// This file is part of the Cyclone 68000 Emulator // Copyright (c) 2004,2011 FinalDave (emudave (at) gmail.com) // Copyright (c) 2005-2011 GraÅžvydas "notaz" Ignotas (notasas (at) gmail.com) // This code is licensed under the GNU General Public License version 2.0 and the MAME License. // You can choose the license that has the most advantages for you. // SVN repository can be found at http://code.google.com/p/cyclone68000/ #include "app.h" // --------------------- Opcodes 0x0100+ --------------------- // Emit a Btst (Register) opcode 0000nnn1 ttaaaaaa int OpBtstReg(int op) { int use=0; int type=0,sea=0,tea=0; int size=0; type=(op>>6)&3; // Btst/Bchg/Bclr/Bset // Get source and target EA sea=(op>>9)&7; tea=op&0x003f; if (tea<0x10) size=2; // For registers, 32-bits if ((tea&0x38)==0x08) return 1; // movep // See if we can do this opcode: if (EaCanRead(tea,0)==0) return 1; if (type>0) { if (EaCanWrite(tea)==0) return 1; } use=OpBase(op,size); use&=~0x0e00; // Use same handler for all registers if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,tea); if(type==1||type==3) { Cycles=8; } else { Cycles=type?8:4; if(size>=2) Cycles+=2; } EaCalcReadNoSE(-1,11,sea,0,0x0e00); EaCalcReadNoSE((type>0)?8:-1,0,tea,size,0x003f); if (tea>=0x10) ot(" and r11,r11,#7 ;@ mem - do mod 8\n"); // size always 0 else ot(" and r11,r11,#31 ;@ reg - do mod 32\n"); // size always 2 ot("\n"); ot(" mov r1,#1\n"); ot(" tst r0,r1,lsl r11 ;@ Do arithmetic\n"); ot(" bicne r10,r10,#0x40000000\n"); ot(" orreq r10,r10,#0x40000000 ;@ Get Z flag\n"); ot("\n"); if (type>0) { if (type==1) ot(" eor r1,r0,r1,lsl r11 ;@ Toggle bit\n"); if (type==2) ot(" bic r1,r0,r1,lsl r11 ;@ Clear bit\n"); if (type==3) ot(" orr r1,r0,r1,lsl r11 ;@ Set bit\n"); ot("\n"); EaWrite(8,1,tea,size,0x003f,0,0); } OpEnd(tea); return 0; } // --------------------- Opcodes 0x0800+ --------------------- // Emit a Btst/Bchg/Bclr/Bset (Immediate) opcode 00001000 ttaaaaaa nn int OpBtstImm(int op) { int type=0,sea=0,tea=0; int use=0; int size=0; type=(op>>6)&3; // Get source and target EA sea= 0x003c; tea=op&0x003f; if (tea<0x10) size=2; // For registers, 32-bits // See if we can do this opcode: if (EaCanRead(tea,0)==0||EaAn(tea)||tea==0x3c) return 1; if (type>0) { if (EaCanWrite(tea)==0) return 1; } use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,sea,tea); ot("\n"); EaCalcReadNoSE(-1,0,sea,0,0); ot(" mov r11,#1\n"); ot(" bic r10,r10,#0x40000000 ;@ Blank Z flag\n"); if (tea>=0x10) ot(" and r0,r0,#7 ;@ mem - do mod 8\n"); // size always 0 else ot(" and r0,r0,#0x1F ;@ reg - do mod 32\n"); // size always 2 ot(" mov r11,r11,lsl r0 ;@ Make bit mask\n"); ot("\n"); if(type==1||type==3) { Cycles=12; } else { Cycles=type?12:8; if(size>=2) Cycles+=2; } EaCalcReadNoSE((type>0)?8:-1,0,tea,size,0x003f); ot(" tst r0,r11 ;@ Do arithmetic\n"); ot(" orreq r10,r10,#0x40000000 ;@ Get Z flag\n"); ot("\n"); if (type>0) { if (type==1) ot(" eor r1,r0,r11 ;@ Toggle bit\n"); if (type==2) ot(" bic r1,r0,r11 ;@ Clear bit\n"); if (type==3) ot(" orr r1,r0,r11 ;@ Set bit\n"); ot("\n"); EaWrite(8, 1,tea,size,0x003f,0,0); #if CYCLONE_FOR_GENESIS && !MEMHANDLERS_CHANGE_CYCLES // this is a bit hacky (device handlers might modify cycles) if (tea==0x38||tea==0x39) ot(" ldr r5,[r7,#0x5c] ;@ Load Cycles\n"); #endif } OpEnd(sea,tea); return 0; } // --------------------- Opcodes 0x4000+ --------------------- int OpNeg(int op) { // 01000tt0 xxeeeeee (tt=negx/clr/neg/not, xx=size, eeeeee=EA) int type=0,size=0,ea=0,use=0; type=(op>>9)&3; ea =op&0x003f; size=(op>>6)&3; if (size>=3) return 1; // See if we can do this opcode: if (EaCanRead (ea,size)==0||EaAn(ea)) return 1; if (EaCanWrite(ea )==0) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); Cycles=size<2?4:6; if(ea >= 0x10) Cycles*=2; EaCalc (11,0x003f,ea,size,0,0); if (type!=1) EaRead (11,0,ea,size,0x003f,0,0); // Don't need to read for 'clr' (or do we, for a dummy read?) if (type==1) ot("\n"); if (type==0) { ot(";@ Negx:\n"); GetXBit(1); if(size!=2) ot(" mov r0,r0,asl #%i\n",size?16:24); ot(" rscs r1,r0,#0 ;@ do arithmetic\n"); ot(" orr r3,r10,#0xb0000000 ;@ for old Z\n"); OpGetFlags(1,1,0); if(size!=2) { ot(" movs r1,r1,asr #%i\n",size?16:24); ot(" orreq r10,r10,#0x40000000 ;@ possily missed Z\n"); } ot(" andeq r10,r10,r3 ;@ fix Z\n"); ot("\n"); } if (type==1) { ot(";@ Clear:\n"); ot(" mov r1,#0\n"); ot(" mov r10,#0x40000000 ;@ NZCV=0100\n"); ot("\n"); } if (type==2) { ot(";@ Neg:\n"); if(size!=2) ot(" mov r0,r0,asl #%i\n",size?16:24); ot(" rsbs r1,r0,#0\n"); OpGetFlags(1,1); if(size!=2) ot(" mov r1,r1,asr #%i\n",size?16:24); ot("\n"); } if (type==3) { ot(";@ Not:\n"); if(size!=2) { ot(" mov r0,r0,asl #%i\n",size?16:24); ot(" mvn r1,r0,asr #%i\n",size?16:24); } else ot(" mvn r1,r0\n"); ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(0,0); ot("\n"); } if (type==1) eawrite_check_addrerr=1; EaWrite(11, 1,ea,size,0x003f,0,0); OpEnd(ea); return 0; } // --------------------- Opcodes 0x4840+ --------------------- // Swap, 01001000 01000nnn swap Dn int OpSwap(int op) { int ea=0,use=0; ea=op&7; use=op&~0x0007; // Use same opcode for all An if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op); Cycles=4; EaCalc (11,0x0007,ea,2,1); EaRead (11, 0,ea,2,0x0007,1); ot(" mov r1,r0,ror #16\n"); ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(0,0); EaWrite(11, 1,8,2,0x0007,1); OpEnd(); return 0; } // --------------------- Opcodes 0x4a00+ --------------------- // Emit a Tst opcode, 01001010 xxeeeeee int OpTst(int op) { int sea=0; int size=0,use=0; sea=op&0x003f; size=(op>>6)&3; if (size>=3) return 1; // See if we can do this opcode: if (EaCanWrite(sea)==0||EaAn(sea)) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,sea); Cycles=4; EaCalc ( 0,0x003f,sea,size,1); EaRead ( 0, 0,sea,size,0x003f,1); ot(" adds r0,r0,#0 ;@ Defines NZ, clears CV\n"); ot(" mrs r10,cpsr ;@ r10=flags\n"); ot("\n"); OpEnd(sea); return 0; } // --------------------- Opcodes 0x4880+ --------------------- // Emit an Ext opcode, 01001000 1x000nnn int OpExt(int op) { int ea=0; int size=0,use=0; int shift=0; ea=op&0x0007; size=(op>>6)&1; shift=32-(8<>8)&15; ea=op&0x003f; if ((ea&0x38)==0x08) return 1; // dbra, not scc // See if we can do this opcode: if (EaCanWrite(ea)==0) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler changed_cycles=ea<8 && cc>=2; OpStart(op,ea,0,changed_cycles); Cycles=8; if (ea<8) Cycles=4; if (cc) ot(" mov r1,#0\n"); switch (cc) { case 0: // T ot(" mvn r1,#0\n"); if (ea<8) Cycles+=2; break; case 1: // F break; case 2: // hi ot(" tst r10,#0x60000000 ;@ hi: !C && !Z\n"); ot(" mvneq r1,r1\n"); if (ea<8) ot(" subeq r5,r5,#2 ;@ Extra cycles\n"); break; case 3: // ls ot(" tst r10,#0x60000000 ;@ ls: C || Z\n"); ot(" mvnne r1,r1\n"); if (ea<8) ot(" subne r5,r5,#2 ;@ Extra cycles\n"); break; default: ot(";@ Is the condition true?\n"); ot(" msr cpsr_flg,r10 ;@ ARM flags = 68000 flags\n"); ot(" mvn%s r1,r1\n",cond[cc]); if (ea<8) ot(" sub%s r5,r5,#2 ;@ Extra cycles\n",cond[cc]); break; } ot("\n"); eawrite_check_addrerr=1; EaCalc (0,0x003f, ea,size,0,0); EaWrite(0, 1, ea,size,0x003f,0,0); opend_op_changes_cycles=changed_cycles; OpEnd(ea,0); return 0; } // Emit a Asr/Lsr/Roxr/Ror opcode static int EmitAsr(int op,int type,int dir,int count,int size,int usereg) { char pct[8]=""; // count int shift=32-(8<=1) sprintf(pct,"#%d",count); // Fixed count if (usereg) { ot(";@ Use Dn for count:\n"); ot(" and r2,r8,#0x0e00\n"); ot(" ldr r2,[r7,r2,lsr #7]\n"); ot(" and r2,r2,#63\n"); ot("\n"); strcpy(pct,"r2"); } else if (count<0) { ot(" mov r2,r8,lsr #9 ;@ Get 'n'\n"); ot(" and r2,r2,#7\n\n"); strcpy(pct,"r2"); } // Take 2*n cycles: if (count<0) ot(" sub r5,r5,r2,asl #1 ;@ Take 2*n cycles\n\n"); else Cycles+=count<<1; if (type<2) { // Asr/Lsr if (dir==0 && size<2) { ot(";@ For shift right, use loworder bits for the operation:\n"); ot(" mov r0,r0,%s #%d\n",type?"lsr":"asr",32-(8<>9)&7; dir =(op>>8)&1; size =(op>>6)&3; if (size>=3) return 1; // use OpAsrEa() usereg=(op>>5)&1; type =(op>>3)&3; if (usereg==0) count=((count-1)&7)+1; // because ccc=000 means 8 // Use the same opcode for target registers: use=op&~0x0007; // As long as count is not 8, use the same opcode for all shift counts: if (usereg==0 && count!=8 && !(count==1&&type==2)) { use|=0x0e00; count=-1; } if (usereg) { use&=~0x0e00; count=-1; } // Use same opcode for all Dn if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea,0,count<0); Cycles=size<2?6:8; EaCalc(11,0x0007, ea,size,1); EaRead(11, 0, ea,size,0x0007,1); EmitAsr(op,type,dir,count, size,usereg); EaWrite(11, 0, ea,size,0x0007,1); opend_op_changes_cycles = (count<0); OpEnd(ea,0); return 0; } // Asr/Lsr/Roxr/Ror etc EA - 11100ttd 11eeeeee int OpAsrEa(int op) { int use=0,type=0,dir=0,ea=0,size=1; type=(op>>9)&3; dir =(op>>8)&1; ea = op&0x3f; if (ea<0x10) return 1; // See if we can do this opcode: if (EaCanRead(ea,0)==0) return 1; if (EaCanWrite(ea)==0) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); Cycles=6; // EmitAsr() will add 2 EaCalc (11,0x003f,ea,size,1); EaRead (11, 0,ea,size,0x003f,1); EmitAsr(op,type,dir,1,size,0); EaWrite(11, 0,ea,size,0x003f,1); OpEnd(ea); return 0; } int OpTas(int op, int gen_special) { int ea=0; int use=0; ea=op&0x003f; // See if we can do this opcode: if (EaCanWrite(ea)==0 || EaAn(ea)) return 1; use=OpBase(op,0); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler if (!gen_special) OpStart(op,ea); else ot("Op%.4x_%s\n", op, ms?"":":"); Cycles=4; if(ea>=8) Cycles+=10; EaCalc (11,0x003f,ea,0,1); EaRead (11, 1,ea,0,0x003f,1); ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(0,0); ot("\n"); #if CYCLONE_FOR_GENESIS // the original Sega hardware ignores write-back phase (to memory only) if (ea < 0x10 || gen_special) { #endif ot(" orr r1,r1,#0x80000000 ;@ set bit7\n"); EaWrite(11, 1,ea,0,0x003f,1); #if CYCLONE_FOR_GENESIS } #endif OpEnd(ea); #if (CYCLONE_FOR_GENESIS == 2) if (!gen_special && ea >= 0x10) { OpTas(op, 1); } #endif return 0; }