kolibrios-gitea/drivers/ddk/linux/mutex.c

240 lines
6.0 KiB
C
Raw Normal View History

/*
* kernel/locking/mutex.c
*
* Mutexes: blocking mutual exclusion locks
*
* Started by Ingo Molnar:
*
* Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
* Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
* David Howells for suggestions and improvements.
*
* - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
* from the -rt tree, where it was originally implemented for rtmutexes
* by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
* and Sven Dietrich.
*
* Also see Documentation/mutex-design.txt.
*/
#include <linux/lockdep.h>
#include <linux/mutex.h>
#include <linux/ww_mutex.h>
#include <linux/sched.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <syscall.h>
struct kos_taskdata
{
u32 event_mask;
u32 pid;
u16 r0;
u8 state;
u8 r1;
u16 r2;
u8 wnd_number;
u8 r3;
u32 mem_start;
u32 counter_sum;
u32 counter_add;
u32 cpu_usage;
}__attribute__((packed));
static inline void mutex_set_owner(struct mutex *lock)
{
}
/*
* A negative mutex count indicates that waiters are sleeping waiting for the
* mutex.
*/
#define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
atomic_set(&lock->count, 1);
// spin_lock_init(&lock->wait_lock);
INIT_LIST_HEAD(&lock->wait_list);
// mutex_clear_owner(lock);
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
lock->osq = NULL;
#endif
}
static inline int __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
{
struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
if (!hold_ctx)
return 0;
if (unlikely(ctx == hold_ctx))
return -EALREADY;
if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
(ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
return -EDEADLK;
}
return 0;
}
static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
struct ww_acquire_ctx *ww_ctx)
{
ww_ctx->acquired++;
}
void ww_mutex_unlock(struct ww_mutex *lock)
{
/*
* The unlocking fastpath is the 0->1 transition from 'locked'
* into 'unlocked' state:
*/
if (lock->ctx) {
if (lock->ctx->acquired > 0)
lock->ctx->acquired--;
lock->ctx = NULL;
}
MutexUnlock(&lock->base);
}
static inline int __mutex_fastpath_lock_retval(atomic_t *count)
{
if (unlikely(atomic_dec_return(count) < 0))
return -1;
else
return 0;
}
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
struct ww_acquire_ctx *ctx)
{
u32 flags;
struct mutex_waiter *cur;
ww_mutex_lock_acquired(lock, ctx);
lock->ctx = ctx;
/*
* The lock->ctx update should be visible on all cores before
* the atomic read is done, otherwise contended waiters might be
* missed. The contended waiters will either see ww_ctx == NULL
* and keep spinning, or it will acquire wait_lock, add itself
* to waiter list and sleep.
*/
smp_mb(); /* ^^^ */
/*
* Check if lock is contended, if not there is nobody to wake up
*/
if (likely(atomic_read(&lock->base.count) == 0))
return;
/*
* Uh oh, we raced in fastpath, wake up everyone in this case,
* so they can see the new lock->ctx.
*/
flags = safe_cli();
list_for_each_entry(cur, &lock->base.wait_list, list) {
((struct kos_taskdata*)cur->task)->state = 0;
}
safe_sti(flags);
}
ww_mutex_set_context_slowpath(struct ww_mutex *lock,
struct ww_acquire_ctx *ctx)
{
struct mutex_waiter *cur;
ww_mutex_lock_acquired(lock, ctx);
lock->ctx = ctx;
/*
* Give any possible sleeping processes the chance to wake up,
* so they can recheck if they have to back off.
*/
list_for_each_entry(cur, &lock->base.wait_list, list) {
((struct kos_taskdata*)cur->task)->state = 0;
}
}
int __ww_mutex_lock_slowpath(struct ww_mutex *ww, struct ww_acquire_ctx *ctx)
{
struct mutex *lock;
struct mutex_waiter waiter;
struct kos_taskdata* taskdata;
u32 eflags;
int ret = 0;
lock = &ww->base;
taskdata = (struct kos_taskdata*)(0x80003010);
waiter.task = (u32*)taskdata;
eflags = safe_cli();
list_add_tail(&waiter.list, &lock->wait_list);
for(;;)
{
if( atomic_xchg(&lock->count, -1) == 1)
break;
if (ctx->acquired > 0) {
ret = __ww_mutex_lock_check_stamp(lock, ctx);
if (ret)
goto err;
};
taskdata->state = 1;
change_task();
};
if (likely(list_empty(&lock->wait_list)))
atomic_set(&lock->count, 0);
ww_mutex_set_context_slowpath(ww, ctx);
err:
list_del(&waiter.list);
safe_sti(eflags);
return ret;
}
int __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
int ret;
ret = __mutex_fastpath_lock_retval(&lock->base.count);
if (likely(!ret)) {
ww_mutex_set_context_fastpath(lock, ctx);
mutex_set_owner(&lock->base);
} else
ret = __ww_mutex_lock_slowpath(lock, ctx);
return ret;
}
int __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
int ret;
ret = __mutex_fastpath_lock_retval(&lock->base.count);
if (likely(!ret)) {
ww_mutex_set_context_fastpath(lock, ctx);
mutex_set_owner(&lock->base);
} else
ret = __ww_mutex_lock_slowpath(lock, ctx);
return ret;
}