kolibrios-gitea/drivers/video/Intel-2D/gen5_render.c

1421 lines
43 KiB
C
Raw Normal View History

/*
* Copyright © 2006,2008,2011 Intel Corporation
* Copyright © 2007 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Wang Zhenyu <zhenyu.z.wang@sna.com>
* Eric Anholt <eric@anholt.net>
* Carl Worth <cworth@redhat.com>
* Keith Packard <keithp@keithp.com>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sna.h"
#include "sna_reg.h"
#include "sna_render.h"
#include "sna_render_inline.h"
//#include "sna_video.h"
#include "brw/brw.h"
#include "gen5_render.h"
#include "gen4_source.h"
#include "gen4_vertex.h"
#define NO_COMPOSITE 0
#define NO_COMPOSITE_SPANS 0
#define PREFER_BLT_FILL 1
#define DBG_NO_STATE_CACHE 0
#define DBG_NO_SURFACE_CACHE 0
#define MAX_3D_SIZE 8192
#define GEN5_GRF_BLOCKS(nreg) ((nreg + 15) / 16 - 1)
/* Set up a default static partitioning of the URB, which is supposed to
* allow anything we would want to do, at potentially lower performance.
*/
#define URB_CS_ENTRY_SIZE 1
#define URB_CS_ENTRIES 0
#define URB_VS_ENTRY_SIZE 1
#define URB_VS_ENTRIES 256 /* minimum of 8 */
#define URB_GS_ENTRY_SIZE 0
#define URB_GS_ENTRIES 0
#define URB_CLIP_ENTRY_SIZE 0
#define URB_CLIP_ENTRIES 0
#define URB_SF_ENTRY_SIZE 2
#define URB_SF_ENTRIES 64
/*
* this program computes dA/dx and dA/dy for the texture coordinates along
* with the base texture coordinate. It was extracted from the Mesa driver
*/
#define SF_KERNEL_NUM_GRF 16
#define SF_MAX_THREADS 48
#define PS_KERNEL_NUM_GRF 32
#define PS_MAX_THREADS 72
static const uint32_t ps_kernel_packed_static[][4] = {
#include "exa_wm_xy.g5b"
#include "exa_wm_src_affine.g5b"
#include "exa_wm_src_sample_argb.g5b"
#include "exa_wm_yuv_rgb.g5b"
#include "exa_wm_write.g5b"
};
static const uint32_t ps_kernel_planar_static[][4] = {
#include "exa_wm_xy.g5b"
#include "exa_wm_src_affine.g5b"
#include "exa_wm_src_sample_planar.g5b"
#include "exa_wm_yuv_rgb.g5b"
#include "exa_wm_write.g5b"
};
#define NOKERNEL(kernel_enum, func, masked) \
[kernel_enum] = {func, 0, masked}
#define KERNEL(kernel_enum, kernel, masked) \
[kernel_enum] = {&kernel, sizeof(kernel), masked}
static const struct wm_kernel_info {
const void *data;
unsigned int size;
bool has_mask;
} wm_kernels[] = {
NOKERNEL(WM_KERNEL, brw_wm_kernel__affine, false),
NOKERNEL(WM_KERNEL_P, brw_wm_kernel__projective, false),
NOKERNEL(WM_KERNEL_MASK, brw_wm_kernel__affine_mask, true),
NOKERNEL(WM_KERNEL_MASK_P, brw_wm_kernel__projective_mask, true),
NOKERNEL(WM_KERNEL_MASKCA, brw_wm_kernel__affine_mask_ca, true),
NOKERNEL(WM_KERNEL_MASKCA_P, brw_wm_kernel__projective_mask_ca, true),
NOKERNEL(WM_KERNEL_MASKSA, brw_wm_kernel__affine_mask_sa, true),
NOKERNEL(WM_KERNEL_MASKSA_P, brw_wm_kernel__projective_mask_sa, true),
NOKERNEL(WM_KERNEL_OPACITY, brw_wm_kernel__affine_opacity, true),
NOKERNEL(WM_KERNEL_OPACITY_P, brw_wm_kernel__projective_opacity, true),
KERNEL(WM_KERNEL_VIDEO_PLANAR, ps_kernel_planar_static, false),
KERNEL(WM_KERNEL_VIDEO_PACKED, ps_kernel_packed_static, false),
};
#undef KERNEL
static const struct blendinfo {
bool src_alpha;
uint32_t src_blend;
uint32_t dst_blend;
} gen5_blend_op[] = {
/* Clear */ {0, GEN5_BLENDFACTOR_ZERO, GEN5_BLENDFACTOR_ZERO},
/* Src */ {0, GEN5_BLENDFACTOR_ONE, GEN5_BLENDFACTOR_ZERO},
/* Dst */ {0, GEN5_BLENDFACTOR_ZERO, GEN5_BLENDFACTOR_ONE},
/* Over */ {1, GEN5_BLENDFACTOR_ONE, GEN5_BLENDFACTOR_INV_SRC_ALPHA},
/* OverReverse */ {0, GEN5_BLENDFACTOR_INV_DST_ALPHA, GEN5_BLENDFACTOR_ONE},
/* In */ {0, GEN5_BLENDFACTOR_DST_ALPHA, GEN5_BLENDFACTOR_ZERO},
/* InReverse */ {1, GEN5_BLENDFACTOR_ZERO, GEN5_BLENDFACTOR_SRC_ALPHA},
/* Out */ {0, GEN5_BLENDFACTOR_INV_DST_ALPHA, GEN5_BLENDFACTOR_ZERO},
/* OutReverse */ {1, GEN5_BLENDFACTOR_ZERO, GEN5_BLENDFACTOR_INV_SRC_ALPHA},
/* Atop */ {1, GEN5_BLENDFACTOR_DST_ALPHA, GEN5_BLENDFACTOR_INV_SRC_ALPHA},
/* AtopReverse */ {1, GEN5_BLENDFACTOR_INV_DST_ALPHA, GEN5_BLENDFACTOR_SRC_ALPHA},
/* Xor */ {1, GEN5_BLENDFACTOR_INV_DST_ALPHA, GEN5_BLENDFACTOR_INV_SRC_ALPHA},
/* Add */ {0, GEN5_BLENDFACTOR_ONE, GEN5_BLENDFACTOR_ONE},
};
/**
* Highest-valued BLENDFACTOR used in gen5_blend_op.
*
* This leaves out GEN5_BLENDFACTOR_INV_DST_COLOR,
* GEN5_BLENDFACTOR_INV_CONST_{COLOR,ALPHA},
* GEN5_BLENDFACTOR_INV_SRC1_{COLOR,ALPHA}
*/
#define GEN5_BLENDFACTOR_COUNT (GEN5_BLENDFACTOR_INV_DST_ALPHA + 1)
#define BLEND_OFFSET(s, d) \
(((s) * GEN5_BLENDFACTOR_COUNT + (d)) * 64)
#define SAMPLER_OFFSET(sf, se, mf, me, k) \
((((((sf) * EXTEND_COUNT + (se)) * FILTER_COUNT + (mf)) * EXTEND_COUNT + (me)) * KERNEL_COUNT + (k)) * 64)
static bool
gen5_emit_pipelined_pointers(struct sna *sna,
const struct sna_composite_op *op,
int blend, int kernel);
#define OUT_BATCH(v) batch_emit(sna, v)
#define OUT_VERTEX(x,y) vertex_emit_2s(sna, x,y)
#define OUT_VERTEX_F(v) vertex_emit(sna, v)
static inline bool too_large(int width, int height)
{
return width > MAX_3D_SIZE || height > MAX_3D_SIZE;
}
static int
gen5_choose_composite_kernel(int op, bool has_mask, bool is_ca, bool is_affine)
{
int base;
if (has_mask) {
if (is_ca) {
if (gen5_blend_op[op].src_alpha)
base = WM_KERNEL_MASKSA;
else
base = WM_KERNEL_MASKCA;
} else
base = WM_KERNEL_MASK;
} else
base = WM_KERNEL;
return base + !is_affine;
}
static bool gen5_magic_ca_pass(struct sna *sna,
const struct sna_composite_op *op)
{
struct gen5_render_state *state = &sna->render_state.gen5;
if (!op->need_magic_ca_pass)
return false;
assert(sna->render.vertex_index > sna->render.vertex_start);
DBG(("%s: CA fixup\n", __FUNCTION__));
assert(op->mask.bo != NULL);
assert(op->has_component_alpha);
gen5_emit_pipelined_pointers
(sna, op, PictOpAdd,
gen5_choose_composite_kernel(PictOpAdd,
true, true, op->is_affine));
OUT_BATCH(GEN5_3DPRIMITIVE |
GEN5_3DPRIMITIVE_VERTEX_SEQUENTIAL |
(_3DPRIM_RECTLIST << GEN5_3DPRIMITIVE_TOPOLOGY_SHIFT) |
(0 << 9) |
4);
OUT_BATCH(sna->render.vertex_index - sna->render.vertex_start);
OUT_BATCH(sna->render.vertex_start);
OUT_BATCH(1); /* single instance */
OUT_BATCH(0); /* start instance location */
OUT_BATCH(0); /* index buffer offset, ignored */
state->last_primitive = sna->kgem.nbatch;
return true;
}
static uint32_t gen5_get_blend(int op,
bool has_component_alpha,
uint32_t dst_format)
{
uint32_t src, dst;
src = GEN5_BLENDFACTOR_ONE; //gen6_blend_op[op].src_blend;
dst = GEN5_BLENDFACTOR_INV_SRC_ALPHA; //gen6_blend_op[op].dst_blend;
#if 0
/* If there's no dst alpha channel, adjust the blend op so that we'll treat
* it as always 1.
*/
if (PICT_FORMAT_A(dst_format) == 0) {
if (src == GEN5_BLENDFACTOR_DST_ALPHA)
src = GEN5_BLENDFACTOR_ONE;
else if (src == GEN5_BLENDFACTOR_INV_DST_ALPHA)
src = GEN5_BLENDFACTOR_ZERO;
}
/* If the source alpha is being used, then we should only be in a
* case where the source blend factor is 0, and the source blend
* value is the mask channels multiplied by the source picture's alpha.
*/
if (has_component_alpha && gen5_blend_op[op].src_alpha) {
if (dst == GEN5_BLENDFACTOR_SRC_ALPHA)
dst = GEN5_BLENDFACTOR_SRC_COLOR;
else if (dst == GEN5_BLENDFACTOR_INV_SRC_ALPHA)
dst = GEN5_BLENDFACTOR_INV_SRC_COLOR;
}
#endif
DBG(("blend op=%d, dst=%x [A=%d] => src=%d, dst=%d => offset=%x\n",
op, dst_format, PICT_FORMAT_A(dst_format),
src, dst, BLEND_OFFSET(src, dst)));
return BLEND_OFFSET(src, dst);
}
static uint32_t gen5_get_card_format(PictFormat format)
{
switch (format) {
default:
return -1;
case PICT_a8r8g8b8:
return GEN5_SURFACEFORMAT_B8G8R8A8_UNORM;
case PICT_x8r8g8b8:
return GEN5_SURFACEFORMAT_B8G8R8X8_UNORM;
case PICT_a8:
return GEN5_SURFACEFORMAT_A8_UNORM;
}
}
static uint32_t gen5_get_dest_format(PictFormat format)
{
switch (format) {
default:
return -1;
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
return GEN5_SURFACEFORMAT_B8G8R8A8_UNORM;
case PICT_a8:
return GEN5_SURFACEFORMAT_A8_UNORM;
}
}
typedef struct gen5_surface_state_padded {
struct gen5_surface_state state;
char pad[32 - sizeof(struct gen5_surface_state)];
} gen5_surface_state_padded;
static void null_create(struct sna_static_stream *stream)
{
/* A bunch of zeros useful for legacy border color and depth-stencil */
sna_static_stream_map(stream, 64, 64);
}
static void
sampler_state_init(struct gen5_sampler_state *sampler_state,
sampler_filter_t filter,
sampler_extend_t extend)
{
sampler_state->ss0.lod_preclamp = 1; /* GL mode */
/* We use the legacy mode to get the semantics specified by
* the Render extension. */
sampler_state->ss0.border_color_mode = GEN5_BORDER_COLOR_MODE_LEGACY;
switch (filter) {
default:
case SAMPLER_FILTER_NEAREST:
sampler_state->ss0.min_filter = GEN5_MAPFILTER_NEAREST;
sampler_state->ss0.mag_filter = GEN5_MAPFILTER_NEAREST;
break;
case SAMPLER_FILTER_BILINEAR:
sampler_state->ss0.min_filter = GEN5_MAPFILTER_LINEAR;
sampler_state->ss0.mag_filter = GEN5_MAPFILTER_LINEAR;
break;
}
switch (extend) {
default:
case SAMPLER_EXTEND_NONE:
sampler_state->ss1.r_wrap_mode = GEN5_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss1.s_wrap_mode = GEN5_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss1.t_wrap_mode = GEN5_TEXCOORDMODE_CLAMP_BORDER;
break;
case SAMPLER_EXTEND_REPEAT:
sampler_state->ss1.r_wrap_mode = GEN5_TEXCOORDMODE_WRAP;
sampler_state->ss1.s_wrap_mode = GEN5_TEXCOORDMODE_WRAP;
sampler_state->ss1.t_wrap_mode = GEN5_TEXCOORDMODE_WRAP;
break;
case SAMPLER_EXTEND_PAD:
sampler_state->ss1.r_wrap_mode = GEN5_TEXCOORDMODE_CLAMP;
sampler_state->ss1.s_wrap_mode = GEN5_TEXCOORDMODE_CLAMP;
sampler_state->ss1.t_wrap_mode = GEN5_TEXCOORDMODE_CLAMP;
break;
case SAMPLER_EXTEND_REFLECT:
sampler_state->ss1.r_wrap_mode = GEN5_TEXCOORDMODE_MIRROR;
sampler_state->ss1.s_wrap_mode = GEN5_TEXCOORDMODE_MIRROR;
sampler_state->ss1.t_wrap_mode = GEN5_TEXCOORDMODE_MIRROR;
break;
}
}
static uint32_t
gen5_tiling_bits(uint32_t tiling)
{
switch (tiling) {
default: assert(0);
case I915_TILING_NONE: return 0;
case I915_TILING_X: return GEN5_SURFACE_TILED;
case I915_TILING_Y: return GEN5_SURFACE_TILED | GEN5_SURFACE_TILED_Y;
}
}
/**
* Sets up the common fields for a surface state buffer for the given
* picture in the given surface state buffer.
*/
static uint32_t
gen5_bind_bo(struct sna *sna,
struct kgem_bo *bo,
uint32_t width,
uint32_t height,
uint32_t format,
bool is_dst)
{
uint32_t domains;
uint16_t offset;
uint32_t *ss;
/* After the first bind, we manage the cache domains within the batch */
if (!DBG_NO_SURFACE_CACHE) {
offset = kgem_bo_get_binding(bo, format);
if (offset) {
if (is_dst)
kgem_bo_mark_dirty(bo);
return offset * sizeof(uint32_t);
}
}
offset = sna->kgem.surface -=
sizeof(struct gen5_surface_state_padded) / sizeof(uint32_t);
ss = sna->kgem.batch + offset;
ss[0] = (GEN5_SURFACE_2D << GEN5_SURFACE_TYPE_SHIFT |
GEN5_SURFACE_BLEND_ENABLED |
format << GEN5_SURFACE_FORMAT_SHIFT);
if (is_dst)
domains = I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER;
else
domains = I915_GEM_DOMAIN_SAMPLER << 16;
ss[1] = kgem_add_reloc(&sna->kgem, offset + 1, bo, domains, 0);
ss[2] = ((width - 1) << GEN5_SURFACE_WIDTH_SHIFT |
(height - 1) << GEN5_SURFACE_HEIGHT_SHIFT);
ss[3] = (gen5_tiling_bits(bo->tiling) |
(bo->pitch - 1) << GEN5_SURFACE_PITCH_SHIFT);
ss[4] = 0;
ss[5] = 0;
kgem_bo_set_binding(bo, format, offset);
DBG(("[%x] bind bo(handle=%d, addr=%d), format=%d, width=%d, height=%d, pitch=%d, tiling=%d -> %s\n",
offset, bo->handle, ss[1],
format, width, height, bo->pitch, bo->tiling,
domains & 0xffff ? "render" : "sampler"));
return offset * sizeof(uint32_t);
}
static void gen5_emit_vertex_buffer(struct sna *sna,
const struct sna_composite_op *op)
{
int id = op->u.gen5.ve_id;
assert((sna->render.vb_id & (1 << id)) == 0);
OUT_BATCH(GEN5_3DSTATE_VERTEX_BUFFERS | 3);
OUT_BATCH(id << VB0_BUFFER_INDEX_SHIFT | VB0_VERTEXDATA |
(4*op->floats_per_vertex << VB0_BUFFER_PITCH_SHIFT));
assert(sna->render.nvertex_reloc < ARRAY_SIZE(sna->render.vertex_reloc));
sna->render.vertex_reloc[sna->render.nvertex_reloc++] = sna->kgem.nbatch;
OUT_BATCH(0);
OUT_BATCH(~0); /* max address: disabled */
OUT_BATCH(0);
sna->render.vb_id |= 1 << id;
}
static void gen5_emit_primitive(struct sna *sna)
{
if (sna->kgem.nbatch == sna->render_state.gen5.last_primitive) {
sna->render.vertex_offset = sna->kgem.nbatch - 5;
return;
}
OUT_BATCH(GEN5_3DPRIMITIVE |
GEN5_3DPRIMITIVE_VERTEX_SEQUENTIAL |
(_3DPRIM_RECTLIST << GEN5_3DPRIMITIVE_TOPOLOGY_SHIFT) |
(0 << 9) |
4);
sna->render.vertex_offset = sna->kgem.nbatch;
OUT_BATCH(0); /* vertex count, to be filled in later */
OUT_BATCH(sna->render.vertex_index);
OUT_BATCH(1); /* single instance */
OUT_BATCH(0); /* start instance location */
OUT_BATCH(0); /* index buffer offset, ignored */
sna->render.vertex_start = sna->render.vertex_index;
sna->render_state.gen5.last_primitive = sna->kgem.nbatch;
}
static bool gen5_rectangle_begin(struct sna *sna,
const struct sna_composite_op *op)
{
int id = op->u.gen5.ve_id;
int ndwords;
if (sna_vertex_wait__locked(&sna->render) && sna->render.vertex_offset)
return true;
ndwords = op->need_magic_ca_pass ? 20 : 6;
if ((sna->render.vb_id & (1 << id)) == 0)
ndwords += 5;
if (!kgem_check_batch(&sna->kgem, ndwords))
return false;
if ((sna->render.vb_id & (1 << id)) == 0)
gen5_emit_vertex_buffer(sna, op);
if (sna->render.vertex_offset == 0)
gen5_emit_primitive(sna);
return true;
}
static int gen5_get_rectangles__flush(struct sna *sna,
const struct sna_composite_op *op)
{
/* Preventing discarding new vbo after lock contention */
if (sna_vertex_wait__locked(&sna->render)) {
int rem = vertex_space(sna);
if (rem > op->floats_per_rect)
return rem;
}
if (!kgem_check_batch(&sna->kgem, op->need_magic_ca_pass ? 20 : 6))
return 0;
if (!kgem_check_reloc_and_exec(&sna->kgem, 2))
return 0;
if (sna->render.vertex_offset) {
gen4_vertex_flush(sna);
if (gen5_magic_ca_pass(sna, op))
gen5_emit_pipelined_pointers(sna, op, op->op,
op->u.gen5.wm_kernel);
}
return gen4_vertex_finish(sna);
}
inline static int gen5_get_rectangles(struct sna *sna,
const struct sna_composite_op *op,
int want,
void (*emit_state)(struct sna *sna,
const struct sna_composite_op *op))
{
int rem;
assert(want);
start:
rem = vertex_space(sna);
if (unlikely(rem < op->floats_per_rect)) {
DBG(("flushing vbo for %s: %d < %d\n",
__FUNCTION__, rem, op->floats_per_rect));
rem = gen5_get_rectangles__flush(sna, op);
if (unlikely (rem == 0))
goto flush;
}
if (unlikely(sna->render.vertex_offset == 0)) {
if (!gen5_rectangle_begin(sna, op))
goto flush;
else
goto start;
}
assert(op->floats_per_rect >= vertex_space(sna));
assert(rem <= vertex_space(sna));
if (want > 1 && want * op->floats_per_rect > rem)
want = rem / op->floats_per_rect;
sna->render.vertex_index += 3*want;
return want;
flush:
if (sna->render.vertex_offset) {
gen4_vertex_flush(sna);
gen5_magic_ca_pass(sna, op);
}
sna_vertex_wait__locked(&sna->render);
_kgem_submit(&sna->kgem);
emit_state(sna, op);
goto start;
}
static uint32_t *
gen5_composite_get_binding_table(struct sna *sna,
uint16_t *offset)
{
sna->kgem.surface -=
sizeof(struct gen5_surface_state_padded) / sizeof(uint32_t);
DBG(("%s(%x)\n", __FUNCTION__, 4*sna->kgem.surface));
/* Clear all surplus entries to zero in case of prefetch */
*offset = sna->kgem.surface;
return memset(sna->kgem.batch + sna->kgem.surface,
0, sizeof(struct gen5_surface_state_padded));
}
static void
gen5_emit_urb(struct sna *sna)
{
int urb_vs_start, urb_vs_size;
int urb_gs_start, urb_gs_size;
int urb_clip_start, urb_clip_size;
int urb_sf_start, urb_sf_size;
int urb_cs_start, urb_cs_size;
urb_vs_start = 0;
urb_vs_size = URB_VS_ENTRIES * URB_VS_ENTRY_SIZE;
urb_gs_start = urb_vs_start + urb_vs_size;
urb_gs_size = URB_GS_ENTRIES * URB_GS_ENTRY_SIZE;
urb_clip_start = urb_gs_start + urb_gs_size;
urb_clip_size = URB_CLIP_ENTRIES * URB_CLIP_ENTRY_SIZE;
urb_sf_start = urb_clip_start + urb_clip_size;
urb_sf_size = URB_SF_ENTRIES * URB_SF_ENTRY_SIZE;
urb_cs_start = urb_sf_start + urb_sf_size;
urb_cs_size = URB_CS_ENTRIES * URB_CS_ENTRY_SIZE;
OUT_BATCH(GEN5_URB_FENCE |
UF0_CS_REALLOC |
UF0_SF_REALLOC |
UF0_CLIP_REALLOC |
UF0_GS_REALLOC |
UF0_VS_REALLOC |
1);
OUT_BATCH(((urb_clip_start + urb_clip_size) << UF1_CLIP_FENCE_SHIFT) |
((urb_gs_start + urb_gs_size) << UF1_GS_FENCE_SHIFT) |
((urb_vs_start + urb_vs_size) << UF1_VS_FENCE_SHIFT));
OUT_BATCH(((urb_cs_start + urb_cs_size) << UF2_CS_FENCE_SHIFT) |
((urb_sf_start + urb_sf_size) << UF2_SF_FENCE_SHIFT));
/* Constant buffer state */
OUT_BATCH(GEN5_CS_URB_STATE | 0);
OUT_BATCH((URB_CS_ENTRY_SIZE - 1) << 4 | URB_CS_ENTRIES << 0);
}
static void
gen5_emit_state_base_address(struct sna *sna)
{
assert(sna->render_state.gen5.general_bo->proxy == NULL);
OUT_BATCH(GEN5_STATE_BASE_ADDRESS | 6);
OUT_BATCH(kgem_add_reloc(&sna->kgem, /* general */
sna->kgem.nbatch,
sna->render_state.gen5.general_bo,
I915_GEM_DOMAIN_INSTRUCTION << 16,
BASE_ADDRESS_MODIFY));
OUT_BATCH(kgem_add_reloc(&sna->kgem, /* surface */
sna->kgem.nbatch,
NULL,
I915_GEM_DOMAIN_INSTRUCTION << 16,
BASE_ADDRESS_MODIFY));
OUT_BATCH(0); /* media */
OUT_BATCH(kgem_add_reloc(&sna->kgem, /* instruction */
sna->kgem.nbatch,
sna->render_state.gen5.general_bo,
I915_GEM_DOMAIN_INSTRUCTION << 16,
BASE_ADDRESS_MODIFY));
/* upper bounds, all disabled */
OUT_BATCH(BASE_ADDRESS_MODIFY);
OUT_BATCH(0);
OUT_BATCH(BASE_ADDRESS_MODIFY);
}
static void
gen5_emit_invariant(struct sna *sna)
{
/* Ironlake errata workaround: Before disabling the clipper,
* you have to MI_FLUSH to get the pipeline idle.
*
* However, the kernel flushes the pipeline between batches,
* so we should be safe....
* OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH);
*/
OUT_BATCH(GEN5_PIPELINE_SELECT | PIPELINE_SELECT_3D);
gen5_emit_state_base_address(sna);
sna->render_state.gen5.needs_invariant = false;
}
static void
gen5_get_batch(struct sna *sna, const struct sna_composite_op *op)
{
kgem_set_mode(&sna->kgem, KGEM_RENDER, op->dst.bo);
if (!kgem_check_batch_with_surfaces(&sna->kgem, 150, 4)) {
DBG(("%s: flushing batch: %d < %d+%d\n",
__FUNCTION__, sna->kgem.surface - sna->kgem.nbatch,
150, 4*8));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (sna->render_state.gen5.needs_invariant)
gen5_emit_invariant(sna);
}
static void
gen5_align_vertex(struct sna *sna, const struct sna_composite_op *op)
{
assert(op->floats_per_rect == 3*op->floats_per_vertex);
if (op->floats_per_vertex != sna->render_state.gen5.floats_per_vertex) {
if (sna->render.vertex_size - sna->render.vertex_used < 2*op->floats_per_rect)
gen4_vertex_finish(sna);
DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n",
sna->render_state.gen5.floats_per_vertex,
op->floats_per_vertex,
sna->render.vertex_index,
(sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex));
sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex;
sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex;
sna->render_state.gen5.floats_per_vertex = op->floats_per_vertex;
}
}
static void
gen5_emit_binding_table(struct sna *sna, uint16_t offset)
{
if (!DBG_NO_STATE_CACHE &&
sna->render_state.gen5.surface_table == offset)
return;
sna->render_state.gen5.surface_table = offset;
/* Binding table pointers */
OUT_BATCH(GEN5_3DSTATE_BINDING_TABLE_POINTERS | 4);
OUT_BATCH(0); /* vs */
OUT_BATCH(0); /* gs */
OUT_BATCH(0); /* clip */
OUT_BATCH(0); /* sf */
/* Only the PS uses the binding table */
OUT_BATCH(offset*4);
}
static bool
gen5_emit_pipelined_pointers(struct sna *sna,
const struct sna_composite_op *op,
int blend, int kernel)
{
uint16_t sp, bp;
uint32_t key;
DBG(("%s: has_mask=%d, src=(%d, %d), mask=(%d, %d),kernel=%d, blend=%d, ca=%d, format=%x\n",
__FUNCTION__, op->u.gen5.ve_id & 2,
op->src.filter, op->src.repeat,
op->mask.filter, op->mask.repeat,
kernel, blend, op->has_component_alpha, (int)op->dst.format));
sp = SAMPLER_OFFSET(op->src.filter, op->src.repeat,
op->mask.filter, op->mask.repeat,
kernel);
bp = gen5_get_blend(blend, op->has_component_alpha, op->dst.format);
DBG(("%s: sp=%d, bp=%d\n", __FUNCTION__, sp, bp));
key = sp | (uint32_t)bp << 16 | (op->mask.bo != NULL) << 31;
if (key == sna->render_state.gen5.last_pipelined_pointers)
return false;
OUT_BATCH(GEN5_3DSTATE_PIPELINED_POINTERS | 5);
OUT_BATCH(sna->render_state.gen5.vs);
OUT_BATCH(GEN5_GS_DISABLE); /* passthrough */
OUT_BATCH(GEN5_CLIP_DISABLE); /* passthrough */
OUT_BATCH(sna->render_state.gen5.sf[op->mask.bo != NULL]);
OUT_BATCH(sna->render_state.gen5.wm + sp);
OUT_BATCH(sna->render_state.gen5.cc + bp);
sna->render_state.gen5.last_pipelined_pointers = key;
return true;
}
static void
gen5_emit_drawing_rectangle(struct sna *sna, const struct sna_composite_op *op)
{
uint32_t limit = (op->dst.height - 1) << 16 | (op->dst.width - 1);
uint32_t offset = (uint16_t)op->dst.y << 16 | (uint16_t)op->dst.x;
assert(!too_large(op->dst.x, op->dst.y));
assert(!too_large(op->dst.width, op->dst.height));
if (!DBG_NO_STATE_CACHE &&
sna->render_state.gen5.drawrect_limit == limit &&
sna->render_state.gen5.drawrect_offset == offset)
return;
sna->render_state.gen5.drawrect_offset = offset;
sna->render_state.gen5.drawrect_limit = limit;
OUT_BATCH(GEN5_3DSTATE_DRAWING_RECTANGLE | (4 - 2));
OUT_BATCH(0x00000000);
OUT_BATCH(limit);
OUT_BATCH(offset);
}
static void
gen5_emit_vertex_elements(struct sna *sna,
const struct sna_composite_op *op)
{
/*
* vertex data in vertex buffer
* position: (x, y)
* texture coordinate 0: (u0, v0) if (is_affine is true) else (u0, v0, w0)
* texture coordinate 1 if (has_mask is true): same as above
*/
struct gen5_render_state *render = &sna->render_state.gen5;
int id = op->u.gen5.ve_id;
bool has_mask = id >> 2;
uint32_t format, dw;
if (!DBG_NO_STATE_CACHE && render->ve_id == id)
return;
DBG(("%s: changing %d -> %d\n", __FUNCTION__, render->ve_id, id));
render->ve_id = id;
/* The VUE layout
* dword 0-3: pad (0.0, 0.0, 0.0. 0.0)
* dword 4-7: position (x, y, 1.0, 1.0),
* dword 8-11: texture coordinate 0 (u0, v0, w0, 1.0)
* dword 12-15: texture coordinate 1 (u1, v1, w1, 1.0)
*
* dword 4-15 are fetched from vertex buffer
*/
OUT_BATCH(GEN5_3DSTATE_VERTEX_ELEMENTS |
((2 * (has_mask ? 4 : 3)) + 1 - 2));
OUT_BATCH((id << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID |
(GEN5_SURFACEFORMAT_R32G32B32A32_FLOAT << VE0_FORMAT_SHIFT) |
(0 << VE0_OFFSET_SHIFT));
OUT_BATCH((VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_0_SHIFT) |
(VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_1_SHIFT) |
(VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_2_SHIFT) |
(VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_3_SHIFT));
/* x,y */
OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID |
GEN5_SURFACEFORMAT_R16G16_SSCALED << VE0_FORMAT_SHIFT |
0 << VE0_OFFSET_SHIFT);
OUT_BATCH(VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT |
VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT |
VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT |
VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT);
/* u0, v0, w0 */
DBG(("%s: id=%d, first channel %d floats, offset=4b\n", __FUNCTION__,
id, id & 3));
dw = VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT;
switch (id & 3) {
default:
assert(0);
case 0:
format = GEN5_SURFACEFORMAT_R16G16_SSCALED << VE0_FORMAT_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT;
dw |= VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT;
break;
case 1:
format = GEN5_SURFACEFORMAT_R32_FLOAT << VE0_FORMAT_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT;
dw |= VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_1_SHIFT;
dw |= VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT;
break;
case 2:
format = GEN5_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT;
dw |= VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT;
break;
case 3:
format = GEN5_SURFACEFORMAT_R32G32B32_FLOAT << VE0_FORMAT_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_2_SHIFT;
break;
}
OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID |
format | 4 << VE0_OFFSET_SHIFT);
OUT_BATCH(dw);
/* u1, v1, w1 */
if (has_mask) {
unsigned offset = 4 + ((id & 3) ?: 1) * sizeof(float);
DBG(("%s: id=%x, second channel %d floats, offset=%db\n", __FUNCTION__,
id, id >> 2, offset));
dw = VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT;
switch (id >> 2) {
case 1:
format = GEN5_SURFACEFORMAT_R32_FLOAT << VE0_FORMAT_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT;
dw |= VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_1_SHIFT;
dw |= VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT;
break;
default:
assert(0);
case 2:
format = GEN5_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT;
dw |= VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT;
break;
case 3:
format = GEN5_SURFACEFORMAT_R32G32B32_FLOAT << VE0_FORMAT_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT;
dw |= VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_2_SHIFT;
break;
}
OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID |
format | offset << VE0_OFFSET_SHIFT);
OUT_BATCH(dw);
}
}
static void
gen5_emit_state(struct sna *sna,
const struct sna_composite_op *op,
uint16_t offset)
{
if (kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo)) {
DBG(("%s: flushing dirty (%d, %d)\n", __FUNCTION__,
kgem_bo_is_dirty(op->src.bo),
kgem_bo_is_dirty(op->mask.bo)));
OUT_BATCH(MI_FLUSH);
kgem_clear_dirty(&sna->kgem);
kgem_bo_mark_dirty(op->dst.bo);
}
/* drawrect must be first for Ironlake BLT workaround */
gen5_emit_drawing_rectangle(sna, op);
gen5_emit_binding_table(sna, offset);
if (gen5_emit_pipelined_pointers(sna, op, op->op, op->u.gen5.wm_kernel))
gen5_emit_urb(sna);
gen5_emit_vertex_elements(sna, op);
}
static void gen5_bind_surfaces(struct sna *sna,
const struct sna_composite_op *op)
{
uint32_t *binding_table;
uint16_t offset;
gen5_get_batch(sna, op);
binding_table = gen5_composite_get_binding_table(sna, &offset);
binding_table[0] =
gen5_bind_bo(sna,
op->dst.bo, op->dst.width, op->dst.height,
gen5_get_dest_format(op->dst.format),
true);
binding_table[1] =
gen5_bind_bo(sna,
op->src.bo, op->src.width, op->src.height,
op->src.card_format,
false);
if (op->mask.bo) {
assert(op->u.gen5.ve_id >> 2);
binding_table[2] =
gen5_bind_bo(sna,
op->mask.bo,
op->mask.width,
op->mask.height,
op->mask.card_format,
false);
}
if (sna->kgem.surface == offset &&
*(uint64_t *)(sna->kgem.batch + sna->render_state.gen5.surface_table) == *(uint64_t*)binding_table &&
(op->mask.bo == NULL ||
sna->kgem.batch[sna->render_state.gen5.surface_table+2] == binding_table[2])) {
sna->kgem.surface += sizeof(struct gen5_surface_state_padded) / sizeof(uint32_t);
offset = sna->render_state.gen5.surface_table;
}
gen5_emit_state(sna, op, offset);
}
fastcall static void
gen5_render_composite_blt(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n",
__FUNCTION__,
r->src.x, r->src.y, op->src.offset[0], op->src.offset[1],
r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1],
r->dst.x, r->dst.y, op->dst.x, op->dst.y,
r->width, r->height));
gen5_get_rectangles(sna, op, 1, gen5_bind_surfaces);
op->prim_emit(sna, op, r);
}
static void
gen5_render_composite_done(struct sna *sna,
const struct sna_composite_op *op)
{
if (sna->render.vertex_offset) {
gen4_vertex_flush(sna);
gen5_magic_ca_pass(sna,op);
}
DBG(("%s()\n", __FUNCTION__));
}
static bool
gen5_blit_tex(struct sna *sna,
uint8_t op, bool scale,
PixmapPtr src, struct kgem_bo *src_bo,
PixmapPtr mask,struct kgem_bo *mask_bo,
PixmapPtr dst, struct kgem_bo *dst_bo,
int32_t src_x, int32_t src_y,
int32_t msk_x, int32_t msk_y,
int32_t dst_x, int32_t dst_y,
int32_t width, int32_t height,
struct sna_composite_op *tmp)
{
DBG(("%s: %dx%d, current mode=%d\n", __FUNCTION__,
width, height, sna->kgem.mode));
tmp->op = PictOpSrc;
tmp->dst.pixmap = dst;
tmp->dst.bo = dst_bo;
tmp->dst.width = dst->drawable.width;
tmp->dst.height = dst->drawable.height;
tmp->dst.format = PICT_x8r8g8b8;
tmp->src.repeat = RepeatNone;
tmp->src.filter = PictFilterNearest;
tmp->src.is_affine = true;
tmp->src.bo = src_bo;
tmp->src.pict_format = PICT_x8r8g8b8;
tmp->src.card_format = gen5_get_card_format(tmp->src.pict_format);
tmp->src.width = src->drawable.width;
tmp->src.height = src->drawable.height;
tmp->is_affine = tmp->src.is_affine;
tmp->has_component_alpha = false;
tmp->need_magic_ca_pass = false;
tmp->mask.is_affine = true;
tmp->mask.repeat = SAMPLER_EXTEND_NONE;
tmp->mask.filter = SAMPLER_FILTER_NEAREST;
tmp->mask.bo = mask_bo;
tmp->mask.pict_format = PIXMAN_a8;
tmp->mask.card_format = gen5_get_card_format(tmp->mask.pict_format);
tmp->mask.width = mask->drawable.width;
tmp->mask.height = mask->drawable.height;
if( scale )
{
tmp->src.scale[0] = 1.f/width;
tmp->src.scale[1] = 1.f/height;
}
else
{
tmp->src.scale[0] = 1.f/src->drawable.width;
tmp->src.scale[1] = 1.f/src->drawable.height;
}
tmp->mask.scale[0] = 1.f/mask->drawable.width;
tmp->mask.scale[1] = 1.f/mask->drawable.height;
tmp->u.gen5.wm_kernel =
gen5_choose_composite_kernel(tmp->op,
tmp->mask.bo != NULL,
tmp->has_component_alpha,
tmp->is_affine);
tmp->u.gen5.ve_id = gen4_choose_composite_emitter(tmp);
tmp->blt = gen5_render_composite_blt;
// tmp->box = gen5_render_composite_box;
tmp->done = gen5_render_composite_done;
if (!kgem_check_bo(&sna->kgem,
tmp->dst.bo, tmp->src.bo, tmp->mask.bo, NULL)) {
kgem_submit(&sna->kgem);
}
gen5_bind_surfaces(sna, tmp);
gen5_align_vertex(sna, tmp);
return true;
}
static void
gen5_render_flush(struct sna *sna)
{
gen4_vertex_close(sna);
assert(sna->render.vb_id == 0);
assert(sna->render.vertex_offset == 0);
}
static void
gen5_render_context_switch(struct kgem *kgem,
int new_mode)
{
if (!kgem->nbatch)
return;
/* WaNonPipelinedStateCommandFlush
*
* Ironlake has a limitation that a 3D or Media command can't
* be the first command after a BLT, unless it's
* non-pipelined.
*
* We do this by ensuring that the non-pipelined drawrect
* is always emitted first following a switch from BLT.
*/
if (kgem->mode == KGEM_BLT) {
struct sna *sna = to_sna_from_kgem(kgem);
DBG(("%s: forcing drawrect on next state emission\n",
__FUNCTION__));
sna->render_state.gen5.drawrect_limit = -1;
}
if (kgem_ring_is_idle(kgem, kgem->ring)) {
DBG(("%s: GPU idle, flushing\n", __FUNCTION__));
_kgem_submit(kgem);
}
}
static void
discard_vbo(struct sna *sna)
{
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
}
static void
gen5_render_retire(struct kgem *kgem)
{
struct sna *sna;
sna = container_of(kgem, struct sna, kgem);
if (kgem->nbatch == 0 && sna->render.vbo && !kgem_bo_is_busy(sna->render.vbo)) {
DBG(("%s: resetting idle vbo\n", __FUNCTION__));
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
}
}
static void
gen5_render_expire(struct kgem *kgem)
{
struct sna *sna;
sna = container_of(kgem, struct sna, kgem);
if (sna->render.vbo && !sna->render.vertex_used) {
DBG(("%s: discarding vbo\n", __FUNCTION__));
discard_vbo(sna);
}
}
static void gen5_render_reset(struct sna *sna)
{
sna->render_state.gen5.needs_invariant = true;
sna->render_state.gen5.ve_id = -1;
sna->render_state.gen5.last_primitive = -1;
sna->render_state.gen5.last_pipelined_pointers = 0;
sna->render_state.gen5.drawrect_offset = -1;
sna->render_state.gen5.drawrect_limit = -1;
sna->render_state.gen5.surface_table = -1;
if (sna->render.vbo &&
!kgem_bo_is_mappable(&sna->kgem, sna->render.vbo)) {
DBG(("%s: discarding unmappable vbo\n", __FUNCTION__));
discard_vbo(sna);
}
sna->render.vertex_offset = 0;
sna->render.nvertex_reloc = 0;
sna->render.vb_id = 0;
}
static void gen5_render_fini(struct sna *sna)
{
kgem_bo_destroy(&sna->kgem, sna->render_state.gen5.general_bo);
}
static uint32_t gen5_create_vs_unit_state(struct sna_static_stream *stream)
{
struct gen5_vs_unit_state *vs = sna_static_stream_map(stream, sizeof(*vs), 32);
/* Set up the vertex shader to be disabled (passthrough) */
vs->thread4.nr_urb_entries = URB_VS_ENTRIES >> 2;
vs->thread4.urb_entry_allocation_size = URB_VS_ENTRY_SIZE - 1;
vs->vs6.vs_enable = 0;
vs->vs6.vert_cache_disable = 1;
return sna_static_stream_offsetof(stream, vs);
}
static uint32_t gen5_create_sf_state(struct sna_static_stream *stream,
uint32_t kernel)
{
struct gen5_sf_unit_state *sf_state;
sf_state = sna_static_stream_map(stream, sizeof(*sf_state), 32);
sf_state->thread0.grf_reg_count = GEN5_GRF_BLOCKS(SF_KERNEL_NUM_GRF);
sf_state->thread0.kernel_start_pointer = kernel >> 6;
sf_state->thread3.const_urb_entry_read_length = 0; /* no const URBs */
sf_state->thread3.const_urb_entry_read_offset = 0; /* no const URBs */
sf_state->thread3.urb_entry_read_length = 1; /* 1 URB per vertex */
/* don't smash vertex header, read start from dw8 */
sf_state->thread3.urb_entry_read_offset = 1;
sf_state->thread3.dispatch_grf_start_reg = 3;
sf_state->thread4.max_threads = SF_MAX_THREADS - 1;
sf_state->thread4.urb_entry_allocation_size = URB_SF_ENTRY_SIZE - 1;
sf_state->thread4.nr_urb_entries = URB_SF_ENTRIES;
sf_state->sf5.viewport_transform = false; /* skip viewport */
sf_state->sf6.cull_mode = GEN5_CULLMODE_NONE;
sf_state->sf6.scissor = 0;
sf_state->sf7.trifan_pv = 2;
sf_state->sf6.dest_org_vbias = 0x8;
sf_state->sf6.dest_org_hbias = 0x8;
return sna_static_stream_offsetof(stream, sf_state);
}
static uint32_t gen5_create_sampler_state(struct sna_static_stream *stream,
sampler_filter_t src_filter,
sampler_extend_t src_extend,
sampler_filter_t mask_filter,
sampler_extend_t mask_extend)
{
struct gen5_sampler_state *sampler_state;
sampler_state = sna_static_stream_map(stream,
sizeof(struct gen5_sampler_state) * 2,
32);
sampler_state_init(&sampler_state[0], src_filter, src_extend);
sampler_state_init(&sampler_state[1], mask_filter, mask_extend);
return sna_static_stream_offsetof(stream, sampler_state);
}
static void gen5_init_wm_state(struct gen5_wm_unit_state *state,
bool has_mask,
uint32_t kernel,
uint32_t sampler)
{
state->thread0.grf_reg_count = GEN5_GRF_BLOCKS(PS_KERNEL_NUM_GRF);
state->thread0.kernel_start_pointer = kernel >> 6;
state->thread1.single_program_flow = 0;
/* scratch space is not used in our kernel */
state->thread2.scratch_space_base_pointer = 0;
state->thread2.per_thread_scratch_space = 0;
state->thread3.const_urb_entry_read_length = 0;
state->thread3.const_urb_entry_read_offset = 0;
state->thread3.urb_entry_read_offset = 0;
/* wm kernel use urb from 3, see wm_program in compiler module */
state->thread3.dispatch_grf_start_reg = 3; /* must match kernel */
state->wm4.sampler_count = 0; /* hardware requirement */
state->wm4.sampler_state_pointer = sampler >> 5;
state->wm5.max_threads = PS_MAX_THREADS - 1;
state->wm5.transposed_urb_read = 0;
state->wm5.thread_dispatch_enable = 1;
/* just use 16-pixel dispatch (4 subspans), don't need to change kernel
* start point
*/
state->wm5.enable_16_pix = 1;
state->wm5.enable_8_pix = 0;
state->wm5.early_depth_test = 1;
/* Each pair of attributes (src/mask coords) is two URB entries */
if (has_mask) {
state->thread1.binding_table_entry_count = 3; /* 2 tex and fb */
state->thread3.urb_entry_read_length = 4;
} else {
state->thread1.binding_table_entry_count = 2; /* 1 tex and fb */
state->thread3.urb_entry_read_length = 2;
}
/* binding table entry count is only used for prefetching,
* and it has to be set 0 for Ironlake
*/
state->thread1.binding_table_entry_count = 0;
}
static uint32_t gen5_create_cc_unit_state(struct sna_static_stream *stream)
{
uint8_t *ptr, *base;
int i, j;
base = ptr =
sna_static_stream_map(stream,
GEN5_BLENDFACTOR_COUNT*GEN5_BLENDFACTOR_COUNT*64,
64);
for (i = 0; i < GEN5_BLENDFACTOR_COUNT; i++) {
for (j = 0; j < GEN5_BLENDFACTOR_COUNT; j++) {
struct gen5_cc_unit_state *state =
(struct gen5_cc_unit_state *)ptr;
state->cc3.blend_enable =
!(j == GEN5_BLENDFACTOR_ZERO && i == GEN5_BLENDFACTOR_ONE);
state->cc5.logicop_func = 0xc; /* COPY */
state->cc5.ia_blend_function = GEN5_BLENDFUNCTION_ADD;
/* Fill in alpha blend factors same as color, for the future. */
state->cc5.ia_src_blend_factor = i;
state->cc5.ia_dest_blend_factor = j;
state->cc6.blend_function = GEN5_BLENDFUNCTION_ADD;
state->cc6.clamp_post_alpha_blend = 1;
state->cc6.clamp_pre_alpha_blend = 1;
state->cc6.src_blend_factor = i;
state->cc6.dest_blend_factor = j;
ptr += 64;
}
}
return sna_static_stream_offsetof(stream, base);
}
static bool gen5_render_setup(struct sna *sna)
{
struct gen5_render_state *state = &sna->render_state.gen5;
struct sna_static_stream general;
struct gen5_wm_unit_state_padded *wm_state;
uint32_t sf[2], wm[KERNEL_COUNT];
int i, j, k, l, m;
sna_static_stream_init(&general);
/* Zero pad the start. If you see an offset of 0x0 in the batchbuffer
* dumps, you know it points to zero.
*/
null_create(&general);
/* Set up the two SF states (one for blending with a mask, one without) */
sf[0] = sna_static_stream_compile_sf(sna, &general, brw_sf_kernel__nomask);
sf[1] = sna_static_stream_compile_sf(sna, &general, brw_sf_kernel__mask);
for (m = 0; m < KERNEL_COUNT; m++) {
if (wm_kernels[m].size) {
wm[m] = sna_static_stream_add(&general,
wm_kernels[m].data,
wm_kernels[m].size,
64);
} else {
wm[m] = sna_static_stream_compile_wm(sna, &general,
wm_kernels[m].data,
16);
}
assert(wm[m]);
}
state->vs = gen5_create_vs_unit_state(&general);
state->sf[0] = gen5_create_sf_state(&general, sf[0]);
state->sf[1] = gen5_create_sf_state(&general, sf[1]);
/* Set up the WM states: each filter/extend type for source and mask, per
* kernel.
*/
wm_state = sna_static_stream_map(&general,
sizeof(*wm_state) * KERNEL_COUNT *
FILTER_COUNT * EXTEND_COUNT *
FILTER_COUNT * EXTEND_COUNT,
64);
state->wm = sna_static_stream_offsetof(&general, wm_state);
for (i = 0; i < FILTER_COUNT; i++) {
for (j = 0; j < EXTEND_COUNT; j++) {
for (k = 0; k < FILTER_COUNT; k++) {
for (l = 0; l < EXTEND_COUNT; l++) {
uint32_t sampler_state;
sampler_state =
gen5_create_sampler_state(&general,
i, j,
k, l);
for (m = 0; m < KERNEL_COUNT; m++) {
gen5_init_wm_state(&wm_state->state,
wm_kernels[m].has_mask,
wm[m], sampler_state);
wm_state++;
}
}
}
}
}
state->cc = gen5_create_cc_unit_state(&general);
state->general_bo = sna_static_stream_fini(sna, &general);
return state->general_bo != NULL;
}
bool gen5_render_init(struct sna *sna)
{
if (!gen5_render_setup(sna))
return false;
sna->kgem.context_switch = gen5_render_context_switch;
sna->kgem.retire = gen5_render_retire;
sna->kgem.expire = gen5_render_expire;
sna->render.blit_tex = gen5_blit_tex;
sna->render.flush = gen5_render_flush;
sna->render.reset = gen5_render_reset;
sna->render.fini = gen5_render_fini;
sna->render.max_3d_size = MAX_3D_SIZE;
sna->render.max_3d_pitch = 1 << 18;
sna->render.caps = HW_BIT_BLIT | HW_TEX_BLIT;
return true;
}