kolibrios-gitea/contrib/media/stb_vorbis/qsort.c

252 lines
8.5 KiB
C
Raw Normal View History

/*******************************************************************************
*
* Author: Remi Dufour - remi.dufour@gmail.com
* Date: July 23rd, 2012
*
* Name: Quicksort
*
* Description: This is a well-known sorting algorithm developed by C. A. R.
* Hoare. It is a comparison sort and in this implementation,
* is not a stable sort.
*
* Note: This is public-domain C implementation written from
* scratch. Use it at your own risk.
*
*******************************************************************************/
#include <limits.h>
#include <stddef.h>
/* Insertion sort threshold shift
*
* This macro defines the threshold shift (power of 2) at which the insertion
* sort algorithm replaces the Quicksort. A zero threshold shift disables the
* insertion sort completely.
*
* The value is optimized for Linux and MacOS on the Intel x86 platform.
*/
#ifndef INSERTION_SORT_THRESHOLD_SHIFT
# ifdef __APPLE__ & __MACH__
# define INSERTION_SORT_THRESHOLD_SHIFT 0
# else
# define INSERTION_SORT_THRESHOLD_SHIFT 2
# endif
#endif
/* Macro SWAP
*
* Swaps the elements of two arrays.
*
* The length of the swap is determined by the value of "SIZE". While both
* arrays can't overlap, the case in which both pointers are the same works.
*/
#define SWAP(A,B,SIZE) \
{ \
register char *a_byte = A; \
register char *b_byte = B; \
register const char *a_end = a_byte + SIZE; \
\
while (a_byte < a_end) \
{ \
register const char swap_byte = *b_byte; \
*b_byte++ = *a_byte; \
*a_byte++ = swap_byte; \
} \
}
/* Macro SWAP_NEXT
*
* Swaps the elements of an array with its next value.
*
* The length of the swap is determined by the value of "SIZE". This macro
* must be used at the beginning of a scope and "A" shouldn't be an expression.
*/
#define SWAP_NEXT(A,SIZE) \
register char *a_byte = A; \
register const char *a_end = A + SIZE; \
\
while (a_byte < a_end) \
{ \
register const char swap_byte = *(a_byte + SIZE); \
*(a_byte + SIZE) = *a_byte; \
*a_byte++ = swap_byte; \
}
/* Function Quicksort
*
* This function performs a basic Quicksort. This implementation is the
* in-place version of the algorithm and is done in he following way:
*
* 1. In the middle of the array, we determine a pivot that we temporarily swap
* to the end.
* 2. From the beginning to the end of the array, we swap any elements smaller
* than this pivot to the start, adjacent to other elements that were
* already moved.
* 3. We swap the pivot next to these smaller elements.
* 4. For both sub-arrays on sides of the pivot, we repeat this process
* recursively.
* 5. For a sub-array smaller than a certain threshold, the insertion sort
* algorithm takes over.
*
* As an optimization, rather than performing a real recursion, we keep a
* global stack to track boundaries for each recursion level.
*
* To ensure that at most O(log2 N) space is used, we recurse into the smaller
* partition first. The log2 of the highest unsigned value of an integer type
* is the number of bits needed to store that integer.
*/
void qsort(void *array,
size_t length,
size_t size,
int(*compare)(const void *, const void *))
{
/* Recursive stacks for array boundaries (both inclusive) */
struct stackframe
{
void *left;
void *right;
} stack[CHAR_BIT * sizeof(void *)];
/* Recursion level */
struct stackframe *recursion = stack;
#if INSERTION_SORT_THRESHOLD_SHIFT != 0
/* Insertion sort threshold */
const int threshold = size << INSERTION_SORT_THRESHOLD_SHIFT;
#endif
/* Assign the first recursion level of the sorting */
recursion->left = array;
recursion->right = (char *)array + size * (length - 1);
do
{
/* Partition the array */
register char *index = recursion->left;
register char *right = recursion->right;
char *left = index;
/* Assigning store to the left */
register char *store = index;
/* Pop the stack */
--recursion;
/* Determine a pivot (in the middle) and move it to the end */
const size_t middle = (right - left) >> 1;
SWAP(left + middle - middle % size,right,size)
/* From left to right */
while (index < right)
{
/* If item is smaller than pivot */
if (compare(right, index) > 0)
{
/* Swap item and store */
SWAP(index,store,size)
/* We increment store */
store += size;
}
index += size;
}
/* Move the pivot to its final place */
SWAP(right,store,size)
/* Performs a recursion to the left */
#define RECURSE_LEFT \
if (left < store - size) \
{ \
(++recursion)->left = left; \
recursion->right = store - size; \
}
/* Performs a recursion to the right */
#define RECURSE_RIGHT \
if (store + size < right) \
{ \
(++recursion)->left = store + size; \
recursion->right = right; \
}
/* Insertion sort inner-loop */
#define INSERTION_SORT_LOOP(LEFT) \
{ \
register char *trail = index - size; \
while (trail >= LEFT && compare(trail, trail + size) > 0) \
{ \
SWAP_NEXT(trail,size) \
trail -= size; \
} \
}
/* Performs insertion sort left of the pivot */
#define INSERTION_SORT_LEFT \
for (index = left + size; index < store; index +=size) \
INSERTION_SORT_LOOP(left)
/* Performs insertion sort right of the pivot */
#define INSERTION_SORT_RIGHT \
for (index = store + (size << 1); index <= right; index +=size) \
INSERTION_SORT_LOOP(store + size)
/* Sorts to the left */
#if INSERTION_SORT_THRESHOLD_SHIFT == 0
# define SORT_LEFT RECURSE_LEFT
#else
# define SORT_LEFT \
if (store - left <= threshold) \
{ \
INSERTION_SORT_LEFT \
} \
else \
{ \
RECURSE_LEFT \
}
#endif
/* Sorts to the right */
#if INSERTION_SORT_THRESHOLD_SHIFT == 0
# define SORT_RIGHT RECURSE_RIGHT
#else
# define SORT_RIGHT \
if (right - store <= threshold) \
{ \
INSERTION_SORT_RIGHT \
} \
else \
{ \
RECURSE_RIGHT \
}
#endif
/* Recurse into the smaller partition first */
if (store - left < right - store)
{
/* Left side is smaller */
SORT_RIGHT
SORT_LEFT
continue;
}
/* Right side is smaller */
SORT_LEFT
SORT_RIGHT
#undef RECURSE_LEFT
#undef RECURSE_RIGHT
#undef INSERTION_SORT_LOOP
#undef INSERTION_SORT_LEFT
#undef INSERTION_SORT_RIGHT
#undef SORT_LEFT
#undef SORT_RIGHT
}
while (recursion >= stack);
}
#undef INSERTION_SORT_THRESHOLD_SHIFT
#undef SWAP
#undef SWAP_NEXT