#include #include #include #include #include "sna.h" #define to_surface(x) (surface_t*)((x)->handle) static struct sna_fb sna_fb; static int tls_mask; int tls_alloc(void); static inline void *tls_get(int key) { void *val; __asm__ __volatile__( "movl %%fs:(%1), %0" :"=r"(val) :"r"(key)); return val; }; static inline int tls_set(int key, const void *ptr) { if(!(key & 3)) { __asm__ __volatile__( "movl %0, %%fs:(%1)" ::"r"(ptr),"r"(key)); return 0; } else return -1; } int kgem_init_fb(struct kgem *kgem, struct sna_fb *fb); int kgem_update_fb(struct kgem *kgem, struct sna_fb *fb); uint32_t kgem_surface_size(struct kgem *kgem,bool relaxed_fencing, unsigned flags, uint32_t width, uint32_t height, uint32_t bpp, uint32_t tiling, uint32_t *pitch); void kgem_close_batches(struct kgem *kgem); void sna_bo_destroy(struct kgem *kgem, struct kgem_bo *bo); const struct intel_device_info * intel_detect_chipset(struct pci_device *pci); //struct kgem_bo *create_bo(bitmap_t *bitmap); static bool sna_solid_cache_init(struct sna *sna); struct sna *sna_device; __LOCK_INIT_RECURSIVE(, __sna_lock); static void no_render_reset(struct sna *sna) { (void)sna; } void no_render_init(struct sna *sna) { struct sna_render *render = &sna->render; memset (render,0, sizeof (*render)); render->prefer_gpu = PREFER_GPU_BLT; render->vertices = render->vertex_data; render->vertex_size = ARRAY_SIZE(render->vertex_data); // render->composite = no_render_composite; // render->copy_boxes = no_render_copy_boxes; // render->copy = no_render_copy; // render->fill_boxes = no_render_fill_boxes; // render->fill = no_render_fill; // render->fill_one = no_render_fill_one; // render->clear = no_render_clear; render->reset = no_render_reset; // render->flush = no_render_flush; // render->fini = no_render_fini; // sna->kgem.context_switch = no_render_context_switch; // sna->kgem.retire = no_render_retire; if (sna->kgem.gen >= 60) sna->kgem.ring = KGEM_RENDER; sna_vertex_init(sna); } void sna_vertex_init(struct sna *sna) { // pthread_mutex_init(&sna->render.lock, NULL); // pthread_cond_init(&sna->render.wait, NULL); sna->render.active = 0; } int sna_accel_init(struct sna *sna) { const char *backend; // list_init(&sna->deferred_free); // list_init(&sna->dirty_pixmaps); // list_init(&sna->active_pixmaps); // list_init(&sna->inactive_clock[0]); // list_init(&sna->inactive_clock[1]); // sna_accel_install_timers(sna); backend = "no"; no_render_init(sna); if (sna->info->gen >= 0100) { } else if (sna->info->gen >= 070) { if (gen7_render_init(sna)) backend = "IvyBridge"; } else if (sna->info->gen >= 060) { if (gen6_render_init(sna)) backend = "SandyBridge"; } else if (sna->info->gen >= 050) { if (gen5_render_init(sna)) backend = "Ironlake"; } else if (sna->info->gen >= 040) { if (gen4_render_init(sna)) backend = "Broadwater/Crestline"; } else if (sna->info->gen >= 030) { if (gen3_render_init(sna)) backend = "gen3"; } DBG(("%s(backend=%s, prefer_gpu=%x)\n", __FUNCTION__, backend, sna->render.prefer_gpu)); kgem_reset(&sna->kgem); // if (!sna_solid_cache_init(sna)) // return false; sna_device = sna; return kgem_init_fb(&sna->kgem, &sna_fb); } int sna_init(uint32_t service) { ioctl_t io; int caps = 0; static struct pci_device device; struct sna *sna; DBG(("%s\n", __FUNCTION__)); __lock_acquire_recursive(__sna_lock); if(sna_device) goto done; io.handle = service; io.io_code = SRV_GET_PCI_INFO; io.input = &device; io.inp_size = sizeof(device); io.output = NULL; io.out_size = 0; if (call_service(&io)!=0) goto err1; sna = malloc(sizeof(*sna)); if (sna == NULL) goto err1; memset(sna, 0, sizeof(*sna)); sna->PciInfo = &device; sna->info = intel_detect_chipset(sna->PciInfo); kgem_init(&sna->kgem, service, sna->PciInfo, sna->info->gen); /* if (!xf86ReturnOptValBool(sna->Options, OPTION_RELAXED_FENCING, sna->kgem.has_relaxed_fencing)) { xf86DrvMsg(scrn->scrnIndex, sna->kgem.has_relaxed_fencing ? X_CONFIG : X_PROBED, "Disabling use of relaxed fencing\n"); sna->kgem.has_relaxed_fencing = 0; } if (!xf86ReturnOptValBool(sna->Options, OPTION_VMAP, sna->kgem.has_vmap)) { xf86DrvMsg(scrn->scrnIndex, sna->kgem.has_vmap ? X_CONFIG : X_PROBED, "Disabling use of vmap\n"); sna->kgem.has_vmap = 0; } */ /* Disable tiling by default */ sna->tiling = SNA_TILING_DISABLE; /* Default fail-safe value of 75 Hz */ // sna->vblank_interval = 1000 * 1000 * 1000 / 75; sna->flags = 0; sna_accel_init(sna); tls_mask = tls_alloc(); // printf("tls mask %x\n", tls_mask); done: caps = sna_device->render.caps; err1: __lock_release_recursive(__sna_lock); return caps; } void sna_fini() { if( sna_device ) { struct kgem_bo *mask; __lock_acquire_recursive(__sna_lock); mask = tls_get(tls_mask); sna_device->render.fini(sna_device); if(mask) kgem_bo_destroy(&sna_device->kgem, mask); kgem_close_batches(&sna_device->kgem); kgem_cleanup_cache(&sna_device->kgem); sna_device = NULL; __lock_release_recursive(__sna_lock); }; } #if 0 static bool sna_solid_cache_init(struct sna *sna) { struct sna_solid_cache *cache = &sna->render.solid_cache; DBG(("%s\n", __FUNCTION__)); cache->cache_bo = kgem_create_linear(&sna->kgem, sizeof(cache->color)); if (!cache->cache_bo) return FALSE; /* * Initialise [0] with white since it is very common and filling the * zeroth slot simplifies some of the checks. */ cache->color[0] = 0xffffffff; cache->bo[0] = kgem_create_proxy(cache->cache_bo, 0, sizeof(uint32_t)); cache->bo[0]->pitch = 4; cache->dirty = 1; cache->size = 1; cache->last = 0; return TRUE; } void sna_render_flush_solid(struct sna *sna) { struct sna_solid_cache *cache = &sna->render.solid_cache; DBG(("sna_render_flush_solid(size=%d)\n", cache->size)); assert(cache->dirty); assert(cache->size); kgem_bo_write(&sna->kgem, cache->cache_bo, cache->color, cache->size*sizeof(uint32_t)); cache->dirty = 0; cache->last = 0; } static void sna_render_finish_solid(struct sna *sna, bool force) { struct sna_solid_cache *cache = &sna->render.solid_cache; int i; DBG(("sna_render_finish_solid(force=%d, domain=%d, busy=%d, dirty=%d)\n", force, cache->cache_bo->domain, cache->cache_bo->rq != NULL, cache->dirty)); if (!force && cache->cache_bo->domain != DOMAIN_GPU) return; if (cache->dirty) sna_render_flush_solid(sna); for (i = 0; i < cache->size; i++) { if (cache->bo[i] == NULL) continue; kgem_bo_destroy(&sna->kgem, cache->bo[i]); cache->bo[i] = NULL; } kgem_bo_destroy(&sna->kgem, cache->cache_bo); DBG(("sna_render_finish_solid reset\n")); cache->cache_bo = kgem_create_linear(&sna->kgem, sizeof(cache->color)); cache->bo[0] = kgem_create_proxy(cache->cache_bo, 0, sizeof(uint32_t)); cache->bo[0]->pitch = 4; if (force) cache->size = 1; } struct kgem_bo * sna_render_get_solid(struct sna *sna, uint32_t color) { struct sna_solid_cache *cache = &sna->render.solid_cache; int i; DBG(("%s: %08x\n", __FUNCTION__, color)); // if ((color & 0xffffff) == 0) /* alpha only */ // return kgem_bo_reference(sna->render.alpha_cache.bo[color>>24]); if (color == 0xffffffff) { DBG(("%s(white)\n", __FUNCTION__)); return kgem_bo_reference(cache->bo[0]); } if (cache->color[cache->last] == color) { DBG(("sna_render_get_solid(%d) = %x (last)\n", cache->last, color)); return kgem_bo_reference(cache->bo[cache->last]); } for (i = 1; i < cache->size; i++) { if (cache->color[i] == color) { if (cache->bo[i] == NULL) { DBG(("sna_render_get_solid(%d) = %x (recreate)\n", i, color)); goto create; } else { DBG(("sna_render_get_solid(%d) = %x (old)\n", i, color)); goto done; } } } sna_render_finish_solid(sna, i == ARRAY_SIZE(cache->color)); i = cache->size++; cache->color[i] = color; cache->dirty = 1; DBG(("sna_render_get_solid(%d) = %x (new)\n", i, color)); create: cache->bo[i] = kgem_create_proxy(cache->cache_bo, i*sizeof(uint32_t), sizeof(uint32_t)); cache->bo[i]->pitch = 4; done: cache->last = i; return kgem_bo_reference(cache->bo[i]); } #endif int sna_blit_copy(bitmap_t *src_bitmap, int dst_x, int dst_y, int w, int h, int src_x, int src_y) { struct sna_copy_op copy; struct _Pixmap src, dst; struct kgem_bo *src_bo; char proc_info[1024]; int winx, winy; get_proc_info(proc_info); winx = *(uint32_t*)(proc_info+34); winy = *(uint32_t*)(proc_info+38); memset(&src, 0, sizeof(src)); memset(&dst, 0, sizeof(dst)); src.drawable.bitsPerPixel = 32; src.drawable.width = src_bitmap->width; src.drawable.height = src_bitmap->height; dst.drawable.bitsPerPixel = 32; dst.drawable.width = sna_fb.width; dst.drawable.height = sna_fb.height; memset(©, 0, sizeof(copy)); src_bo = (struct kgem_bo*)src_bitmap->handle; if( sna_device->render.copy(sna_device, GXcopy, &src, src_bo, &dst, sna_fb.fb_bo, ©) ) { copy.blt(sna_device, ©, src_x, src_y, w, h, winx+dst_x, winy+dst_y); copy.done(sna_device, ©); } kgem_submit(&sna_device->kgem); return 0; // __asm__ __volatile__("int3"); }; typedef struct { uint32_t width; uint32_t height; void *data; uint32_t pitch; struct kgem_bo *bo; uint32_t bo_size; uint32_t flags; }surface_t; int sna_create_bitmap(bitmap_t *bitmap) { surface_t *sf; struct kgem_bo *bo; sf = malloc(sizeof(*sf)); if(sf == NULL) goto err_1; __lock_acquire_recursive(__sna_lock); bo = kgem_create_2d(&sna_device->kgem, bitmap->width, bitmap->height, 32,I915_TILING_NONE, CREATE_CPU_MAP); if(bo == NULL) goto err_2; void *map = kgem_bo_map(&sna_device->kgem, bo); if(map == NULL) goto err_3; sf->width = bitmap->width; sf->height = bitmap->height; sf->data = map; sf->pitch = bo->pitch; sf->bo = bo; sf->bo_size = PAGE_SIZE * bo->size.pages.count; sf->flags = bitmap->flags; bitmap->handle = (uint32_t)sf; __lock_release_recursive(__sna_lock); return 0; err_3: kgem_bo_destroy(&sna_device->kgem, bo); err_2: __lock_release_recursive(__sna_lock); free(sf); err_1: return -1; }; int sna_destroy_bitmap(bitmap_t *bitmap) { surface_t *sf = to_surface(bitmap); __lock_acquire_recursive(__sna_lock); kgem_bo_destroy(&sna_device->kgem, sf->bo); __lock_release_recursive(__sna_lock); free(sf); bitmap->handle = -1; bitmap->data = (void*)-1; bitmap->pitch = -1; return 0; }; int sna_lock_bitmap(bitmap_t *bitmap) { surface_t *sf = to_surface(bitmap); // printf("%s\n", __FUNCTION__); __lock_acquire_recursive(__sna_lock); kgem_bo_sync__cpu(&sna_device->kgem, sf->bo); __lock_release_recursive(__sna_lock); bitmap->data = sf->data; bitmap->pitch = sf->pitch; return 0; }; int sna_resize_bitmap(bitmap_t *bitmap) { surface_t *sf = to_surface(bitmap); struct kgem *kgem = &sna_device->kgem; struct kgem_bo *bo = sf->bo; uint32_t size; uint32_t pitch; bitmap->pitch = -1; bitmap->data = (void *) -1; size = kgem_surface_size(kgem,kgem->has_relaxed_fencing, CREATE_CPU_MAP, bitmap->width, bitmap->height, 32, I915_TILING_NONE, &pitch); assert(size && size <= kgem->max_object_size); if(sf->bo_size >= size) { sf->width = bitmap->width; sf->height = bitmap->height; sf->pitch = pitch; bo->pitch = pitch; return 0; } else { __lock_acquire_recursive(__sna_lock); sna_bo_destroy(kgem, bo); sf->bo = NULL; bo = kgem_create_2d(kgem, bitmap->width, bitmap->height, 32, I915_TILING_NONE, CREATE_CPU_MAP); if(bo == NULL) { __lock_release_recursive(__sna_lock); return -1; }; void *map = kgem_bo_map(kgem, bo); if(map == NULL) { sna_bo_destroy(kgem, bo); __lock_release_recursive(__sna_lock); return -1; }; __lock_release_recursive(__sna_lock); sf->width = bitmap->width; sf->height = bitmap->height; sf->data = map; sf->pitch = bo->pitch; sf->bo = bo; sf->bo_size = PAGE_SIZE * bo->size.pages.count; } return 0; }; int sna_create_mask() { struct kgem_bo *bo; // printf("%s width %d height %d\n", __FUNCTION__, sna_fb.width, sna_fb.height); __lock_acquire_recursive(__sna_lock); bo = kgem_create_2d(&sna_device->kgem, sna_fb.width, sna_fb.height, 8,I915_TILING_NONE, CREATE_CPU_MAP); if(unlikely(bo == NULL)) goto err_1; int *map = kgem_bo_map(&sna_device->kgem, bo); if(map == NULL) goto err_2; __lock_release_recursive(__sna_lock); memset(map, 0, bo->pitch * sna_fb.height); tls_set(tls_mask, bo); return 0; err_2: kgem_bo_destroy(&sna_device->kgem, bo); err_1: __lock_release_recursive(__sna_lock); return -1; }; bool gen6_composite(struct sna *sna, uint8_t op, PixmapPtr src, struct kgem_bo *src_bo, PixmapPtr mask,struct kgem_bo *mask_bo, PixmapPtr dst, struct kgem_bo *dst_bo, int32_t src_x, int32_t src_y, int32_t msk_x, int32_t msk_y, int32_t dst_x, int32_t dst_y, int32_t width, int32_t height, struct sna_composite_op *tmp); #define MAP(ptr) ((void*)((uintptr_t)(ptr) & ~3)) int sna_blit_tex(bitmap_t *bitmap, bool scale, int dst_x, int dst_y, int w, int h, int src_x, int src_y) { surface_t *sf = to_surface(bitmap); struct drm_i915_mask_update update; struct sna_composite_op composite; struct _Pixmap src, dst, mask; struct kgem_bo *src_bo, *mask_bo; int winx, winy; char proc_info[1024]; get_proc_info(proc_info); winx = *(uint32_t*)(proc_info+34); winy = *(uint32_t*)(proc_info+38); // winw = *(uint32_t*)(proc_info+42)+1; // winh = *(uint32_t*)(proc_info+46)+1; mask_bo = tls_get(tls_mask); if(unlikely(mask_bo == NULL)) { sna_create_mask(); mask_bo = tls_get(tls_mask); if( mask_bo == NULL) return -1; }; if(kgem_update_fb(&sna_device->kgem, &sna_fb)) { __lock_acquire_recursive(__sna_lock); kgem_bo_destroy(&sna_device->kgem, mask_bo); __lock_release_recursive(__sna_lock); sna_create_mask(); mask_bo = tls_get(tls_mask); if( mask_bo == NULL) return -1; } VG_CLEAR(update); update.handle = mask_bo->handle; update.bo_map = (__u32)MAP(mask_bo->map); drmIoctl(sna_device->kgem.fd, SRV_MASK_UPDATE, &update); mask_bo->pitch = update.bo_pitch; memset(&src, 0, sizeof(src)); memset(&dst, 0, sizeof(dst)); memset(&mask, 0, sizeof(dst)); src.drawable.bitsPerPixel = 32; src.drawable.width = sf->width; src.drawable.height = sf->height; dst.drawable.bitsPerPixel = 32; dst.drawable.width = sna_fb.width; dst.drawable.height = sna_fb.height; mask.drawable.bitsPerPixel = 8; mask.drawable.width = update.width; mask.drawable.height = update.height; memset(&composite, 0, sizeof(composite)); src_bo = sf->bo; __lock_acquire_recursive(__sna_lock); if( sna_device->render.blit_tex(sna_device, PictOpSrc,scale, &src, src_bo, &mask, mask_bo, &dst, sna_fb.fb_bo, src_x, src_y, dst_x, dst_y, winx+dst_x, winy+dst_y, w, h, &composite) ) { struct sna_composite_rectangles r; r.src.x = src_x; r.src.y = src_y; r.mask.x = dst_x; r.mask.y = dst_y; r.dst.x = winx+dst_x; r.dst.y = winy+dst_y; r.width = w; r.height = h; composite.blt(sna_device, &composite, &r); composite.done(sna_device, &composite); }; kgem_submit(&sna_device->kgem); __lock_release_recursive(__sna_lock); bitmap->data = (void*)-1; bitmap->pitch = -1; return 0; } static const struct intel_device_info intel_generic_info = { .gen = -1, }; static const struct intel_device_info intel_i915_info = { .gen = 030, }; static const struct intel_device_info intel_i945_info = { .gen = 031, }; static const struct intel_device_info intel_g33_info = { .gen = 033, }; static const struct intel_device_info intel_i965_info = { .gen = 040, }; static const struct intel_device_info intel_g4x_info = { .gen = 045, }; static const struct intel_device_info intel_ironlake_info = { .gen = 050, }; static const struct intel_device_info intel_sandybridge_info = { .gen = 060, }; static const struct intel_device_info intel_ivybridge_info = { .gen = 070, }; static const struct intel_device_info intel_valleyview_info = { .gen = 071, }; static const struct intel_device_info intel_haswell_info = { .gen = 075, }; #define INTEL_DEVICE_MATCH(d,i) \ { 0x8086, (d), PCI_MATCH_ANY, PCI_MATCH_ANY, 0x3 << 16, 0xff << 16, (intptr_t)(i) } static const struct pci_id_match intel_device_match[] = { INTEL_DEVICE_MATCH (PCI_CHIP_I915_G, &intel_i915_info ), INTEL_DEVICE_MATCH (PCI_CHIP_E7221_G, &intel_i915_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I915_GM, &intel_i915_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I945_G, &intel_i945_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I945_GM, &intel_i945_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I945_GME, &intel_i945_info ), INTEL_DEVICE_MATCH (PCI_CHIP_PINEVIEW_M, &intel_g33_info ), INTEL_DEVICE_MATCH (PCI_CHIP_PINEVIEW_G, &intel_g33_info ), INTEL_DEVICE_MATCH (PCI_CHIP_G33_G, &intel_g33_info ), INTEL_DEVICE_MATCH (PCI_CHIP_Q33_G, &intel_g33_info ), /* Another marketing win: Q35 is another g33 device not a gen4 part * like its G35 brethren. */ INTEL_DEVICE_MATCH (PCI_CHIP_Q35_G, &intel_g33_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I965_G, &intel_i965_info ), INTEL_DEVICE_MATCH (PCI_CHIP_G35_G, &intel_i965_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I965_Q, &intel_i965_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I946_GZ, &intel_i965_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I965_GM, &intel_i965_info ), INTEL_DEVICE_MATCH (PCI_CHIP_I965_GME, &intel_i965_info ), INTEL_DEVICE_MATCH (PCI_CHIP_GM45_GM, &intel_g4x_info ), INTEL_DEVICE_MATCH (PCI_CHIP_G45_E_G, &intel_g4x_info ), INTEL_DEVICE_MATCH (PCI_CHIP_G45_G, &intel_g4x_info ), INTEL_DEVICE_MATCH (PCI_CHIP_Q45_G, &intel_g4x_info ), INTEL_DEVICE_MATCH (PCI_CHIP_G41_G, &intel_g4x_info ), INTEL_DEVICE_MATCH (PCI_CHIP_B43_G, &intel_g4x_info ), INTEL_DEVICE_MATCH (PCI_CHIP_B43_G1, &intel_g4x_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IRONLAKE_D_G, &intel_ironlake_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IRONLAKE_M_G, &intel_ironlake_info ), INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT1, &intel_sandybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT2, &intel_sandybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT2_PLUS, &intel_sandybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT1, &intel_sandybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT2, &intel_sandybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS, &intel_sandybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_S_GT, &intel_sandybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_M_GT1, &intel_ivybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_M_GT2, &intel_ivybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_D_GT1, &intel_ivybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_D_GT2, &intel_ivybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_S_GT1, &intel_ivybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_S_GT2, &intel_ivybridge_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT1, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT2, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT2_PLUS, &intel_haswell_info ), INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_PO, &intel_valleyview_info ), INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_1, &intel_valleyview_info ), INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_2, &intel_valleyview_info ), INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_3, &intel_valleyview_info ), INTEL_DEVICE_MATCH (PCI_MATCH_ANY, &intel_generic_info ), { 0, 0, 0 }, }; const struct pci_id_match *PciDevMatch(uint16_t dev,const struct pci_id_match *list) { while(list->device_id) { if(dev==list->device_id) return list; list++; } return NULL; } const struct intel_device_info * intel_detect_chipset(struct pci_device *pci) { const struct pci_id_match *ent = NULL; ent = PciDevMatch(pci->device_id, intel_device_match); if(ent != NULL) return (const struct intel_device_info*)ent->match_data; else return &intel_generic_info; #if 0 for (i = 0; intel_chipsets[i].name != NULL; i++) { if (DEVICE_ID(pci) == intel_chipsets[i].token) { name = intel_chipsets[i].name; break; } } if (name == NULL) { xf86DrvMsg(scrn->scrnIndex, X_WARNING, "unknown chipset\n"); name = "unknown"; } else { xf86DrvMsg(scrn->scrnIndex, from, "Integrated Graphics Chipset: Intel(R) %s\n", name); } scrn->chipset = name; #endif } int drmIoctl(int fd, unsigned long request, void *arg) { ioctl_t io; io.handle = fd; io.io_code = request; io.input = arg; io.inp_size = 64; io.output = NULL; io.out_size = 0; return call_service(&io); }