kolibrios-gitea/contrib/sdk/sources/Intel-2D/sna/kgem_debug_gen7.c

716 lines
18 KiB
C
Raw Normal View History

/*
* Copyright © 2007-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris"chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <assert.h>
#include "sna.h"
#include "sna_reg.h"
#include "gen7_render.h"
#include "kgem_debug.h"
static struct state {
struct vertex_buffer {
int handle;
void *base;
const char *ptr;
int pitch;
struct kgem_bo *current;
} vb[33];
struct vertex_elements {
int buffer;
int offset;
bool valid;
uint32_t type;
uint8_t swizzle[4];
} ve[33];
int num_ve;
struct dynamic_state {
struct kgem_bo *current;
void *base, *ptr;
} dynamic_state;
} state;
static void gen7_update_vertex_buffer(struct kgem *kgem, const uint32_t *data)
{
uint32_t reloc = sizeof(uint32_t) * (&data[1] - kgem->batch);
struct kgem_bo *bo = NULL;
void *base, *ptr;
int i;
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == reloc)
break;
assert(i < kgem->nreloc);
reloc = kgem->reloc[i].target_handle;
if (reloc == 0) {
base = kgem->batch;
} else {
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->handle == reloc)
break;
assert(&bo->request != &kgem->next_request->buffers);
base = kgem_bo_map__debug(kgem, bo);
}
ptr = (char *)base + kgem->reloc[i].delta;
i = data[0] >> 26;
state.vb[i].current = bo;
state.vb[i].base = base;
state.vb[i].ptr = ptr;
state.vb[i].pitch = data[0] & 0x7ff;
}
static void gen7_update_dynamic_buffer(struct kgem *kgem, const uint32_t offset)
{
uint32_t reloc = sizeof(uint32_t) * offset;
struct kgem_bo *bo = NULL;
void *base, *ptr;
int i;
if ((kgem->batch[offset] & 1) == 0)
return;
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == reloc)
break;
if(i < kgem->nreloc) {
reloc = kgem->reloc[i].target_handle;
if (reloc == 0) {
base = kgem->batch;
} else {
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->handle == reloc)
break;
assert(&bo->request != &kgem->next_request->buffers);
base = kgem_bo_map__debug(kgem, bo);
}
ptr = (char *)base + (kgem->reloc[i].delta & ~1);
} else {
bo = NULL;
base = NULL;
ptr = NULL;
}
state.dynamic_state.current = bo;
state.dynamic_state.base = base;
state.dynamic_state.ptr = ptr;
}
static uint32_t
get_ve_component(uint32_t data, int component)
{
return (data >> (16 + (3 - component) * 4)) & 0x7;
}
static void gen7_update_vertex_elements(struct kgem *kgem, int id, const uint32_t *data)
{
state.ve[id].buffer = data[0] >> 26;
state.ve[id].valid = !!(data[0] & (1 << 25));
state.ve[id].type = (data[0] >> 16) & 0x1ff;
state.ve[id].offset = data[0] & 0x7ff;
state.ve[id].swizzle[0] = get_ve_component(data[1], 0);
state.ve[id].swizzle[1] = get_ve_component(data[1], 1);
state.ve[id].swizzle[2] = get_ve_component(data[1], 2);
state.ve[id].swizzle[3] = get_ve_component(data[1], 3);
}
static void gen7_update_sf_state(struct kgem *kgem, uint32_t *data)
{
state.num_ve = 1 + ((data[1] >> 22) & 0x3f);
}
static void vertices_sint16_out(const struct vertex_elements *ve, const int16_t *v, int max)
{
int c;
ErrorF("(");
for (c = 0; c < max; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("%d", v[c]); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
for (; c < 4; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("1.0"); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
ErrorF(")");
}
static void vertices_float_out(const struct vertex_elements *ve, const float *f, int max)
{
int c, o;
ErrorF("(");
for (c = o = 0; c < 4 && o < max; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("%f", f[o++]); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
for (; c < 4; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("1.0"); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
ErrorF(")");
}
static void ve_out(const struct vertex_elements *ve, const void *ptr)
{
switch (ve->type) {
case GEN7_SURFACEFORMAT_R32_FLOAT:
vertices_float_out(ve, ptr, 1);
break;
case GEN7_SURFACEFORMAT_R32G32_FLOAT:
vertices_float_out(ve, ptr, 2);
break;
case GEN7_SURFACEFORMAT_R32G32B32_FLOAT:
vertices_float_out(ve, ptr, 3);
break;
case GEN7_SURFACEFORMAT_R32G32B32A32_FLOAT:
vertices_float_out(ve, ptr, 4);
break;
case GEN7_SURFACEFORMAT_R16_SINT:
vertices_sint16_out(ve, ptr, 1);
break;
case GEN7_SURFACEFORMAT_R16G16_SINT:
vertices_sint16_out(ve, ptr, 2);
break;
case GEN7_SURFACEFORMAT_R16G16B16A16_SINT:
vertices_sint16_out(ve, ptr, 4);
break;
case GEN7_SURFACEFORMAT_R16_SSCALED:
vertices_sint16_out(ve, ptr, 1);
break;
case GEN7_SURFACEFORMAT_R16G16_SSCALED:
vertices_sint16_out(ve, ptr, 2);
break;
case GEN7_SURFACEFORMAT_R16G16B16A16_SSCALED:
vertices_sint16_out(ve, ptr, 4);
break;
}
}
static void indirect_vertex_out(struct kgem *kgem, uint32_t v)
{
int i = 1;
do {
const struct vertex_elements *ve = &state.ve[i];
const struct vertex_buffer *vb = &state.vb[ve->buffer];
const void *ptr = vb->ptr + v * vb->pitch + ve->offset;
if (!ve->valid)
continue;
ve_out(ve, ptr);
while (++i <= state.num_ve && !state.ve[i].valid)
;
if (i <= state.num_ve)
ErrorF(", ");
} while (i <= state.num_ve);
}
static void primitive_out(struct kgem *kgem, uint32_t *data)
{
int n;
assert((data[0] & (1<<15)) == 0); /* XXX index buffers */
for (n = 0; n < data[2]; n++) {
int v = data[3] + n;
ErrorF(" [%d:%d] = ", n, v);
indirect_vertex_out(kgem, v);
ErrorF("\n");
}
}
static void finish_state(struct kgem *kgem)
{
memset(&state, 0, sizeof(state));
}
static void
state_base_out(uint32_t *data, uint32_t offset, unsigned int index,
const char *name)
{
if (data[index] & 1)
kgem_debug_print(data, offset, index,
"%s state base address 0x%08x\n",
name, data[index] & ~1);
else
kgem_debug_print(data, offset, index,
"%s state base not updated\n",
name);
}
static void
state_max_out(uint32_t *data, uint32_t offset, unsigned int index,
const char *name)
{
if (data[index] == 1)
kgem_debug_print(data, offset, index,
"%s state upper bound disabled\n", name);
else if (data[index] & 1)
kgem_debug_print(data, offset, index,
"%s state upper bound 0x%08x\n",
name, data[index] & ~1);
else
kgem_debug_print(data, offset, index,
"%s state upper bound not updated\n",
name);
}
static const char *
get_965_surfacetype(unsigned int surfacetype)
{
switch (surfacetype) {
case 0: return "1D";
case 1: return "2D";
case 2: return "3D";
case 3: return "CUBE";
case 4: return "BUFFER";
case 7: return "NULL";
default: return "unknown";
}
}
static const char *
get_965_depthformat(unsigned int depthformat)
{
switch (depthformat) {
case 0: return "s8_z24float";
case 1: return "z32float";
case 2: return "z24s8";
case 5: return "z16";
default: return "unknown";
}
}
static const char *
get_element_component(uint32_t data, int component)
{
uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7;
switch (component_control) {
case 0:
return "nostore";
case 1:
switch (component) {
case 0: return "X";
case 1: return "Y";
case 2: return "Z";
case 3: return "W";
default: return "fail";
}
case 2:
return "0.0";
case 3:
return "1.0";
case 4:
return "0x1";
case 5:
return "VID";
default:
return "fail";
}
}
static const char *
get_prim_type(uint32_t data)
{
uint32_t primtype = data & 0x1f;
switch (primtype) {
case 0x01: return "point list";
case 0x02: return "line list";
case 0x03: return "line strip";
case 0x04: return "tri list";
case 0x05: return "tri strip";
case 0x06: return "tri fan";
case 0x07: return "quad list";
case 0x08: return "quad strip";
case 0x09: return "line list adj";
case 0x0a: return "line strip adj";
case 0x0b: return "tri list adj";
case 0x0c: return "tri strip adj";
case 0x0d: return "tri strip reverse";
case 0x0e: return "polygon";
case 0x0f: return "rect list";
case 0x10: return "line loop";
case 0x11: return "point list bf";
case 0x12: return "line strip cont";
case 0x13: return "line strip bf";
case 0x14: return "line strip cont bf";
case 0x15: return "tri fan no stipple";
default: return "fail";
}
}
struct reloc {
struct kgem_bo *bo;
void *base;
};
static void *
get_reloc(struct kgem *kgem,
void *base, const uint32_t *reloc,
struct reloc *r)
{
uint32_t delta = *reloc;
memset(r, 0, sizeof(*r));
if (base == 0) {
uint32_t handle = sizeof(uint32_t) * (reloc - kgem->batch);
struct kgem_bo *bo = NULL;
int i;
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == handle)
break;
assert(i < kgem->nreloc);
handle = kgem->reloc[i].target_handle;
delta = kgem->reloc[i].delta;
if (handle == 0) {
base = kgem->batch;
} else {
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->handle == handle)
break;
assert(&bo->request != &kgem->next_request->buffers);
base = kgem_bo_map__debug(kgem, bo);
r->bo = bo;
r->base = base;
}
}
return (char *)base + (delta & ~3);
}
static const char *
gen7_filter_to_string(uint32_t filter)
{
switch (filter) {
default:
case GEN7_MAPFILTER_NEAREST: return "nearest";
case GEN7_MAPFILTER_LINEAR: return "linear";
}
}
static const char *
gen7_repeat_to_string(uint32_t repeat)
{
switch (repeat) {
default:
case GEN7_TEXCOORDMODE_CLAMP_BORDER: return "border";
case GEN7_TEXCOORDMODE_WRAP: return "wrap";
case GEN7_TEXCOORDMODE_CLAMP: return "clamp";
case GEN7_TEXCOORDMODE_MIRROR: return "mirror";
}
}
static void
gen7_decode_sampler_state(struct kgem *kgem, const uint32_t *reloc)
{
const struct gen7_sampler_state *ss;
struct reloc r;
const char *min, *mag;
const char *s_wrap, *t_wrap, *r_wrap;
ss = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r);
min = gen7_filter_to_string(ss->ss0.min_filter);
mag = gen7_filter_to_string(ss->ss0.mag_filter);
s_wrap = gen7_repeat_to_string(ss->ss3.s_wrap_mode);
t_wrap = gen7_repeat_to_string(ss->ss3.t_wrap_mode);
r_wrap = gen7_repeat_to_string(ss->ss3.r_wrap_mode);
ErrorF(" Sampler 0:\n");
ErrorF(" filter: min=%s, mag=%s\n", min, mag);
ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap);
ss++;
min = gen7_filter_to_string(ss->ss0.min_filter);
mag = gen7_filter_to_string(ss->ss0.mag_filter);
s_wrap = gen7_repeat_to_string(ss->ss3.s_wrap_mode);
t_wrap = gen7_repeat_to_string(ss->ss3.t_wrap_mode);
r_wrap = gen7_repeat_to_string(ss->ss3.r_wrap_mode);
ErrorF(" Sampler 1:\n");
ErrorF(" filter: min=%s, mag=%s\n", min, mag);
ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap);
}
static const char *
gen7_blend_factor_to_string(uint32_t v)
{
switch (v) {
#define C(x) case GEN7_BLENDFACTOR_##x: return #x;
C(ONE);
C(SRC_COLOR);
C(SRC_ALPHA);
C(DST_ALPHA);
C(DST_COLOR);
C(SRC_ALPHA_SATURATE);
C(CONST_COLOR);
C(CONST_ALPHA);
C(SRC1_COLOR);
C(SRC1_ALPHA);
C(ZERO);
C(INV_SRC_COLOR);
C(INV_SRC_ALPHA);
C(INV_DST_ALPHA);
C(INV_DST_COLOR);
C(INV_CONST_COLOR);
C(INV_CONST_ALPHA);
C(INV_SRC1_COLOR);
C(INV_SRC1_ALPHA);
#undef C
default: return "???";
}
}
static const char *
gen7_blend_function_to_string(uint32_t v)
{
switch (v) {
#define C(x) case GEN7_BLENDFUNCTION_##x: return #x;
C(ADD);
C(SUBTRACT);
C(REVERSE_SUBTRACT);
C(MIN);
C(MAX);
#undef C
default: return "???";
}
}
static void
gen7_decode_blend(struct kgem *kgem, const uint32_t *reloc)
{
const struct gen7_blend_state *blend;
struct reloc r;
const char *dst, *src;
const char *func;
blend = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r);
dst = gen7_blend_factor_to_string(blend->blend0.dest_blend_factor);
src = gen7_blend_factor_to_string(blend->blend0.source_blend_factor);
func = gen7_blend_function_to_string(blend->blend0.blend_func);
ErrorF(" Blend (%s): function %s, src=%s, dst=%s\n",
blend->blend0.blend_enable ? "enabled" : "disabled",
func, src, dst);
}
int kgem_gen7_decode_3d(struct kgem *kgem, uint32_t offset)
{
static const struct {
uint32_t opcode;
int min_len;
int max_len;
const char *name;
} opcodes[] = {
{ 0x6101, 6, 6, "STATE_BASE_ADDRESS" },
{ 0x6102, 2, 2 , "STATE_SIP" },
{ 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x780a, 3, 3, "3DSTATE_INDEX_BUFFER" },
{ 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" },
};
uint32_t *data = kgem->batch + offset;
uint32_t op;
unsigned int len;
int i;
const char *name;
len = (data[0] & 0xff) + 2;
op = (data[0] & 0xffff0000) >> 16;
switch (op) {
case 0x6101:
i = 0;
kgem_debug_print(data, offset, i++, "STATE_BASE_ADDRESS\n");
assert(len == 10);
state_base_out(data, offset, i++, "general");
state_base_out(data, offset, i++, "surface");
state_base_out(data, offset, i++, "dynamic");
state_base_out(data, offset, i++, "indirect");
state_base_out(data, offset, i++, "instruction");
state_max_out(data, offset, i++, "general");
state_max_out(data, offset, i++, "dynamic");
state_max_out(data, offset, i++, "indirect");
state_max_out(data, offset, i++, "instruction");
gen7_update_dynamic_buffer(kgem, offset + 3);
return len;
case 0x7808:
assert((len - 1) % 4 == 0);
kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_BUFFERS\n");
for (i = 1; i < len;) {
gen7_update_vertex_buffer(kgem, data + i);
kgem_debug_print(data, offset, i, "buffer %d: %s, pitch %db\n",
data[i] >> 26,
data[i] & (1 << 20) ? "random" : "sequential",
data[i] & 0x07ff);
i++;
kgem_debug_print(data, offset, i++, "buffer address\n");
kgem_debug_print(data, offset, i++, "max index\n");
kgem_debug_print(data, offset, i++, "mbz\n");
}
return len;
case 0x7809:
assert((len + 1) % 2 == 0);
kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_ELEMENTS\n");
for (i = 1; i < len;) {
gen7_update_vertex_elements(kgem, (i - 1)/2, data + i);
kgem_debug_print(data, offset, i, "buffer %d: %svalid, type 0x%04x, "
"src offset 0x%04x bytes\n",
data[i] >> 26,
data[i] & (1 << 25) ? "" : "in",
(data[i] >> 16) & 0x1ff,
data[i] & 0x07ff);
i++;
kgem_debug_print(data, offset, i, "(%s, %s, %s, %s), "
"dst offset 0x%02x bytes\n",
get_element_component(data[i], 0),
get_element_component(data[i], 1),
get_element_component(data[i], 2),
get_element_component(data[i], 3),
(data[i] & 0xff) * 4);
i++;
}
return len;
case 0x780a:
assert(len == 3);
kgem_debug_print(data, offset, 0, "3DSTATE_INDEX_BUFFER\n");
kgem_debug_print(data, offset, 1, "beginning buffer address\n");
kgem_debug_print(data, offset, 2, "ending buffer address\n");
return len;
case 0x7b00:
assert(len == 7);
kgem_debug_print(data, offset, 0, "3DPRIMITIVE\n");
kgem_debug_print(data, offset, 1, "type %s, %s\n",
get_prim_type(data[1]),
(data[1] & (1 << 15)) ? "random" : "sequential");
kgem_debug_print(data, offset, 2, "vertex count\n");
kgem_debug_print(data, offset, 3, "start vertex\n");
kgem_debug_print(data, offset, 4, "instance count\n");
kgem_debug_print(data, offset, 5, "start instance\n");
kgem_debug_print(data, offset, 6, "index bias\n");
primitive_out(kgem, data);
return len;
}
/* For the rest, just dump the bytes */
name = NULL;
for (i = 0; i < ARRAY_SIZE(opcodes); i++)
if (op == opcodes[i].opcode) {
name = opcodes[i].name;
break;
}
len = (data[0] & 0xff) + 2;
if (name == NULL) {
kgem_debug_print(data, offset, 0, "unknown\n");
} else {
kgem_debug_print(data, offset, 0, "%s\n", opcodes[i].name);
if (opcodes[i].max_len > 1) {
assert(len >= opcodes[i].min_len &&
len <= opcodes[i].max_len);
}
}
for (i = 1; i < len; i++)
kgem_debug_print(data, offset, i, "dword %d\n", i);
return len;
}
void kgem_gen7_finish_state(struct kgem *kgem)
{
finish_state(kgem);
}