kolibrios-gitea/programs/develop/open watcom/trunk/clib/heap/mem.c

344 lines
16 KiB
C
Raw Normal View History

/****************************************************************************
*
* Open Watcom Project
*
* Portions Copyright (c) 1983-2002 Sybase, Inc. All Rights Reserved.
*
* ========================================================================
*
* This file contains Original Code and/or Modifications of Original
* Code as defined in and that are subject to the Sybase Open Watcom
* Public License version 1.0 (the 'License'). You may not use this file
* except in compliance with the License. BY USING THIS FILE YOU AGREE TO
* ALL TERMS AND CONDITIONS OF THE LICENSE. A copy of the License is
* provided with the Original Code and Modifications, and is also
* available at www.sybase.com/developer/opensource.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND SYBASE AND ALL CONTRIBUTORS HEREBY DISCLAIM
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR
* NON-INFRINGEMENT. Please see the License for the specific language
* governing rights and limitations under the License.
*
* ========================================================================
*
* Description: Heart of the heap manager. Do not break
* unless you have a death wish.
*
****************************************************************************/
#include "variety.h"
#include <limits.h>
#include <malloc.h>
#include "heap.h"
#if defined(M_I86)
extern unsigned setup_ds( unsigned );
#pragma aux setup_ds = \
"push ax" \
"mov ax,ds" \
"pop ds" \
parm [ax] value [ax];
#define setup_segment( _x ) _x = setup_ds( _x );
#else
#define setup_segment( _x ) (void)(_x = _x);
#endif
//
// input:
// size - #bytes to allocate
// segment - 16bit Intel data selector containing heap
// offset - address of heap control block
// if 16bit Intel -> offset within segment
// else -> absolute pointer value
//
// output:
// result - address of allocated storage or zero on failure
// if 16bit Intel -> offset within segment
// else -> absolute pointer value
//
unsigned __MemAllocator( unsigned size, unsigned segment, unsigned offset )
{
frlptr result;
result = 0; // assume the worst
setup_segment( segment ); // setup DS for 16bit Intel
if( size != 0 ) { // quit if size is zero
unsigned new_size;
new_size = size + TAG_SIZE + ROUND_SIZE;// round up size
if( new_size >= size ) { // quit if overflowed
struct heapblkp _WCI86NEAR *heap;
unsigned largest;
heap = (struct heapblkp _WCI86NEAR *)offset;
size = new_size & ~ROUND_SIZE; // make size even
largest = heap->largest_blk;
if( size < FRL_SIZE ) {
size = FRL_SIZE;
}
if( size <= largest ) { // quit if size too big
frlptr pcur;
unsigned len;
pcur = heap->rover; // start at rover
largest = heap->b4rover;
if( size <= largest ) { // check size with rover
pcur = heap->freehead.next; // start at beginning
largest = 0; // reset largest block size
}
for(;;) { // search free list
len = pcur->len;
if( size <= len ) { // found one
break;
}
if( len > largest ) { // update largest block size
largest = len;
}
pcur = pcur->next; // advance to next entry
if( pcur == // if back at start
(frlptr)&(heap->freehead)) {
heap->largest_blk = largest; // update largest
setup_segment( segment ); // 16bit Intel restore
return( (unsigned)result ); // return 0
}
}
heap->b4rover = largest; // update rover size
heap->numalloc++; // udpate allocation count
len -= size; // compute leftover size
if( len >= FRL_SIZE ) { // if leftover big enough
// split into two chunks
frlptr pprev; // before current
frlptr pnext; // after current
frlptr pnew; // start of new piece
pnew = (frlptr)((PTR)pcur + size);
heap->rover = pnew; // update rover
pnew->len = len; // set new size
pcur->len = size; // reset current size
pprev = pcur->prev; // update next/prev links
pnew->prev = pprev;
pnext = pcur->next;
pnew->next = pnext;
pprev->next = pnew;
pnext->prev = pnew;
} else { // just use this chunk
frlptr pprev; // before current
frlptr pnext; // after current
heap->numfree--; // 1 fewer entries in free list
pprev = pcur->prev;
heap->rover = pprev; // update rover
pnext = pcur->next; // update next/prev links
pprev->next = pnext;
pnext->prev = pprev;
}
pcur->len |= 1; // mark as allocated
// get pointer to user area
result = (frlptr)((PTR)pcur + TAG_SIZE);
}
}
}
setup_segment( segment ); // 16bit Intel restore
return( (unsigned)result );
}
//
// input:
// pointer - address of block to free
// if 16bit Intel -> offset within segment
// else -> absolute pointer value
// segment - 16bit Intel data selector containing heap
// offset - address of heap control block
// if 16bit Intel -> offset within segment
// else -> absolute pointer value
//
// output:
// none
//
void __MemFree( unsigned pointer, unsigned segment, unsigned offset )
{
setup_segment( segment ); // setup DS for 16bit Intel
if( pointer != 0 ) { // quit if pointer is zero
frlptr pfree;
pfree = (frlptr)(pointer - TAG_SIZE);
if( pfree->len & 1 ) { // quit if storage is free
struct heapblkp _WCI86NEAR *heap;
frlptr pnext;
frlptr pprev;
frlptr ptr;
unsigned len;
heap = (struct heapblkp _WCI86NEAR *)offset;
do { // this allows break statement
unsigned average;
unsigned numfree;
// look at next block to try and coalesce
len = pfree->len & ~1; // get next block
pnext = (frlptr)((PTR)pfree + len);
if( (pnext->len & 1) == 0 ) { // if it is free
len += pnext->len; // include the length
pfree->len = len; // update pfree length
if( pnext == heap->rover ) { // check for rover
heap->rover = pfree; // update rover
}
pprev = pnext->prev; // fixup next/prev links
pnext = pnext->next;
pprev->next = pnext;
pnext->prev = pprev;
heap->numfree--; // reduce numfree
break; // proceed to coalesce code
}
// following block is not free
// we must now try to figure out where pfree
// is in relation to the entries in the free list
pfree->len = len; // remove allocated marker
// check a few special places
// see if pfree is:
// - just before or just after the rover
// - at the very beginning or very end of the heap
pnext = heap->rover; // get rover
if( pfree < pnext ) { // where is pfree?
// pfree is before rover
if( pfree > pnext->prev ) { // where is pfree?
// pfree is next to rover
break; // proceed to coalesce code
}
pnext = heap->freehead.next; // get start of free list
if( pfree < pnext ) { // where is pfree?
// pfree is at start of list
break; // proceed to coalesce code
}
} else { // pfree is after rover
pnext = pnext->next; // pnext is after rover
if( pfree < pnext ) { // where is pfree?
// pfree is just after rover
break; // proceed to coalesce code
}
// get end of free list
pnext = (frlptr)&(heap->freehead);
pprev = pnext->prev;
if( pfree > pprev ) { // where is pfree?
// pfree is at end of list
break; // proceed to coalesce code
}
}
// Calculate the average number of allocated blocks we may
// have to skip until we expect to find a free block. If
// this number is less than the total number of free blocks,
// chances are that we can find the correct position in the
// free list by scanning ahead for a free block and linking
// this free block before the found free block. We protect
// ourself against the degenerate case where there is an
// extremely long string of allocated blocks by limiting the
// number of blocks we will search to twice the calculated
// average.
numfree = heap->numfree;
average = heap->numalloc / (numfree+1);
if( average < numfree ) {
// There are lots of allocated blocks and lots of free
// blocks. On average we should find a free block
// quickly by following the allocated blocks, but the
// worst case can be very bad. So, we try scanning the
// allocated blocks and give up once we have looked at
// twice the average.
unsigned worst;
worst = heap->numalloc - numfree;
average *= 2; // give up after this many
if( worst <= numfree ) {
average = UINT_MAX; // we won't give up loop
}
// point at next allocated
pnext = (frlptr)((PTR)pfree + pfree->len);
for(;;) {
len = pnext->len;
if( len & 1 ) { // pnext is allocated
if( len != END_TAG ) { // check for end TAG
len &= ~1; // advance pnext
pnext = (frlptr)((PTR)pnext + len);
average--;
if( !average ) { // give up search
break;
}
} else {
break; // stop at end tag
}
} else {
// break twice!
goto found_it; // we have the spot
}
}
}
// when all else fails, search the free list
pnext = heap->rover; // begin at rover
if( pfree < pnext ) { // is pfree before rover?
// then begin at start
pnext = heap->freehead.next;
}
for(;;) {
if( pfree < pnext ) { // if pfree before pnext
break; // we found it
}
pnext = pnext->next; // advance pnext
if( pfree < pnext ) { // if pfree before pnext
break; // we found it
}
pnext = pnext->next; // advance pnext
if( pfree < pnext ) { // if pfree before pnext
break; // we found it
}
pnext = pnext->next; // advance pnext
}
} while( 0 ); // only do once
found_it:
// if we are here, then we found the spot
pprev = pnext->prev; // setup pprev
// pprev, pfree, pnext are all setup
len = pfree->len;
// check pprev and pfree
ptr = (frlptr)((PTR)pprev + pprev->len);
if( ptr == pfree ) { // are they adjacent?
// coalesce pprev and pfree
len += pprev->len; // udpate len
pprev->len = len;
if( heap->rover == pfree ) { // check rover impact
heap->rover = pprev; // update rover
}
pfree = pprev; // now work with coalesced blk
} else {
heap->numfree++; // one more free entry
pfree->next = pnext; // update next/prev entries
pfree->prev = pprev;
pprev->next = pfree;
pnext->prev = pfree;
}
heap->numalloc--; // one fewer allocated
if( pfree < heap->rover ) { // check rover impact
if( len > heap->b4rover ) { // is len bigger than b4rover
heap->b4rover = len; // then update b4rover
}
}
if( len > heap->largest_blk ) { // check largest block
heap->largest_blk = len;
}
}
}
setup_segment( segment ); // 16bit Intel restore
}