/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" //#include "i915_trace.h" #include "intel_drv.h" //#include #include //#include #include #define MAX_ERRNO 4095 #define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO) static inline long IS_ERR(const void *ptr) { return IS_ERR_VALUE((unsigned long)ptr); } static inline void *ERR_PTR(long error) { return (void *) error; } static inline long PTR_ERR(const void *ptr) { return (long) ptr; } /** * Initialize an already allocated GEM object of the specified size with * shmfs backing store. */ int drm_gem_object_init(struct drm_device *dev, struct drm_gem_object *obj, size_t size) { BUG_ON((size & (PAGE_SIZE - 1)) != 0); obj->dev = dev; atomic_set(&obj->handle_count, 0); obj->size = size; return 0; } #define I915_EXEC_CONSTANTS_MASK (3<<6) #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */ #define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6) #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */ static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj); static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj, uint64_t offset, uint64_t size); static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj); static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, unsigned alignment, bool map_and_fenceable); static void i915_gem_clear_fence_reg(struct drm_device *dev, struct drm_i915_fence_reg *reg); static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file); static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj); static int i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc); /* some bookkeeping */ static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, size_t size) { dev_priv->mm.object_count++; dev_priv->mm.object_memory += size; } static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, size_t size) { dev_priv->mm.object_count--; dev_priv->mm.object_memory -= size; } #if 0 static int i915_gem_wait_for_error(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct completion *x = &dev_priv->error_completion; unsigned long flags; int ret; if (!atomic_read(&dev_priv->mm.wedged)) return 0; ret = wait_for_completion_interruptible(x); if (ret) return ret; if (atomic_read(&dev_priv->mm.wedged)) { /* GPU is hung, bump the completion count to account for * the token we just consumed so that we never hit zero and * end up waiting upon a subsequent completion event that * will never happen. */ spin_lock_irqsave(&x->wait.lock, flags); x->done++; spin_unlock_irqrestore(&x->wait.lock, flags); } return 0; } int i915_mutex_lock_interruptible(struct drm_device *dev) { int ret; ret = i915_gem_wait_for_error(dev); if (ret) return ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; WARN_ON(i915_verify_lists(dev)); return 0; } static inline bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) { return obj->gtt_space && !obj->active && obj->pin_count == 0; } #endif void i915_gem_do_init(struct drm_device *dev, unsigned long start, unsigned long mappable_end, unsigned long end) { drm_i915_private_t *dev_priv = dev->dev_private; drm_mm_init(&dev_priv->mm.gtt_space, start, end - start); dev_priv->mm.gtt_start = start; dev_priv->mm.gtt_mappable_end = mappable_end; dev_priv->mm.gtt_end = end; dev_priv->mm.gtt_total = end - start; dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start; /* Take over this portion of the GTT */ intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE); } #if 0 int i915_gem_init_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_init *args = data; if (args->gtt_start >= args->gtt_end || (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) return -EINVAL; mutex_lock(&dev->struct_mutex); i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_get_aperture *args = data; struct drm_i915_gem_object *obj; size_t pinned; if (!(dev->driver->driver_features & DRIVER_GEM)) return -ENODEV; pinned = 0; mutex_lock(&dev->struct_mutex); list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list) pinned += obj->gtt_space->size; mutex_unlock(&dev->struct_mutex); args->aper_size = dev_priv->mm.gtt_total; args->aper_available_size = args->aper_size - pinned; return 0; } static int i915_gem_create(struct drm_file *file, struct drm_device *dev, uint64_t size, uint32_t *handle_p) { struct drm_i915_gem_object *obj; int ret; u32 handle; size = roundup(size, PAGE_SIZE); if (size == 0) return -EINVAL; /* Allocate the new object */ obj = i915_gem_alloc_object(dev, size); if (obj == NULL) return -ENOMEM; ret = drm_gem_handle_create(file, &obj->base, &handle); if (ret) { drm_gem_object_release(&obj->base); i915_gem_info_remove_obj(dev->dev_private, obj->base.size); kfree(obj); return ret; } /* drop reference from allocate - handle holds it now */ drm_gem_object_unreference(&obj->base); // trace_i915_gem_object_create(obj); *handle_p = handle; return 0; } int i915_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { /* have to work out size/pitch and return them */ args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); args->size = args->pitch * args->height; return i915_gem_create(file, dev, args->size, &args->handle); } int i915_gem_dumb_destroy(struct drm_file *file, struct drm_device *dev, uint32_t handle) { return drm_gem_handle_delete(file, handle); } /** * Creates a new mm object and returns a handle to it. */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_create *args = data; return i915_gem_create(file, dev, args->size, &args->handle); } static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) { drm_i915_private_t *dev_priv = obj->base.dev->dev_private; return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && obj->tiling_mode != I915_TILING_NONE; } static inline void slow_shmem_copy(struct page *dst_page, int dst_offset, struct page *src_page, int src_offset, int length) { char *dst_vaddr, *src_vaddr; dst_vaddr = kmap(dst_page); src_vaddr = kmap(src_page); memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length); kunmap(src_page); kunmap(dst_page); } static inline void slow_shmem_bit17_copy(struct page *gpu_page, int gpu_offset, struct page *cpu_page, int cpu_offset, int length, int is_read) { char *gpu_vaddr, *cpu_vaddr; /* Use the unswizzled path if this page isn't affected. */ if ((page_to_phys(gpu_page) & (1 << 17)) == 0) { if (is_read) return slow_shmem_copy(cpu_page, cpu_offset, gpu_page, gpu_offset, length); else return slow_shmem_copy(gpu_page, gpu_offset, cpu_page, cpu_offset, length); } gpu_vaddr = kmap(gpu_page); cpu_vaddr = kmap(cpu_page); /* Copy the data, XORing A6 with A17 (1). The user already knows he's * XORing with the other bits (A9 for Y, A9 and A10 for X) */ while (length > 0) { int cacheline_end = ALIGN(gpu_offset + 1, 64); int this_length = min(cacheline_end - gpu_offset, length); int swizzled_gpu_offset = gpu_offset ^ 64; if (is_read) { memcpy(cpu_vaddr + cpu_offset, gpu_vaddr + swizzled_gpu_offset, this_length); } else { memcpy(gpu_vaddr + swizzled_gpu_offset, cpu_vaddr + cpu_offset, this_length); } cpu_offset += this_length; gpu_offset += this_length; length -= this_length; } kunmap(cpu_page); kunmap(gpu_page); } /** * This is the fast shmem pread path, which attempts to copy_from_user directly * from the backing pages of the object to the user's address space. On a * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow(). */ static int i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; ssize_t remain; loff_t offset; char __user *user_data; int page_offset, page_length; user_data = (char __user *) (uintptr_t) args->data_ptr; remain = args->size; offset = args->offset; while (remain > 0) { struct page *page; char *vaddr; int ret; /* Operation in this page * * page_offset = offset within page * page_length = bytes to copy for this page */ page_offset = offset_in_page(offset); page_length = remain; if ((page_offset + remain) > PAGE_SIZE) page_length = PAGE_SIZE - page_offset; page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); if (IS_ERR(page)) return PTR_ERR(page); vaddr = kmap_atomic(page); ret = __copy_to_user_inatomic(user_data, vaddr + page_offset, page_length); kunmap_atomic(vaddr); mark_page_accessed(page); page_cache_release(page); if (ret) return -EFAULT; remain -= page_length; user_data += page_length; offset += page_length; } return 0; } /** * This is the fallback shmem pread path, which allocates temporary storage * in kernel space to copy_to_user into outside of the struct_mutex, so we * can copy out of the object's backing pages while holding the struct mutex * and not take page faults. */ static int i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file) { struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; struct mm_struct *mm = current->mm; struct page **user_pages; ssize_t remain; loff_t offset, pinned_pages, i; loff_t first_data_page, last_data_page, num_pages; int shmem_page_offset; int data_page_index, data_page_offset; int page_length; int ret; uint64_t data_ptr = args->data_ptr; int do_bit17_swizzling; remain = args->size; /* Pin the user pages containing the data. We can't fault while * holding the struct mutex, yet we want to hold it while * dereferencing the user data. */ first_data_page = data_ptr / PAGE_SIZE; last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; num_pages = last_data_page - first_data_page + 1; user_pages = drm_malloc_ab(num_pages, sizeof(struct page *)); if (user_pages == NULL) return -ENOMEM; mutex_unlock(&dev->struct_mutex); down_read(&mm->mmap_sem); pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, num_pages, 1, 0, user_pages, NULL); up_read(&mm->mmap_sem); mutex_lock(&dev->struct_mutex); if (pinned_pages < num_pages) { ret = -EFAULT; goto out; } ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, args->size); if (ret) goto out; do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); offset = args->offset; while (remain > 0) { struct page *page; /* Operation in this page * * shmem_page_offset = offset within page in shmem file * data_page_index = page number in get_user_pages return * data_page_offset = offset with data_page_index page. * page_length = bytes to copy for this page */ shmem_page_offset = offset_in_page(offset); data_page_index = data_ptr / PAGE_SIZE - first_data_page; data_page_offset = offset_in_page(data_ptr); page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; if ((data_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - data_page_offset; page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); if (IS_ERR(page)) { ret = PTR_ERR(page); goto out; } if (do_bit17_swizzling) { slow_shmem_bit17_copy(page, shmem_page_offset, user_pages[data_page_index], data_page_offset, page_length, 1); } else { slow_shmem_copy(user_pages[data_page_index], data_page_offset, page, shmem_page_offset, page_length); } mark_page_accessed(page); page_cache_release(page); remain -= page_length; data_ptr += page_length; offset += page_length; } out: for (i = 0; i < pinned_pages; i++) { SetPageDirty(user_pages[i]); mark_page_accessed(user_pages[i]); page_cache_release(user_pages[i]); } drm_free_large(user_pages); return ret; } #endif static uint32_t i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) { uint32_t gtt_size; if (INTEL_INFO(dev)->gen >= 4 || tiling_mode == I915_TILING_NONE) return size; /* Previous chips need a power-of-two fence region when tiling */ if (INTEL_INFO(dev)->gen == 3) gtt_size = 1024*1024; else gtt_size = 512*1024; while (gtt_size < size) gtt_size <<= 1; return gtt_size; } /** * i915_gem_get_gtt_alignment - return required GTT alignment for an object * @obj: object to check * * Return the required GTT alignment for an object, taking into account * potential fence register mapping. */ static uint32_t i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, int tiling_mode) { /* * Minimum alignment is 4k (GTT page size), but might be greater * if a fence register is needed for the object. */ if (INTEL_INFO(dev)->gen >= 4 || tiling_mode == I915_TILING_NONE) return 4096; /* * Previous chips need to be aligned to the size of the smallest * fence register that can contain the object. */ return i915_gem_get_gtt_size(dev, size, tiling_mode); } /** * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an * unfenced object * @dev: the device * @size: size of the object * @tiling_mode: tiling mode of the object * * Return the required GTT alignment for an object, only taking into account * unfenced tiled surface requirements. */ uint32_t i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, uint32_t size, int tiling_mode) { /* * Minimum alignment is 4k (GTT page size) for sane hw. */ if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || tiling_mode == I915_TILING_NONE) return 4096; /* Previous hardware however needs to be aligned to a power-of-two * tile height. The simplest method for determining this is to reuse * the power-of-tile object size. */ return i915_gem_get_gtt_size(dev, size, tiling_mode); } static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj, gfp_t gfpmask) { int page_count, i; struct page *page; /* Get the list of pages out of our struct file. They'll be pinned * at this point until we release them. */ page_count = obj->base.size / PAGE_SIZE; BUG_ON(obj->pages != NULL); obj->pages = malloc(page_count * sizeof(struct page *)); if (obj->pages == NULL) return -ENOMEM; for (i = 0; i < page_count; i++) { page = (struct page*)AllocPage(); // oh-oh if (IS_ERR(page)) goto err_pages; obj->pages[i] = page; } // if (obj->tiling_mode != I915_TILING_NONE) // i915_gem_object_do_bit_17_swizzle(obj); return 0; err_pages: // while (i--) // page_cache_release(obj->pages[i]); free(obj->pages); obj->pages = NULL; return PTR_ERR(page); } static void i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) { int page_count = obj->base.size / PAGE_SIZE; int i; BUG_ON(obj->madv == __I915_MADV_PURGED); // if (obj->tiling_mode != I915_TILING_NONE) // i915_gem_object_save_bit_17_swizzle(obj); if (obj->madv == I915_MADV_DONTNEED) obj->dirty = 0; /* It's a swap!!! for (i = 0; i < page_count; i++) { if (obj->dirty) set_page_dirty(obj->pages[i]); if (obj->madv == I915_MADV_WILLNEED) mark_page_accessed(obj->pages[i]); //page_cache_release(obj->pages[i]); } obj->dirty = 0; */ free(obj->pages); obj->pages = NULL; } void i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, struct intel_ring_buffer *ring, u32 seqno) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; BUG_ON(ring == NULL); obj->ring = ring; /* Add a reference if we're newly entering the active list. */ if (!obj->active) { // drm_gem_object_reference(&obj->base); obj->active = 1; } /* Move from whatever list we were on to the tail of execution. */ list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); list_move_tail(&obj->ring_list, &ring->active_list); obj->last_rendering_seqno = seqno; if (obj->fenced_gpu_access) { struct drm_i915_fence_reg *reg; BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE); obj->last_fenced_seqno = seqno; obj->last_fenced_ring = ring; reg = &dev_priv->fence_regs[obj->fence_reg]; list_move_tail(®->lru_list, &dev_priv->mm.fence_list); } } static void i915_gem_process_flushing_list(struct intel_ring_buffer *ring, uint32_t flush_domains) { struct drm_i915_gem_object *obj, *next; list_for_each_entry_safe(obj, next, &ring->gpu_write_list, gpu_write_list) { if (obj->base.write_domain & flush_domains) { uint32_t old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; list_del_init(&obj->gpu_write_list); i915_gem_object_move_to_active(obj, ring, i915_gem_next_request_seqno(ring)); // trace_i915_gem_object_change_domain(obj, // obj->base.read_domains, // old_write_domain); } } } /** * Ensures that all rendering to the object has completed and the object is * safe to unbind from the GTT or access from the CPU. */ int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj) { int ret; /* This function only exists to support waiting for existing rendering, * not for emitting required flushes. */ BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0); /* If there is rendering queued on the buffer being evicted, wait for * it. */ // if (obj->active) { // ret = i915_wait_request(obj->ring, obj->last_rendering_seqno); // if (ret) // return ret; // } return 0; } int i915_gem_flush_ring(struct intel_ring_buffer *ring, uint32_t invalidate_domains, uint32_t flush_domains) { int ret; if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0) return 0; // trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains); ret = ring->flush(ring, invalidate_domains, flush_domains); if (ret) return ret; if (flush_domains & I915_GEM_GPU_DOMAINS) i915_gem_process_flushing_list(ring, flush_domains); return 0; } /** * i915_gem_clear_fence_reg - clear out fence register info * @obj: object to clear * * Zeroes out the fence register itself and clears out the associated * data structures in dev_priv and obj. */ static void i915_gem_clear_fence_reg(struct drm_device *dev, struct drm_i915_fence_reg *reg) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t fence_reg = reg - dev_priv->fence_regs; switch (INTEL_INFO(dev)->gen) { case 7: case 6: I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0); break; case 5: case 4: I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0); break; case 3: if (fence_reg >= 8) fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4; else case 2: fence_reg = FENCE_REG_830_0 + fence_reg * 4; I915_WRITE(fence_reg, 0); break; } list_del_init(®->lru_list); reg->obj = NULL; reg->setup_seqno = 0; } /** * Finds free space in the GTT aperture and binds the object there. */ static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, unsigned alignment, bool map_and_fenceable) { struct drm_device *dev = obj->base.dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_mm_node *free_space; gfp_t gfpmask = 0; //__GFP_NORETRY | __GFP_NOWARN; u32 size, fence_size, fence_alignment, unfenced_alignment; bool mappable, fenceable; int ret; if (obj->madv != I915_MADV_WILLNEED) { DRM_ERROR("Attempting to bind a purgeable object\n"); return -EINVAL; } fence_size = i915_gem_get_gtt_size(dev, obj->base.size, obj->tiling_mode); fence_alignment = i915_gem_get_gtt_alignment(dev, obj->base.size, obj->tiling_mode); unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(dev, obj->base.size, obj->tiling_mode); if (alignment == 0) alignment = map_and_fenceable ? fence_alignment : unfenced_alignment; if (map_and_fenceable && alignment & (fence_alignment - 1)) { DRM_ERROR("Invalid object alignment requested %u\n", alignment); return -EINVAL; } size = map_and_fenceable ? fence_size : obj->base.size; /* If the object is bigger than the entire aperture, reject it early * before evicting everything in a vain attempt to find space. */ if (obj->base.size > (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { DRM_ERROR("Attempting to bind an object larger than the aperture\n"); return -E2BIG; } search_free: if (map_and_fenceable) free_space = drm_mm_search_free_in_range(&dev_priv->mm.gtt_space, size, alignment, 0, dev_priv->mm.gtt_mappable_end, 0); else free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, size, alignment, 0); if (free_space != NULL) { if (map_and_fenceable) obj->gtt_space = drm_mm_get_block_range_generic(free_space, size, alignment, 0, dev_priv->mm.gtt_mappable_end, 0); else obj->gtt_space = drm_mm_get_block(free_space, size, alignment); } if (obj->gtt_space == NULL) { /* If the gtt is empty and we're still having trouble * fitting our object in, we're out of memory. */ ret = 1; //i915_gem_evict_something(dev, size, alignment, // map_and_fenceable); if (ret) return ret; goto search_free; } ret = i915_gem_object_get_pages_gtt(obj, gfpmask); if (ret) { drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; #if 0 if (ret == -ENOMEM) { /* first try to reclaim some memory by clearing the GTT */ ret = i915_gem_evict_everything(dev, false); if (ret) { /* now try to shrink everyone else */ if (gfpmask) { gfpmask = 0; goto search_free; } return -ENOMEM; } goto search_free; } #endif return ret; } ret = i915_gem_gtt_bind_object(obj); if (ret) { // i915_gem_object_put_pages_gtt(obj); drm_mm_put_block(obj->gtt_space); obj->gtt_space = NULL; // if (i915_gem_evict_everything(dev, false)) return ret; // goto search_free; } list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list); list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); /* Assert that the object is not currently in any GPU domain. As it * wasn't in the GTT, there shouldn't be any way it could have been in * a GPU cache */ BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); obj->gtt_offset = obj->gtt_space->start; fenceable = obj->gtt_space->size == fence_size && (obj->gtt_space->start & (fence_alignment - 1)) == 0; mappable = obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; obj->map_and_fenceable = mappable && fenceable; // trace_i915_gem_object_bind(obj, map_and_fenceable); return 0; } void i915_gem_clflush_object(struct drm_i915_gem_object *obj) { /* If we don't have a page list set up, then we're not pinned * to GPU, and we can ignore the cache flush because it'll happen * again at bind time. */ if (obj->pages == NULL) return; /* If the GPU is snooping the contents of the CPU cache, * we do not need to manually clear the CPU cache lines. However, * the caches are only snooped when the render cache is * flushed/invalidated. As we always have to emit invalidations * and flushes when moving into and out of the RENDER domain, correct * snooping behaviour occurs naturally as the result of our domain * tracking. */ if (obj->cache_level != I915_CACHE_NONE) return; // trace_i915_gem_object_clflush(obj); // drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE); mb(); __asm__ ("wbinvd"); // this is really ugly mb(); } /** Flushes any GPU write domain for the object if it's dirty. */ static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj) { if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0) return 0; /* Queue the GPU write cache flushing we need. */ return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain); } /** Flushes the CPU write domain for the object if it's dirty. */ static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) { uint32_t old_write_domain; if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) return; i915_gem_clflush_object(obj); intel_gtt_chipset_flush(); old_write_domain = obj->base.write_domain; obj->base.write_domain = 0; // trace_i915_gem_object_change_domain(obj, // obj->base.read_domains, // old_write_domain); } /** * Moves a single object to the GTT read, and possibly write domain. * * This function returns when the move is complete, including waiting on * flushes to occur. */ int i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) { uint32_t old_write_domain, old_read_domains; int ret; /* Not valid to be called on unbound objects. */ if (obj->gtt_space == NULL) return -EINVAL; if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) return 0; ret = i915_gem_object_flush_gpu_write_domain(obj); if (ret) return ret; if (obj->pending_gpu_write || write) { ret = i915_gem_object_wait_rendering(obj); if (ret) return ret; } i915_gem_object_flush_cpu_write_domain(obj); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); obj->base.read_domains |= I915_GEM_DOMAIN_GTT; if (write) { obj->base.read_domains = I915_GEM_DOMAIN_GTT; obj->base.write_domain = I915_GEM_DOMAIN_GTT; obj->dirty = 1; } return 0; } #if 0 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, enum i915_cache_level cache_level) { int ret; if (obj->cache_level == cache_level) return 0; if (obj->pin_count) { DRM_DEBUG("can not change the cache level of pinned objects\n"); return -EBUSY; } if (obj->gtt_space) { ret = i915_gem_object_finish_gpu(obj); if (ret) return ret; i915_gem_object_finish_gtt(obj); /* Before SandyBridge, you could not use tiling or fence * registers with snooped memory, so relinquish any fences * currently pointing to our region in the aperture. */ if (INTEL_INFO(obj->base.dev)->gen < 6) { ret = i915_gem_object_put_fence(obj); if (ret) return ret; } i915_gem_gtt_rebind_object(obj, cache_level); } if (cache_level == I915_CACHE_NONE) { u32 old_read_domains, old_write_domain; /* If we're coming from LLC cached, then we haven't * actually been tracking whether the data is in the * CPU cache or not, since we only allow one bit set * in obj->write_domain and have been skipping the clflushes. * Just set it to the CPU cache for now. */ WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); old_read_domains = obj->base.read_domains; old_write_domain = obj->base.write_domain; obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->base.write_domain = I915_GEM_DOMAIN_CPU; trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); } obj->cache_level = cache_level; return 0; } #endif /* * Prepare buffer for display plane (scanout, cursors, etc). * Can be called from an uninterruptible phase (modesetting) and allows * any flushes to be pipelined (for pageflips). * * For the display plane, we want to be in the GTT but out of any write * domains. So in many ways this looks like set_to_gtt_domain() apart from the * ability to pipeline the waits, pinning and any additional subtleties * that may differentiate the display plane from ordinary buffers. */ int i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, u32 alignment, struct intel_ring_buffer *pipelined) { u32 old_read_domains, old_write_domain; int ret; ret = i915_gem_object_flush_gpu_write_domain(obj); if (ret) return ret; if (pipelined != obj->ring) { ret = i915_gem_object_wait_rendering(obj); if (ret == -ERESTARTSYS) return ret; } /* The display engine is not coherent with the LLC cache on gen6. As * a result, we make sure that the pinning that is about to occur is * done with uncached PTEs. This is lowest common denominator for all * chipsets. * * However for gen6+, we could do better by using the GFDT bit instead * of uncaching, which would allow us to flush all the LLC-cached data * with that bit in the PTE to main memory with just one PIPE_CONTROL. */ // ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); // if (ret) // return ret; /* As the user may map the buffer once pinned in the display plane * (e.g. libkms for the bootup splash), we have to ensure that we * always use map_and_fenceable for all scanout buffers. */ ret = i915_gem_object_pin(obj, alignment, true); if (ret) return ret; i915_gem_object_flush_cpu_write_domain(obj); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); obj->base.read_domains |= I915_GEM_DOMAIN_GTT; // trace_i915_gem_object_change_domain(obj, // old_read_domains, // old_write_domain); return 0; } int i915_gem_object_pin(struct drm_i915_gem_object *obj, uint32_t alignment, bool map_and_fenceable) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT); // WARN_ON(i915_verify_lists(dev)); #if 0 if (obj->gtt_space != NULL) { if ((alignment && obj->gtt_offset & (alignment - 1)) || (map_and_fenceable && !obj->map_and_fenceable)) { WARN(obj->pin_count, "bo is already pinned with incorrect alignment:" " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," " obj->map_and_fenceable=%d\n", obj->gtt_offset, alignment, map_and_fenceable, obj->map_and_fenceable); ret = i915_gem_object_unbind(obj); if (ret) return ret; } } #endif if (obj->gtt_space == NULL) { ret = i915_gem_object_bind_to_gtt(obj, alignment, map_and_fenceable); if (ret) return ret; } if (obj->pin_count++ == 0) { if (!obj->active) list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list); } obj->pin_mappable |= map_and_fenceable; // WARN_ON(i915_verify_lists(dev)); return 0; } struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, size_t size) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (obj == NULL) return NULL; if (drm_gem_object_init(dev, &obj->base, size) != 0) { kfree(obj); return NULL; } i915_gem_info_add_obj(dev_priv, size); obj->base.write_domain = I915_GEM_DOMAIN_CPU; obj->base.read_domains = I915_GEM_DOMAIN_CPU; if (IS_GEN6(dev) || IS_GEN7(dev)) { /* On Gen6, we can have the GPU use the LLC (the CPU * cache) for about a 10% performance improvement * compared to uncached. Graphics requests other than * display scanout are coherent with the CPU in * accessing this cache. This means in this mode we * don't need to clflush on the CPU side, and on the * GPU side we only need to flush internal caches to * get data visible to the CPU. * * However, we maintain the display planes as UC, and so * need to rebind when first used as such. */ obj->cache_level = I915_CACHE_LLC; } else obj->cache_level = I915_CACHE_NONE; obj->base.driver_private = NULL; obj->fence_reg = I915_FENCE_REG_NONE; INIT_LIST_HEAD(&obj->mm_list); INIT_LIST_HEAD(&obj->gtt_list); INIT_LIST_HEAD(&obj->ring_list); INIT_LIST_HEAD(&obj->exec_list); INIT_LIST_HEAD(&obj->gpu_write_list); obj->madv = I915_MADV_WILLNEED; /* Avoid an unnecessary call to unbind on the first bind. */ obj->map_and_fenceable = true; return obj; } int i915_gem_init_ringbuffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret; ENTER(); ret = intel_init_render_ring_buffer(dev); if (ret) return ret; if (HAS_BSD(dev)) { ret = intel_init_bsd_ring_buffer(dev); if (ret) goto cleanup_render_ring; } if (HAS_BLT(dev)) { ret = intel_init_blt_ring_buffer(dev); if (ret) goto cleanup_bsd_ring; } dev_priv->next_seqno = 1; LEAVE(); return 0; cleanup_bsd_ring: intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); cleanup_render_ring: intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); return ret; } #if 0 void i915_gem_cleanup_ringbuffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int i; for (i = 0; i < I915_NUM_RINGS; i++) intel_cleanup_ring_buffer(&dev_priv->ring[i]); } int i915_gem_entervt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; int ret, i; if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; if (atomic_read(&dev_priv->mm.wedged)) { DRM_ERROR("Reenabling wedged hardware, good luck\n"); atomic_set(&dev_priv->mm.wedged, 0); } mutex_lock(&dev->struct_mutex); dev_priv->mm.suspended = 0; ret = i915_gem_init_ringbuffer(dev); if (ret != 0) { mutex_unlock(&dev->struct_mutex); return ret; } BUG_ON(!list_empty(&dev_priv->mm.active_list)); BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); for (i = 0; i < I915_NUM_RINGS; i++) { BUG_ON(!list_empty(&dev_priv->ring[i].active_list)); BUG_ON(!list_empty(&dev_priv->ring[i].request_list)); } mutex_unlock(&dev->struct_mutex); ret = drm_irq_install(dev); if (ret) goto cleanup_ringbuffer; return 0; cleanup_ringbuffer: mutex_lock(&dev->struct_mutex); i915_gem_cleanup_ringbuffer(dev); dev_priv->mm.suspended = 1; mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; drm_irq_uninstall(dev); return i915_gem_idle(dev); } void i915_gem_lastclose(struct drm_device *dev) { int ret; if (drm_core_check_feature(dev, DRIVER_MODESET)) return; ret = i915_gem_idle(dev); if (ret) DRM_ERROR("failed to idle hardware: %d\n", ret); } #endif static void init_ring_lists(struct intel_ring_buffer *ring) { INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); INIT_LIST_HEAD(&ring->gpu_write_list); } void i915_gem_load(struct drm_device *dev) { int i; drm_i915_private_t *dev_priv = dev->dev_private; INIT_LIST_HEAD(&dev_priv->mm.active_list); INIT_LIST_HEAD(&dev_priv->mm.flushing_list); INIT_LIST_HEAD(&dev_priv->mm.inactive_list); INIT_LIST_HEAD(&dev_priv->mm.pinned_list); INIT_LIST_HEAD(&dev_priv->mm.fence_list); INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list); INIT_LIST_HEAD(&dev_priv->mm.gtt_list); for (i = 0; i < I915_NUM_RINGS; i++) init_ring_lists(&dev_priv->ring[i]); for (i = 0; i < I915_MAX_NUM_FENCES; i++) INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); // INIT_DELAYED_WORK(&dev_priv->mm.retire_work, // i915_gem_retire_work_handler); // init_completion(&dev_priv->error_completion); /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ if (IS_GEN3(dev)) { u32 tmp = I915_READ(MI_ARB_STATE); if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) { /* arb state is a masked write, so set bit + bit in mask */ tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT); I915_WRITE(MI_ARB_STATE, tmp); } } dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) dev_priv->num_fence_regs = 16; else dev_priv->num_fence_regs = 8; /* Initialize fence registers to zero */ for (i = 0; i < dev_priv->num_fence_regs; i++) { i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]); } i915_gem_detect_bit_6_swizzle(dev); // init_waitqueue_head(&dev_priv->pending_flip_queue); dev_priv->mm.interruptible = true; // dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; // dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; // register_shrinker(&dev_priv->mm.inactive_shrinker); }