORY_HEAP_ITEM(temp,2) == parent)
{
MEMORY_HEAP_ITEM(temp,2) = item;
}
else MEMORY_HEAP_ITEM(temp,3) = item;
}
temp = MEMORY_HEAP_ITEM(item,side^1);
if (temp) MEMORY_HEAP_ITEM(temp,0) = parent;
MEMORY_HEAP_ITEM(parent,side) = temp;
MEMORY_HEAP_ITEM(parent,0) = item;
MEMORY_HEAP_ITEM(item,side^1) = parent;
temp = MEMORY_HEAP_ITEM(parent,1);
MEMORY_HEAP_ITEM(parent,1) = MEMORY_HEAP_ITEM(item,1);
MEMORY_HEAP_ITEM(item,1) = temp;
}
void InitFreeSpace(TFreeSpace &fs)
{
TMemItem i;
for (i = 0; i <= NumTreeSmall; i++) fs.Small[i] = 0;
fs.Min = 0; fs.SmallMask = 0;
}
void _FreeAdd(TFreeSpace &fs, TMemItem item)
{
TMemItem size = MEMORY_HEAP_NEXT(item) - item;
if (size < MemAddSize + MemMinSize + MemAlign * NumTreeSmall)
{
TMemItem s = (size - (MemAddSize + MemMinSize)) / MemAlign;
TMemItem &addto = fs.Small[s];
MEMORY_HEAP_ITEM(item,1) = (TMemItem)(&addto);
MEMORY_HEAP_ITEM(item,0) = (TMemItem)addto;
if (addto) MEMORY_HEAP_ITEM(addto,1) = item;
addto = item;
fs.SmallMask |= TMemItem(1) << s;
return;
}
TMemItem addto = fs.Min, parent, temp;
MEMORY_HEAP_ITEM(item,2) = 0;
MEMORY_HEAP_ITEM(item,3) = 0;
if (!addto)
{
MEMORY_HEAP_ITEM(item,0) = 0;
MEMORY_HEAP_ITEM(item,1) = 1;
fs.Min = item;
return;
}
MEMORY_HEAP_ITEM(item,1) = 0;
TMemItem side = 2;
if (MEMORY_HEAP_NEXT(addto) - addto >= size) fs.Min = item;
else
{
for (;;)
{
parent = MEMORY_HEAP_ITEM(addto,0);
if (!parent) break;
if (MEMORY_HEAP_NEXT(parent) - parent < size) addto = parent;
else break;
}
for (;;)
{
if (MEMORY_HEAP_NEXT(addto) - addto < size)
{
temp = MEMORY_HEAP_ITEM(addto,3);
if (!temp) {side = 3; break;}
addto = temp;
}
else
{
temp = MEMORY_HEAP_ITEM(addto,2);
if (!temp) break;
addto = temp;
}
}
}
MEMORY_HEAP_ITEM(item,0) = addto;
MEMORY_HEAP_ITEM(addto,side) = item;
for (;;)
{
if (MEMORY_HEAP_ITEM(addto,1) != 0) return;
parent = MEMORY_HEAP_ITEM(addto,0);
temp = MEMORY_HEAP_ITEM(parent,2);
if (temp == addto)
{
temp = MEMORY_HEAP_ITEM(parent,3);
side = 2;
}
else side = 3;
if (!temp || MEMORY_HEAP_ITEM(temp,1) != 0) break;
MEMORY_HEAP_ITEM(addto,1) = 1;
MEMORY_HEAP_ITEM(temp,1) = 1;
item = parent;
addto = MEMORY_HEAP_ITEM(item,0);
if (!addto) return;
MEMORY_HEAP_ITEM(item,1) = 0;
}
if (MEMORY_HEAP_ITEM(addto,side) != item)
{
temp = MEMORY_HEAP_ITEM(item,side);
if (temp) MEMORY_HEAP_ITEM(temp,0) = addto;
MEMORY_HEAP_ITEM(addto,side^1) = temp;
MEMORY_HEAP_ITEM(addto,0) = item;
MEMORY_HEAP_ITEM(item,side) = addto;
MEMORY_HEAP_ITEM(item,0) = parent;
MEMORY_HEAP_ITEM(parent,side) = item;
}
else item = addto;
_RBTreeRotate(parent, item, side);
}
void _FreeDel(TFreeSpace &fs, TMemItem item)
{
TMemItem size = MEMORY_HEAP_NEXT(item) - item;
if (size < MemAddSize + MemMinSize + MemAlign * NumTreeSmall)
{
TMemItem prev = MEMORY_HEAP_ITEM(item,1);
TMemItem next = MEMORY_HEAP_ITEM(item,0);
MEMORY_HEAP_ITEM(prev,0) = next;
if (next) MEMORY_HEAP_ITEM(next,1) = prev;
else
{
TMemItem s = (size - (MemAddSize + MemMinSize)) / MemAlign;
if (!fs.Small[s]) fs.SmallMask &= ~(TMemItem(1) << s);
}
return;
}
TMemItem parent, temp, second, add;
TMemItem side = 2;
temp = MEMORY_HEAP_ITEM(item,3);
if (temp)
{
for (;;)
{
second = temp;
temp = MEMORY_HEAP_ITEM(temp,2);
if (!temp) break;
}
if (fs.Min == item) fs.Min = second;
add = MEMORY_HEAP_ITEM(second,3);
parent = MEMORY_HEAP_ITEM(second,0);
if (parent == item) {parent = second; side = 3;}
else
{
temp = MEMORY_HEAP_ITEM(item,3);
MEMORY_HEAP_ITEM(second,3) = temp;
MEMORY_HEAP_ITEM(temp,0) = second;
}
temp = MEMORY_HEAP_ITEM(item,2);
MEMORY_HEAP_ITEM(second,2) = temp;
if (temp) MEMORY_HEAP_ITEM(temp,0) = second;
temp = MEMORY_HEAP_ITEM(item,0);
MEMORY_HEAP_ITEM(second,0) = temp;
if (temp)
{
if (MEMORY_HEAP_ITEM(temp,2) == item)
{
MEMORY_HEAP_ITEM(temp,2) = second;
}
else MEMORY_HEAP_ITEM(temp,3) = second;
}
MEMORY_HEAP_ITEM(parent,side) = add;
if (add) MEMORY_HEAP_ITEM(add,0) = parent;
bool color = MEMORY_HEAP_ITEM(second,1);
MEMORY_HEAP_ITEM(second,1) = MEMORY_HEAP_ITEM(item,1);
if (!color) return;
}
else
{
if (fs.Min == item) fs.Min = MEMORY_HEAP_ITEM(item,0);
add = MEMORY_HEAP_ITEM(item,2);
parent = MEMORY_HEAP_ITEM(item,0);
if (add) MEMORY_HEAP_ITEM(add,0) = parent;
if (parent)
{
if (MEMORY_HEAP_ITEM(parent,2) == item)
{
MEMORY_HEAP_ITEM(parent,2) = add;
}
else
{
MEMORY_HEAP_ITEM(parent,3) = add;
side = 3;
}
}
else
{
if (add) MEMORY_HEAP_ITEM(add,1) = 1;
return;
}
if (!MEMORY_HEAP_ITEM(item,1)) return;
}
if (add && !MEMORY_HEAP_ITEM(add,1))
{
MEMORY_HEAP_ITEM(add,1) = 1;
return;
}
for (;;)
{
second = MEMORY_HEAP_ITEM(parent,side^1);
if (!MEMORY_HEAP_ITEM(second,1))
{
_RBTreeRotate(parent, second, side^1);
second = MEMORY_HEAP_ITEM(parent,side^1);
}
temp = MEMORY_HEAP_ITEM(second,side^1);
if (temp && !MEMORY_HEAP_ITEM(temp,1))
{
MEMORY_HEAP_ITEM(temp,1) = 1;
break;
}
temp = MEMORY_HEAP_ITEM(second,side);
if (temp && !MEMORY_HEAP_ITEM(temp,1))
{
_RBTreeRotate(second, temp, side);
MEMORY_HEAP_ITEM(second,1) = 1;
second = temp;
break;
}
MEMORY_HEAP_ITEM(second,1) = 0;
if (!MEMORY_HEAP_ITEM(parent,1))
{
MEMORY_HEAP_ITEM(parent,1) = 1;
return;
}
second = parent;
parent = MEMORY_HEAP_ITEM(second,0);
if (!parent) return;
if (MEMORY_HEAP_ITEM(parent,2) == second) side = 2;
else side = 3;
}
_RBTreeRotate(parent, second, side^1);
}
TMemItem _FreeFindAfter(TMemItem item, TMemItem size)
{
if (!item) return 0;
TMemItem paritem, s;
if (MEMORY_HEAP_NEXT(item) - item >= size) return item;
for (;;)
{
paritem = MEMORY_HEAP_ITEM(item,0);
if (!paritem) break;
s = MEMORY_HEAP_NEXT(paritem) - paritem;
if (s == size) return paritem;
if (s < size) item = paritem;
else break;
}
MEMORY_HEAP_ITEM(item,3);
for (;;)
{
if (!item) return paritem;
s = MEMORY_HEAP_NEXT(item) - item;
if (s == size) return item;
if (s < size) item = MEMORY_HEAP_ITEM(item,3);
else
{
paritem = item;
item = MEMORY_HEAP_ITEM(item,2);
}
}
}
TMemItem _FreeFind(TFreeSpace &fs, TMemItem size)
{
TMemItem item, nextitem, s;
if (size < MemAddSize + MemMinSize + MemAlign * NumTreeSmall)
{
TMemItem m, t;
s = (size - (MemAddSize + MemMinSize)) / MemAlign;
item = fs.Small[s];
if (item) return item;
if (size < MemAlign * NumTreeSmall)
{
t = size / MemAlign;
m = fs.SmallMask >> t;
if (m) return fs.Small[t + _FirstNotZeroBit(m)];
else if (fs.Min) return fs.Min;
}
else
{
item = _FreeFindAfter(fs.Min, size + 1 + MemAddSize + MemMinSize);
if (item) return item;
}
m = fs.SmallMask >> s;
if (m) return fs.Small[s + _FirstNotZeroBit(m)];
else return fs.Min;
}
item = _FreeFindAfter(fs.Min, ++size);
if (!item) return 0;
s = MEMORY_HEAP_NEXT(item) - item;
if (s == size) return item;
size += MemAddSize + MemMinSize;
if (s >= size) return item;
nextitem = _FreeFindAfter(item, size);
return nextitem ? nextitem : item;
}
// Block functions.
inline void _CreateBlockEnd(TMemBlock &block, TFreeSpace &fs, TMemItem c, TMemItem e)
{
block.Begin[0] = (TMemItem)(&fs);
if (e - c < TMemItem(MemAddSize + MemMinSize))
{
MEMORY_HEAP_NEXT(c) = 0;
block.Begin[1] = c;
}
else
{
MEMORY_HEAP_NEXT(c) = e + 1;
_FreeAdd(fs, c);
MEMORY_HEAP_PREV(e) = c;
MEMORY_HEAP_NEXT(e) = 0;
block.Begin[1] = e;
}
}
TMemBlock CreateBlock(void *begin, void *end, TFreeSpace &fs)
{
TMemBlock block = {0};
TMemItem b = MEMORY_HEAP_ALIGN_UP(begin);
TMemItem e = MEMORY_HEAP_ALIGN_DOWN(end);
if (e <= b || e - b < TMemItem(BlockAddSize - MemAddSize)) return block;
block.Begin = (TMemItem*)b;
b += MEMORY_HEAP_ALIGN_UP(4 * sizeof(TMemItem));
MEMORY_HEAP_PREV(b) = 0;
_CreateBlockEnd(block, fs, b, e);
return block;
}
TMemBlock CreateBlock(void *begin, void *end)
{
TMemBlock block = {0};
TMemItem b = MEMORY_HEAP_ALIGN_UP(begin);
TMemItem e = MEMORY_HEAP_ALIGN_DOWN(end);
if (e <= b || e - b < TMemItem(BlockAddSizeFS - MemAddSize)) return block;
block.Begin = (TMemItem*)b;
b += MEMORY_HEAP_ALIGN_UP(4 * sizeof(TMemItem));
TMemItem c = b + MemAddSize + MEMORY_HEAP_ALIGN_UP(sizeof(TFreeSpace));
MEMORY_HEAP_PREV(b) = 0;
MEMORY_HEAP_NEXT(b) = c;
MEMORY_HEAP_PREV(c) = b;
InitFreeSpace(*(TFreeSpace*)b);
_CreateBlockEnd(block, *(TFreeSpace*)b, c, e);
return block;
}
void ResizeBlock(TMemBlock block, void *new_end)
{
if (!BlockValid(block)) return;
TMemItem e = MEMORY_HEAP_ALIGN_DOWN(new_end);
TMemItem c = block.Begin[1];
TFreeSpace &fs = *(TFreeSpace*)block.Begin[0];
do
{
if (c == e) return;
else if (c > e)
{
while ((c = MEMORY_HEAP_PREV(c)) > e)
{
if (MEMORY_HEAP_FREE(c)) _FreeDel(fs, c);
}
if (!c) {block.Begin = 0; return;}
if (MEMORY_HEAP_FREE(c))
{
_FreeDel(fs, c);
if (e - c < TMemItem(MemAddSize + MemMinSize)) e = c;
else
{
MEMORY_HEAP_NEXT(c) = e + 1;
_FreeAdd(*(TFreeSpace*)block.Begin[0], c);
break;
}
}
else if (e - c >= TMemItem(MemAddSize + MemMinSize))
{
MEMORY_HEAP_NEXT(c) = e; break;
}
MEMORY_HEAP_NEXT(c) = 0;
block.Begin[1] = c;
if (c == e) return;
}
TMemItem pc = MEMORY_HEAP_PREV(c);
if (pc && MEMORY_HEAP_FREE(pc)) _FreeDel(fs, c = pc);
else if (e - c < TMemItem(MemAddSize + MemMinSize)) return;
MEMORY_HEAP_NEXT(c) = e + 1;
_FreeAdd(fs, c);
} while(false);
MEMORY_HEAP_PREV(e) = c;
MEMORY_HEAP_NEXT(e) = 0;
block.Begin[1] = e;
}
void RemoveBlock(TMemBlock block)
{
if (!BlockValid(block)) return;
TMemItem e = block.Begin[1];
TFreeSpace &fs = *(TFreeSpace*)block.Begin[0];
while ((e = MEMORY_HEAP_PREV(e)) != 0)
{
if (MEMORY_HEAP_FREE(e)) _FreeDel(fs, e);
}
block.Begin = 0;
}
// Free space functions.
void _CopyMemItemArray(TMemItem dest, TMemItem src, TMemItem end)
{
TMemItem k = (end - src) / sizeof(TMemItem);
TMemItem *d = (TMemItem*)dest;
TMemItem *s = (TMemItem*)src;
while (k--) *(d++) = *(s++);
}
void *Alloc(TFreeSpace &fs, unsigned int size)
{
if (!size) return 0;
TMemItem s = MEMORY_HEAP_ALIGN_UP(size) + MemAddSize;
if (s < MemAddSize + MemMinSize) s = MemAddSize + MemMinSize;
TMemItem c = _FreeFind(fs, s);
if (!c) return 0;
_FreeDel(fs, c);
TMemItem nc = --MEMORY_HEAP_NEXT(c);
TMemItem mc = c + s;
if (nc - (MemAddSize + MemMinSize) >= mc)
{
MEMORY_HEAP_NEXT(c) = mc;
MEMORY_HEAP_PREV(mc) = c;
MEMORY_HEAP_NEXT(mc) = nc + 1;
MEMORY_HEAP_PREV(nc) = mc;
_FreeAdd(fs, mc);
}
return (void*)c;
}
void *ReAlloc(TFreeSpace &fs, void *mem, unsigned int size)
{
if (!mem) return Alloc(fs, size);
if (!size) {Free(fs, mem); return 0;}
TMemItem s = MEMORY_HEAP_ALIGN_UP(size) + MemAddSize;
TMemItem c = (TMemItem)mem;
TMemItem mc = MEMORY_HEAP_NEXT(c);
TMemItem nc = MEMORY_HEAP_NEXT(mc);
if (--nc & 1) nc = mc;
if (s < MemAddSize + MemMinSize) s = MemAddSize + MemMinSize;
if (nc - c < s)
{
mem = Alloc(fs, size);
if (mem)
{
_CopyMemItemArray((TMemItem)mem, c, mc - MemAddSize);
Free(fs, (void*)c);
return mem;
}
else
{
TMemItem pc = MEMORY_HEAP_PREV(c);
if (pc && MEMORY_HEAP_FREE(pc) && nc - pc >= s)
{
_FreeDel(fs, pc);
_CopyMemItemArray(pc, c, mc - MemAddSize);
c = pc;
}
else return 0;
}
}
if (mc < nc) _FreeDel(fs, mc);
mc = c + s;
if (nc - (MemAddSize + MemMinSize) >= mc)
{
MEMORY_HEAP_NEXT(c) = mc;
MEMORY_HEAP_PREV(mc) = c;
MEMORY_HEAP_NEXT(mc) = nc + 1;
MEMORY_HEAP_PREV(nc) = mc;
_FreeAdd(fs, mc);
}
else
{
MEMORY_HEAP_NEXT(c) = nc;
MEMORY_HEAP_PREV(nc) = c;
}
return (void*)c;
}
int free_a = 0;
void Free(TFreeSpace &fs, void *mem)
{
TMemItem c = (TMemItem)mem;
if (!c) return;
TMemItem pc = MEMORY_HEAP_PREV(c);
TMemItem mc = MEMORY_HEAP_NEXT(c);
TMemItem nc = MEMORY_HEAP_NEXT(mc);
if (--nc & 1) nc = mc;
else _FreeDel(fs, mc);
if (free_a == 1) return;
if (pc && MEMORY_HEAP_FREE(pc)) _FreeDel(fs, c = pc);
MEMORY_HEAP_NEXT(c) = nc + 1;
MEMORY_HEAP_PREV(nc) = c;
if (free_a == 2) return;
_FreeAdd(fs, c);
}
}
#endif // ndef __MEMORY_HEAP_RBTREE_H_INCLUDED_