kolibrios-gitea/contrib/media/updf/include/ext/stl_rope.h
right-hearted 4f7ee97ec9 uPDF with buttons
git-svn-id: svn://kolibrios.org@4680 a494cfbc-eb01-0410-851d-a64ba20cac60
2014-03-22 21:00:40 +00:00

2460 lines
88 KiB
C++

/*
* Copyright (c) 1997-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
// rope<_CharT,_Alloc> is a sequence of _CharT.
// Ropes appear to be mutable, but update operations
// really copy enough of the data structure to leave the original
// valid. Thus ropes can be logically copied by just copying
// a pointer value.
#ifndef __SGI_STL_INTERNAL_ROPE_H
# define __SGI_STL_INTERNAL_ROPE_H
# ifdef __GC
# define __GC_CONST const
# else
# include <bits/stl_threads.h>
# define __GC_CONST // constant except for deallocation
# endif
# ifdef __STL_SGI_THREADS
# include <mutex.h>
# endif
namespace std
{
// The _S_eos function is used for those functions that
// convert to/from C-like strings to detect the end of the string.
// The end-of-C-string character.
// This is what the draft standard says it should be.
template <class _CharT>
inline _CharT _S_eos(_CharT*) { return _CharT(); }
// Test for basic character types.
// For basic character types leaves having a trailing eos.
template <class _CharT>
inline bool _S_is_basic_char_type(_CharT*) { return false; }
template <class _CharT>
inline bool _S_is_one_byte_char_type(_CharT*) { return false; }
inline bool _S_is_basic_char_type(char*) { return true; }
inline bool _S_is_one_byte_char_type(char*) { return true; }
inline bool _S_is_basic_char_type(wchar_t*) { return true; }
// Store an eos iff _CharT is a basic character type.
// Do not reference _S_eos if it isn't.
template <class _CharT>
inline void _S_cond_store_eos(_CharT&) {}
inline void _S_cond_store_eos(char& __c) { __c = 0; }
inline void _S_cond_store_eos(wchar_t& __c) { __c = 0; }
// char_producers are logically functions that generate a section of
// a string. These can be convereted to ropes. The resulting rope
// invokes the char_producer on demand. This allows, for example,
// files to be viewed as ropes without reading the entire file.
template <class _CharT>
class char_producer {
public:
virtual ~char_producer() {};
virtual void operator()(size_t __start_pos, size_t __len,
_CharT* __buffer) = 0;
// Buffer should really be an arbitrary output iterator.
// That way we could flatten directly into an ostream, etc.
// This is thoroughly impossible, since iterator types don't
// have runtime descriptions.
};
// Sequence buffers:
//
// Sequence must provide an append operation that appends an
// array to the sequence. Sequence buffers are useful only if
// appending an entire array is cheaper than appending element by element.
// This is true for many string representations.
// This should perhaps inherit from ostream<sequence::value_type>
// and be implemented correspondingly, so that they can be used
// for formatted. For the sake of portability, we don't do this yet.
//
// For now, sequence buffers behave as output iterators. But they also
// behave a little like basic_ostringstream<sequence::value_type> and a
// little like containers.
template<class _Sequence, size_t _Buf_sz = 100>
class sequence_buffer : public output_iterator {
public:
typedef typename _Sequence::value_type value_type;
protected:
_Sequence* _M_prefix;
value_type _M_buffer[_Buf_sz];
size_t _M_buf_count;
public:
void flush() {
_M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
_M_buf_count = 0;
}
~sequence_buffer() { flush(); }
sequence_buffer() : _M_prefix(0), _M_buf_count(0) {}
sequence_buffer(const sequence_buffer& __x) {
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
}
sequence_buffer(sequence_buffer& __x) {
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
}
sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {}
sequence_buffer& operator= (sequence_buffer& __x) {
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
return *this;
}
sequence_buffer& operator= (const sequence_buffer& __x) {
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
return *this;
}
void push_back(value_type __x)
{
if (_M_buf_count < _Buf_sz) {
_M_buffer[_M_buf_count] = __x;
++_M_buf_count;
} else {
flush();
_M_buffer[0] = __x;
_M_buf_count = 1;
}
}
void append(value_type* __s, size_t __len)
{
if (__len + _M_buf_count <= _Buf_sz) {
size_t __i = _M_buf_count;
size_t __j = 0;
for (; __j < __len; __i++, __j++) {
_M_buffer[__i] = __s[__j];
}
_M_buf_count += __len;
} else if (0 == _M_buf_count) {
_M_prefix->append(__s, __s + __len);
} else {
flush();
append(__s, __len);
}
}
sequence_buffer& write(value_type* __s, size_t __len)
{
append(__s, __len);
return *this;
}
sequence_buffer& put(value_type __x)
{
push_back(__x);
return *this;
}
sequence_buffer& operator=(const value_type& __rhs)
{
push_back(__rhs);
return *this;
}
sequence_buffer& operator*() { return *this; }
sequence_buffer& operator++() { return *this; }
sequence_buffer& operator++(int) { return *this; }
};
// The following should be treated as private, at least for now.
template<class _CharT>
class _Rope_char_consumer {
public:
// If we had member templates, these should not be virtual.
// For now we need to use run-time parametrization where
// compile-time would do. Hence this should all be private
// for now.
// The symmetry with char_producer is accidental and temporary.
virtual ~_Rope_char_consumer() {};
virtual bool operator()(const _CharT* __buffer, size_t __len) = 0;
};
// First a lot of forward declarations. The standard seems to require
// much stricter "declaration before use" than many of the implementations
// that preceded it.
template<class _CharT, class _Alloc=allocator<_CharT> > class rope;
template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation;
template<class _CharT, class _Alloc> struct _Rope_RopeLeaf;
template<class _CharT, class _Alloc> struct _Rope_RopeFunction;
template<class _CharT, class _Alloc> struct _Rope_RopeSubstring;
template<class _CharT, class _Alloc> class _Rope_iterator;
template<class _CharT, class _Alloc> class _Rope_const_iterator;
template<class _CharT, class _Alloc> class _Rope_char_ref_proxy;
template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy;
template<class _CharT, class _Alloc>
bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y);
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT,_Alloc> operator-
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT,_Alloc> operator+
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT,_Alloc> operator+
(ptrdiff_t __n,
const _Rope_const_iterator<_CharT,_Alloc>& __x);
template<class _CharT, class _Alloc>
bool operator==
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y);
template<class _CharT, class _Alloc>
bool operator<
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y);
template<class _CharT, class _Alloc>
ptrdiff_t operator-
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y);
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT,_Alloc> operator-
(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT,_Alloc> operator+
(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT,_Alloc> operator+
(ptrdiff_t __n,
const _Rope_iterator<_CharT,_Alloc>& __x);
template<class _CharT, class _Alloc>
bool operator==
(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y);
template<class _CharT, class _Alloc>
bool operator<
(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y);
template<class _CharT, class _Alloc>
ptrdiff_t operator-
(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y);
template<class _CharT, class _Alloc>
rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right);
template<class _CharT, class _Alloc>
rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
const _CharT* __right);
template<class _CharT, class _Alloc>
rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
_CharT __right);
// Some helpers, so we can use power on ropes.
// See below for why this isn't local to the implementation.
// This uses a nonstandard refcount convention.
// The result has refcount 0.
template<class _CharT, class _Alloc>
struct _Rope_Concat_fn
: public binary_function<rope<_CharT,_Alloc>, rope<_CharT,_Alloc>,
rope<_CharT,_Alloc> > {
rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x,
const rope<_CharT,_Alloc>& __y) {
return __x + __y;
}
};
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
identity_element(_Rope_Concat_fn<_CharT, _Alloc>)
{
return rope<_CharT,_Alloc>();
}
//
// What follows should really be local to rope. Unfortunately,
// that doesn't work, since it makes it impossible to define generic
// equality on rope iterators. According to the draft standard, the
// template parameters for such an equality operator cannot be inferred
// from the occurence of a member class as a parameter.
// (SGI compilers in fact allow this, but the __result wouldn't be
// portable.)
// Similarly, some of the static member functions are member functions
// only to avoid polluting the global namespace, and to circumvent
// restrictions on type inference for template functions.
//
//
// The internal data structure for representing a rope. This is
// private to the implementation. A rope is really just a pointer
// to one of these.
//
// A few basic functions for manipulating this data structure
// are members of _RopeRep. Most of the more complex algorithms
// are implemented as rope members.
//
// Some of the static member functions of _RopeRep have identically
// named functions in rope that simply invoke the _RopeRep versions.
//
// A macro to introduce various allocation and deallocation functions
// These need to be defined differently depending on whether or not
// we are using standard conforming allocators, and whether the allocator
// instances have real state. Thus this macro is invoked repeatedly
// with different definitions of __ROPE_DEFINE_ALLOC.
// __ROPE_DEFINE_ALLOC(type,name) defines
// type * name_allocate(size_t) and
// void name_deallocate(tipe *, size_t)
// Both functions may or may not be static.
#define __ROPE_DEFINE_ALLOCS(__a) \
__ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \
typedef _Rope_RopeConcatenation<_CharT,__a> __C; \
__ROPE_DEFINE_ALLOC(__C,_C) \
typedef _Rope_RopeLeaf<_CharT,__a> __L; \
__ROPE_DEFINE_ALLOC(__L,_L) \
typedef _Rope_RopeFunction<_CharT,__a> __F; \
__ROPE_DEFINE_ALLOC(__F,_F) \
typedef _Rope_RopeSubstring<_CharT,__a> __S; \
__ROPE_DEFINE_ALLOC(__S,_S)
// Internal rope nodes potentially store a copy of the allocator
// instance used to allocate them. This is mostly redundant.
// But the alternative would be to pass allocator instances around
// in some form to nearly all internal functions, since any pointer
// assignment may result in a zero reference count and thus require
// deallocation.
// The _Rope_rep_base class encapsulates
// the differences between SGI-style allocators and standard-conforming
// allocators.
#define __STATIC_IF_SGI_ALLOC /* not static */
// Base class for ordinary allocators.
template <class _CharT, class _Allocator, bool _IsStatic>
class _Rope_rep_alloc_base {
public:
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Rope_rep_alloc_base(size_t __size, const allocator_type& __a)
: _M_size(__size), _M_data_allocator(__a) {}
size_t _M_size; // This is here only to avoid wasting space
// for an otherwise empty base class.
protected:
allocator_type _M_data_allocator;
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
/*static*/ _Tp * __name##_allocate(size_t __n) \
{ return __name##Allocator(_M_data_allocator).allocate(__n); } \
void __name##_deallocate(_Tp* __p, size_t __n) \
{ __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator);
# undef __ROPE_DEFINE_ALLOC
};
// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
template <class _CharT, class _Allocator>
class _Rope_rep_alloc_base<_CharT,_Allocator,true> {
public:
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rope_rep_alloc_base(size_t __size, const allocator_type&)
: _M_size(__size) {}
size_t _M_size;
protected:
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
static _Tp* __name##_allocate(size_t __n) \
{ return __name##Alloc::allocate(__n); } \
void __name##_deallocate(_Tp *__p, size_t __n) \
{ __name##Alloc::deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator);
# undef __ROPE_DEFINE_ALLOC
};
template <class _CharT, class _Alloc>
struct _Rope_rep_base
: public _Rope_rep_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
{
typedef _Rope_rep_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Rope_rep_base(size_t __size, const allocator_type& __a)
: _Base(__size, __a) {}
};
template<class _CharT, class _Alloc>
struct _Rope_RopeRep : public _Rope_rep_base<_CharT,_Alloc>
# ifndef __GC
, _Refcount_Base
# endif
{
public:
enum { _S_max_rope_depth = 45 };
enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
_Tag _M_tag:8;
bool _M_is_balanced:8;
unsigned char _M_depth;
__GC_CONST _CharT* _M_c_string;
/* Flattened version of string, if needed. */
/* typically 0. */
/* If it's not 0, then the memory is owned */
/* by this node. */
/* In the case of a leaf, this may point to */
/* the same memory as the data field. */
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeRep(_Tag __t, int __d, bool __b, size_t __size,
allocator_type __a)
: _Rope_rep_base<_CharT,_Alloc>(__size, __a),
# ifndef __GC
_Refcount_Base(1),
# endif
_M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0)
{ }
# ifdef __GC
void _M_incr () {}
# endif
static void _S_free_string(__GC_CONST _CharT*, size_t __len,
allocator_type __a);
# define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a);
// Deallocate data section of a leaf.
// This shouldn't be a member function.
// But its hard to do anything else at the
// moment, because it's templatized w.r.t.
// an allocator.
// Does nothing if __GC is defined.
# ifndef __GC
void _M_free_c_string();
void _M_free_tree();
// Deallocate t. Assumes t is not 0.
void _M_unref_nonnil()
{
if (0 == _M_decr()) _M_free_tree();
}
void _M_ref_nonnil()
{
_M_incr();
}
static void _S_unref(_Rope_RopeRep* __t)
{
if (0 != __t) {
__t->_M_unref_nonnil();
}
}
static void _S_ref(_Rope_RopeRep* __t)
{
if (0 != __t) __t->_M_incr();
}
static void _S_free_if_unref(_Rope_RopeRep* __t)
{
if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree();
}
# else /* __GC */
void _M_unref_nonnil() {}
void _M_ref_nonnil() {}
static void _S_unref(_Rope_RopeRep*) {}
static void _S_ref(_Rope_RopeRep*) {}
static void _S_free_if_unref(_Rope_RopeRep*) {}
# endif
};
template<class _CharT, class _Alloc>
struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> {
public:
// Apparently needed by VC++
// The data fields of leaves are allocated with some
// extra space, to accomodate future growth and for basic
// character types, to hold a trailing eos character.
enum { _S_alloc_granularity = 8 };
static size_t _S_rounded_up_size(size_t __n) {
size_t __size_with_eos;
if (_S_is_basic_char_type((_CharT*)0)) {
__size_with_eos = __n + 1;
} else {
__size_with_eos = __n;
}
# ifdef __GC
return __size_with_eos;
# else
// Allow slop for in-place expansion.
return (__size_with_eos + _S_alloc_granularity-1)
&~ (_S_alloc_granularity-1);
# endif
}
__GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */
/* The allocated size is */
/* _S_rounded_up_size(size), except */
/* in the GC case, in which it */
/* doesn't matter. */
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_S_leaf, 0, true, __size, __a),
_M_data(__d)
{
__stl_assert(__size > 0);
if (_S_is_basic_char_type((_CharT *)0)) {
// already eos terminated.
_M_c_string = __d;
}
}
// The constructor assumes that d has been allocated with
// the proper allocator and the properly padded size.
// In contrast, the destructor deallocates the data:
# ifndef __GC
~_Rope_RopeLeaf() {
if (_M_data != _M_c_string) {
_M_free_c_string();
}
__STL_FREE_STRING(_M_data, _M_size, get_allocator());
}
# endif
};
template<class _CharT, class _Alloc>
struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT,_Alloc> {
public:
_Rope_RopeRep<_CharT,_Alloc>* _M_left;
_Rope_RopeRep<_CharT,_Alloc>* _M_right;
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeConcatenation(_Rope_RopeRep<_CharT,_Alloc>* __l,
_Rope_RopeRep<_CharT,_Alloc>* __r,
allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_S_concat,
max(__l->_M_depth, __r->_M_depth) + 1,
false,
__l->_M_size + __r->_M_size, __a),
_M_left(__l), _M_right(__r)
{}
# ifndef __GC
~_Rope_RopeConcatenation() {
_M_free_c_string();
_M_left->_M_unref_nonnil();
_M_right->_M_unref_nonnil();
}
# endif
};
template<class _CharT, class _Alloc>
struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT,_Alloc> {
public:
char_producer<_CharT>* _M_fn;
# ifndef __GC
bool _M_delete_when_done; // Char_producer is owned by the
// rope and should be explicitly
// deleted when the rope becomes
// inaccessible.
# else
// In the GC case, we either register the rope for
// finalization, or not. Thus the field is unnecessary;
// the information is stored in the collector data structures.
// We do need a finalization procedure to be invoked by the
// collector.
static void _S_fn_finalization_proc(void * __tree, void *) {
delete ((_Rope_RopeFunction *)__tree) -> _M_fn;
}
# endif
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size,
bool __d, allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_S_function, 0, true, __size, __a)
, _M_fn(__f)
# ifndef __GC
, _M_delete_when_done(__d)
# endif
{
__stl_assert(__size > 0);
# ifdef __GC
if (__d) {
GC_REGISTER_FINALIZER(
this, _Rope_RopeFunction::_S_fn_finalization_proc, 0, 0, 0);
}
# endif
}
# ifndef __GC
~_Rope_RopeFunction() {
_M_free_c_string();
if (_M_delete_when_done) {
delete _M_fn;
}
}
# endif
};
// Substring results are usually represented using just
// concatenation nodes. But in the case of very long flat ropes
// or ropes with a functional representation that isn't practical.
// In that case, we represent the __result as a special case of
// RopeFunction, whose char_producer points back to the rope itself.
// In all cases except repeated substring operations and
// deallocation, we treat the __result as a RopeFunction.
template<class _CharT, class _Alloc>
struct _Rope_RopeSubstring : public _Rope_RopeFunction<_CharT,_Alloc>,
public char_producer<_CharT> {
public:
// XXX this whole class should be rewritten.
_Rope_RopeRep<_CharT,_Alloc>* _M_base; // not 0
size_t _M_start;
virtual void operator()(size_t __start_pos, size_t __req_len,
_CharT* __buffer) {
switch(_M_base->_M_tag) {
case _S_function:
case _S_substringfn:
{
char_producer<_CharT>* __fn =
((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn;
__stl_assert(__start_pos + __req_len <= _M_size);
__stl_assert(_M_start + _M_size <= _M_base->_M_size);
(*__fn)(__start_pos + _M_start, __req_len, __buffer);
}
break;
case _S_leaf:
{
__GC_CONST _CharT* __s =
((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data;
uninitialized_copy_n(__s + __start_pos + _M_start, __req_len,
__buffer);
}
break;
default:
__stl_assert(false);
}
}
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
size_t __l, allocator_type __a)
: _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a),
char_producer<_CharT>(),
_M_base(__b),
_M_start(__s)
{
__stl_assert(__l > 0);
__stl_assert(__s + __l <= __b->_M_size);
# ifndef __GC
_M_base->_M_ref_nonnil();
# endif
_M_tag = _S_substringfn;
}
virtual ~_Rope_RopeSubstring()
{
# ifndef __GC
_M_base->_M_unref_nonnil();
// _M_free_c_string(); -- done by parent class
# endif
}
};
// Self-destructing pointers to Rope_rep.
// These are not conventional smart pointers. Their
// only purpose in life is to ensure that unref is called
// on the pointer either at normal exit or if an exception
// is raised. It is the caller's responsibility to
// adjust reference counts when these pointers are initialized
// or assigned to. (This convention significantly reduces
// the number of potentially expensive reference count
// updates.)
#ifndef __GC
template<class _CharT, class _Alloc>
struct _Rope_self_destruct_ptr {
_Rope_RopeRep<_CharT,_Alloc>* _M_ptr;
~_Rope_self_destruct_ptr()
{ _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); }
# ifdef __STL_USE_EXCEPTIONS
_Rope_self_destruct_ptr() : _M_ptr(0) {};
# else
_Rope_self_destruct_ptr() {};
# endif
_Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {}
_Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; }
_Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; }
operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; }
_Rope_self_destruct_ptr& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x)
{ _M_ptr = __x; return *this; }
};
#endif
// Dereferencing a nonconst iterator has to return something
// that behaves almost like a reference. It's not possible to
// return an actual reference since assignment requires extra
// work. And we would get into the same problems as with the
// CD2 version of basic_string.
template<class _CharT, class _Alloc>
class _Rope_char_ref_proxy {
friend class rope<_CharT,_Alloc>;
friend class _Rope_iterator<_CharT,_Alloc>;
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
# ifdef __GC
typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
# else
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
# endif
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
typedef rope<_CharT,_Alloc> _My_rope;
size_t _M_pos;
_CharT _M_current;
bool _M_current_valid;
_My_rope* _M_root; // The whole rope.
public:
_Rope_char_ref_proxy(_My_rope* __r, size_t __p)
: _M_pos(__p), _M_current_valid(false), _M_root(__r) {}
_Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x)
: _M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {}
// Don't preserve cache if the reference can outlive the
// expression. We claim that's not possible without calling
// a copy constructor or generating reference to a proxy
// reference. We declare the latter to have undefined semantics.
_Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c)
: _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {}
inline operator _CharT () const;
_Rope_char_ref_proxy& operator= (_CharT __c);
_Rope_char_ptr_proxy<_CharT,_Alloc> operator& () const;
_Rope_char_ref_proxy& operator= (const _Rope_char_ref_proxy& __c) {
return operator=((_CharT)__c);
}
};
template<class _CharT, class __Alloc>
inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
_Rope_char_ref_proxy <_CharT, __Alloc > __b) {
_CharT __tmp = __a;
__a = __b;
__b = __tmp;
}
template<class _CharT, class _Alloc>
class _Rope_char_ptr_proxy {
// XXX this class should be rewritten.
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
size_t _M_pos;
rope<_CharT,_Alloc>* _M_root; // The whole rope.
public:
_Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
_Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
_Rope_char_ptr_proxy() {}
_Rope_char_ptr_proxy(_CharT* __x) : _M_root(0), _M_pos(0) {
__stl_assert(0 == __x);
}
_Rope_char_ptr_proxy&
operator= (const _Rope_char_ptr_proxy& __x) {
_M_pos = __x._M_pos;
_M_root = __x._M_root;
return *this;
}
template<class _CharT2, class _Alloc2>
friend bool operator== (const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __x,
const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __y);
_Rope_char_ref_proxy<_CharT,_Alloc> operator*() const {
return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos);
}
};
// Rope iterators:
// Unlike in the C version, we cache only part of the stack
// for rope iterators, since they must be efficiently copyable.
// When we run out of cache, we have to reconstruct the iterator
// value.
// Pointers from iterators are not included in reference counts.
// Iterators are assumed to be thread private. Ropes can
// be shared.
template<class _CharT, class _Alloc>
class _Rope_iterator_base
: public random_access_iterator<_CharT, ptrdiff_t> {
friend class rope<_CharT,_Alloc>;
public:
typedef _Alloc _allocator_type; // used in _Rope_rotate, VC++ workaround
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
// Borland doesnt want this to be protected.
protected:
enum { _S_path_cache_len = 4 }; // Must be <= 9.
enum { _S_iterator_buf_len = 15 };
size_t _M_current_pos;
_RopeRep* _M_root; // The whole rope.
size_t _M_leaf_pos; // Starting position for current leaf
__GC_CONST _CharT* _M_buf_start;
// Buffer possibly
// containing current char.
__GC_CONST _CharT* _M_buf_ptr;
// Pointer to current char in buffer.
// != 0 ==> buffer valid.
__GC_CONST _CharT* _M_buf_end;
// One past __last valid char in buffer.
// What follows is the path cache. We go out of our
// way to make this compact.
// Path_end contains the bottom section of the path from
// the root to the current leaf.
const _RopeRep* _M_path_end[_S_path_cache_len];
int _M_leaf_index; // Last valid __pos in path_end;
// _M_path_end[0] ... _M_path_end[leaf_index-1]
// point to concatenation nodes.
unsigned char _M_path_directions;
// (path_directions >> __i) & 1 is 1
// iff we got from _M_path_end[leaf_index - __i - 1]
// to _M_path_end[leaf_index - __i] by going to the
// __right. Assumes path_cache_len <= 9.
_CharT _M_tmp_buf[_S_iterator_buf_len];
// Short buffer for surrounding chars.
// This is useful primarily for
// RopeFunctions. We put the buffer
// here to avoid locking in the
// multithreaded case.
// The cached path is generally assumed to be valid
// only if the buffer is valid.
static void _S_setbuf(_Rope_iterator_base& __x);
// Set buffer contents given
// path cache.
static void _S_setcache(_Rope_iterator_base& __x);
// Set buffer contents and
// path cache.
static void _S_setcache_for_incr(_Rope_iterator_base& __x);
// As above, but assumes path
// cache is valid for previous posn.
_Rope_iterator_base() {}
_Rope_iterator_base(_RopeRep* __root, size_t __pos)
: _M_current_pos(__pos), _M_root(__root), _M_buf_ptr(0) {}
void _M_incr(size_t __n);
void _M_decr(size_t __n);
public:
size_t index() const { return _M_current_pos; }
_Rope_iterator_base(const _Rope_iterator_base& __x) {
if (0 != __x._M_buf_ptr) {
*this = __x;
} else {
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_buf_ptr = 0;
}
}
};
template<class _CharT, class _Alloc> class _Rope_iterator;
template<class _CharT, class _Alloc>
class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
friend class rope<_CharT,_Alloc>;
protected:
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
// The one from the base class may not be directly visible.
_Rope_const_iterator(const _RopeRep* __root, size_t __pos):
_Rope_iterator_base<_CharT,_Alloc>(
const_cast<_RopeRep*>(__root), __pos)
// Only nonconst iterators modify root ref count
{}
public:
typedef _CharT reference; // Really a value. Returning a reference
// Would be a mess, since it would have
// to be included in refcount.
typedef const _CharT* pointer;
public:
_Rope_const_iterator() {};
_Rope_const_iterator(const _Rope_const_iterator& __x) :
_Rope_iterator_base<_CharT,_Alloc>(__x) { }
_Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x);
_Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) :
_Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) {}
_Rope_const_iterator& operator= (const _Rope_const_iterator& __x) {
if (0 != __x._M_buf_ptr) {
*(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
} else {
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_buf_ptr = 0;
}
return(*this);
}
reference operator*() {
if (0 == _M_buf_ptr) _S_setcache(*this);
return *_M_buf_ptr;
}
_Rope_const_iterator& operator++() {
__GC_CONST _CharT* __next;
if (0 != _M_buf_ptr && (__next = _M_buf_ptr + 1) < _M_buf_end) {
_M_buf_ptr = __next;
++_M_current_pos;
} else {
_M_incr(1);
}
return *this;
}
_Rope_const_iterator& operator+=(ptrdiff_t __n) {
if (__n >= 0) {
_M_incr(__n);
} else {
_M_decr(-__n);
}
return *this;
}
_Rope_const_iterator& operator--() {
_M_decr(1);
return *this;
}
_Rope_const_iterator& operator-=(ptrdiff_t __n) {
if (__n >= 0) {
_M_decr(__n);
} else {
_M_incr(-__n);
}
return *this;
}
_Rope_const_iterator operator++(int) {
size_t __old_pos = _M_current_pos;
_M_incr(1);
return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
// This makes a subsequent dereference expensive.
// Perhaps we should instead copy the iterator
// if it has a valid cache?
}
_Rope_const_iterator operator--(int) {
size_t __old_pos = _M_current_pos;
_M_decr(1);
return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
}
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2,_Alloc2> operator-
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
(ptrdiff_t __n,
const _Rope_const_iterator<_CharT2,_Alloc2>& __x);
reference operator[](size_t __n) {
return rope<_CharT,_Alloc>::_S_fetch(_M_root, _M_current_pos + __n);
}
template<class _CharT2, class _Alloc2>
friend bool operator==
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend bool operator<
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend ptrdiff_t operator-
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
};
template<class _CharT, class _Alloc>
class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
friend class rope<_CharT,_Alloc>;
protected:
rope<_CharT,_Alloc>* _M_root_rope;
// root is treated as a cached version of this,
// and is used to detect changes to the underlying
// rope.
// Root is included in the reference count.
// This is necessary so that we can detect changes reliably.
// Unfortunately, it requires careful bookkeeping for the
// nonGC case.
_Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos)
: _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr, __pos),
_M_root_rope(__r)
{ _RopeRep::_S_ref(_M_root); if (!(__r -> empty()))_S_setcache(*this); }
void _M_check();
public:
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer;
public:
rope<_CharT,_Alloc>& container() { return *_M_root_rope; }
_Rope_iterator() {
_M_root = 0; // Needed for reference counting.
};
_Rope_iterator(const _Rope_iterator& __x) :
_Rope_iterator_base<_CharT,_Alloc>(__x) {
_M_root_rope = __x._M_root_rope;
_RopeRep::_S_ref(_M_root);
}
_Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos);
~_Rope_iterator() {
_RopeRep::_S_unref(_M_root);
}
_Rope_iterator& operator= (const _Rope_iterator& __x) {
_RopeRep* __old = _M_root;
_RopeRep::_S_ref(__x._M_root);
if (0 != __x._M_buf_ptr) {
_M_root_rope = __x._M_root_rope;
*(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
} else {
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_root_rope = __x._M_root_rope;
_M_buf_ptr = 0;
}
_RopeRep::_S_unref(__old);
return(*this);
}
reference operator*() {
_M_check();
if (0 == _M_buf_ptr) {
return _Rope_char_ref_proxy<_CharT,_Alloc>(
_M_root_rope, _M_current_pos);
} else {
return _Rope_char_ref_proxy<_CharT,_Alloc>(
_M_root_rope, _M_current_pos, *_M_buf_ptr);
}
}
_Rope_iterator& operator++() {
_M_incr(1);
return *this;
}
_Rope_iterator& operator+=(ptrdiff_t __n) {
if (__n >= 0) {
_M_incr(__n);
} else {
_M_decr(-__n);
}
return *this;
}
_Rope_iterator& operator--() {
_M_decr(1);
return *this;
}
_Rope_iterator& operator-=(ptrdiff_t __n) {
if (__n >= 0) {
_M_decr(__n);
} else {
_M_incr(-__n);
}
return *this;
}
_Rope_iterator operator++(int) {
size_t __old_pos = _M_current_pos;
_M_incr(1);
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
}
_Rope_iterator operator--(int) {
size_t __old_pos = _M_current_pos;
_M_decr(1);
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
}
reference operator[](ptrdiff_t __n) {
return _Rope_char_ref_proxy<_CharT,_Alloc>(
_M_root_rope, _M_current_pos + __n);
}
template<class _CharT2, class _Alloc2>
friend bool operator==
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
const _Rope_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend bool operator<
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
const _Rope_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend ptrdiff_t operator-
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
const _Rope_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2,_Alloc2> operator-
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2,_Alloc2> operator+
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2,_Alloc2> operator+
(ptrdiff_t __n,
const _Rope_iterator<_CharT2,_Alloc2>& __x);
};
// The rope base class encapsulates
// the differences between SGI-style allocators and standard-conforming
// allocators.
// Base class for ordinary allocators.
template <class _CharT, class _Allocator, bool _IsStatic>
class _Rope_alloc_base {
public:
typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Rope_alloc_base(_RopeRep *__t, const allocator_type& __a)
: _M_tree_ptr(__t), _M_data_allocator(__a) {}
_Rope_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a) {}
protected:
// The only data members of a rope:
allocator_type _M_data_allocator;
_RopeRep* _M_tree_ptr;
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
_Tp* __name##_allocate(size_t __n) const \
{ return __name##Allocator(_M_data_allocator).allocate(__n); } \
void __name##_deallocate(_Tp *__p, size_t __n) const \
{ __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator)
# undef __ROPE_DEFINE_ALLOC
};
// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
template <class _CharT, class _Allocator>
class _Rope_alloc_base<_CharT,_Allocator,true> {
public:
typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rope_alloc_base(_RopeRep *__t, const allocator_type&)
: _M_tree_ptr(__t) {}
_Rope_alloc_base(const allocator_type&) {}
protected:
// The only data member of a rope:
_RopeRep *_M_tree_ptr;
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
static _Tp* __name##_allocate(size_t __n) \
{ return __name##Alloc::allocate(__n); } \
static void __name##_deallocate(_Tp *__p, size_t __n) \
{ __name##Alloc::deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator)
# undef __ROPE_DEFINE_ALLOC
};
template <class _CharT, class _Alloc>
struct _Rope_base
: public _Rope_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
{
typedef _Rope_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
// The one in _Base may not be visible due to template rules.
_Rope_base(_RopeRep* __t, const allocator_type& __a) : _Base(__t, __a) {}
_Rope_base(const allocator_type& __a) : _Base(__a) {}
};
template <class _CharT, class _Alloc>
class rope : public _Rope_base<_CharT,_Alloc> {
public:
typedef _CharT value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _CharT const_reference;
typedef const _CharT* const_pointer;
typedef _Rope_iterator<_CharT,_Alloc> iterator;
typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator;
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer;
friend class _Rope_iterator<_CharT,_Alloc>;
friend class _Rope_const_iterator<_CharT,_Alloc>;
friend struct _Rope_RopeRep<_CharT,_Alloc>;
friend class _Rope_iterator_base<_CharT,_Alloc>;
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
friend struct _Rope_RopeSubstring<_CharT,_Alloc>;
protected:
typedef _Rope_base<_CharT,_Alloc> _Base;
typedef typename _Base::allocator_type allocator_type;
using _Base::_M_tree_ptr;
typedef __GC_CONST _CharT* _Cstrptr;
static _CharT _S_empty_c_str[1];
static bool _S_is0(_CharT __c) { return __c == _S_eos((_CharT*)0); }
enum { _S_copy_max = 23 };
// For strings shorter than _S_copy_max, we copy to
// concatenate.
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring;
// Retrieve a character at the indicated position.
static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
# ifndef __GC
// Obtain a pointer to the character at the indicated position.
// The pointer can be used to change the character.
// If such a pointer cannot be produced, as is frequently the
// case, 0 is returned instead.
// (Returns nonzero only if all nodes in the path have a refcount
// of 1.)
static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
# endif
static bool _S_apply_to_pieces(
// should be template parameter
_Rope_char_consumer<_CharT>& __c,
const _RopeRep* __r,
size_t __begin, size_t __end);
// begin and end are assumed to be in range.
# ifndef __GC
static void _S_unref(_RopeRep* __t)
{
_RopeRep::_S_unref(__t);
}
static void _S_ref(_RopeRep* __t)
{
_RopeRep::_S_ref(__t);
}
# else /* __GC */
static void _S_unref(_RopeRep*) {}
static void _S_ref(_RopeRep*) {}
# endif
# ifdef __GC
typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
# else
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
# endif
// _Result is counted in refcount.
static _RopeRep* _S_substring(_RopeRep* __base,
size_t __start, size_t __endp1);
static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
const _CharT* __iter, size_t __slen);
// Concatenate rope and char ptr, copying __s.
// Should really take an arbitrary iterator.
// Result is counted in refcount.
static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
const _CharT* __iter, size_t __slen)
// As above, but one reference to __r is about to be
// destroyed. Thus the pieces may be recycled if all
// relevent reference counts are 1.
# ifdef __GC
// We can't really do anything since refcounts are unavailable.
{ return _S_concat_char_iter(__r, __iter, __slen); }
# else
;
# endif
static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right);
// General concatenation on _RopeRep. _Result
// has refcount of 1. Adjusts argument refcounts.
public:
void apply_to_pieces( size_t __begin, size_t __end,
_Rope_char_consumer<_CharT>& __c) const {
_S_apply_to_pieces(__c, _M_tree_ptr, __begin, __end);
}
protected:
static size_t _S_rounded_up_size(size_t __n) {
return _RopeLeaf::_S_rounded_up_size(__n);
}
static size_t _S_allocated_capacity(size_t __n) {
if (_S_is_basic_char_type((_CharT*)0)) {
return _S_rounded_up_size(__n) - 1;
} else {
return _S_rounded_up_size(__n);
}
}
// Allocate and construct a RopeLeaf using the supplied allocator
// Takes ownership of s instead of copying.
static _RopeLeaf* _S_new_RopeLeaf(__GC_CONST _CharT *__s,
size_t __size, allocator_type __a)
{
_RopeLeaf* __space = _LAllocator(__a).allocate(1);
return new(__space) _RopeLeaf(__s, __size, __a);
}
static _RopeConcatenation* _S_new_RopeConcatenation(
_RopeRep* __left, _RopeRep* __right,
allocator_type __a)
{
_RopeConcatenation* __space = _CAllocator(__a).allocate(1);
return new(__space) _RopeConcatenation(__left, __right, __a);
}
static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f,
size_t __size, bool __d, allocator_type __a)
{
_RopeFunction* __space = _FAllocator(__a).allocate(1);
return new(__space) _RopeFunction(__f, __size, __d, __a);
}
static _RopeSubstring* _S_new_RopeSubstring(
_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
size_t __l, allocator_type __a)
{
_RopeSubstring* __space = _SAllocator(__a).allocate(1);
return new(__space) _RopeSubstring(__b, __s, __l, __a);
}
static
_RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
size_t __size, allocator_type __a)
# define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
_S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)
{
if (0 == __size) return 0;
_CharT* __buf = __a.allocate(_S_rounded_up_size(__size));
uninitialized_copy_n(__s, __size, __buf);
_S_cond_store_eos(__buf[__size]);
__STL_TRY {
return _S_new_RopeLeaf(__buf, __size, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, __size, __a))
}
// Concatenation of nonempty strings.
// Always builds a concatenation node.
// Rebalances if the result is too deep.
// Result has refcount 1.
// Does not increment left and right ref counts even though
// they are referenced.
static _RopeRep*
_S_tree_concat(_RopeRep* __left, _RopeRep* __right);
// Concatenation helper functions
static _RopeLeaf*
_S_leaf_concat_char_iter(_RopeLeaf* __r,
const _CharT* __iter, size_t __slen);
// Concatenate by copying leaf.
// should take an arbitrary iterator
// result has refcount 1.
# ifndef __GC
static _RopeLeaf* _S_destr_leaf_concat_char_iter
(_RopeLeaf* __r, const _CharT* __iter, size_t __slen);
// A version that potentially clobbers __r if __r->_M_ref_count == 1.
# endif
private:
static size_t _S_char_ptr_len(const _CharT* __s);
// slightly generalized strlen
rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
: _Base(__t,__a) { }
// Copy __r to the _CharT buffer.
// Returns __buffer + __r->_M_size.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
// Again, with explicit starting position and length.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r,
size_t __start, size_t __len,
_CharT* __buffer);
static const unsigned long
_S_min_len[_RopeRep::_S_max_rope_depth + 1];
static bool _S_is_balanced(_RopeRep* __r)
{ return (__r->_M_size >= _S_min_len[__r->_M_depth]); }
static bool _S_is_almost_balanced(_RopeRep* __r)
{ return (__r->_M_depth == 0 ||
__r->_M_size >= _S_min_len[__r->_M_depth - 1]); }
static bool _S_is_roughly_balanced(_RopeRep* __r)
{ return (__r->_M_depth <= 1 ||
__r->_M_size >= _S_min_len[__r->_M_depth - 2]); }
// Assumes the result is not empty.
static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,
_RopeRep* __right)
{
_RopeRep* __result = _S_concat(__left, __right);
if (_S_is_balanced(__result)) __result->_M_is_balanced = true;
return __result;
}
// The basic rebalancing operation. Logically copies the
// rope. The result has refcount of 1. The client will
// usually decrement the reference count of __r.
// The result is within height 2 of balanced by the above
// definition.
static _RopeRep* _S_balance(_RopeRep* __r);
// Add all unbalanced subtrees to the forest of balanceed trees.
// Used only by balance.
static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
// Add __r to forest, assuming __r is already balanced.
static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
// Print to stdout, exposing structure
static void _S_dump(_RopeRep* __r, int __indent = 0);
// Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
public:
bool empty() const { return 0 == _M_tree_ptr; }
// Comparison member function. This is public only for those
// clients that need a ternary comparison. Others
// should use the comparison operators below.
int compare(const rope& __y) const {
return _S_compare(_M_tree_ptr, __y._M_tree_ptr);
}
rope(const _CharT* __s, const allocator_type& __a = allocator_type())
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),
__a),__a)
{ }
rope(const _CharT* __s, size_t __len,
const allocator_type& __a = allocator_type())
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)
{ }
// Should perhaps be templatized with respect to the iterator type
// and use Sequence_buffer. (It should perhaps use sequence_buffer
// even now.)
rope(const _CharT *__s, const _CharT *__e,
const allocator_type& __a = allocator_type())
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)
{ }
rope(const const_iterator& __s, const const_iterator& __e,
const allocator_type& __a = allocator_type())
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos), __a)
{ }
rope(const iterator& __s, const iterator& __e,
const allocator_type& __a = allocator_type())
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos), __a)
{ }
rope(_CharT __c, const allocator_type& __a = allocator_type())
: _Base(__a)
{
_CharT* __buf = _Data_allocate(_S_rounded_up_size(1));
construct(__buf, __c);
__STL_TRY {
_M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, 1, __a))
}
rope(size_t __n, _CharT __c,
const allocator_type& __a = allocator_type());
rope(const allocator_type& __a = allocator_type())
: _Base(0, __a) {}
// Construct a rope from a function that can compute its members
rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
_M_tree_ptr = (0 == __len) ?
0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
}
rope(const rope& __x, const allocator_type& __a = allocator_type())
: _Base(__x._M_tree_ptr, __a)
{
_S_ref(_M_tree_ptr);
}
~rope()
{
_S_unref(_M_tree_ptr);
}
rope& operator=(const rope& __x)
{
_RopeRep* __old = _M_tree_ptr;
__stl_assert(get_allocator() == __x.get_allocator());
_M_tree_ptr = __x._M_tree_ptr;
_S_ref(_M_tree_ptr);
_S_unref(__old);
return(*this);
}
void clear()
{
_S_unref(_M_tree_ptr);
_M_tree_ptr = 0;
}
void push_back(_CharT __x)
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr = _S_destr_concat_char_iter(_M_tree_ptr, &__x, 1);
_S_unref(__old);
}
void pop_back()
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr =
_S_substring(_M_tree_ptr, 0, _M_tree_ptr->_M_size - 1);
_S_unref(__old);
}
_CharT back() const
{
return _S_fetch(_M_tree_ptr, _M_tree_ptr->_M_size - 1);
}
void push_front(_CharT __x)
{
_RopeRep* __old = _M_tree_ptr;
_RopeRep* __left =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, get_allocator());
__STL_TRY {
_M_tree_ptr = _S_concat(__left, _M_tree_ptr);
_S_unref(__old);
_S_unref(__left);
}
__STL_UNWIND(_S_unref(__left))
}
void pop_front()
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr = _S_substring(_M_tree_ptr, 1, _M_tree_ptr->_M_size);
_S_unref(__old);
}
_CharT front() const
{
return _S_fetch(_M_tree_ptr, 0);
}
void balance()
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr = _S_balance(_M_tree_ptr);
_S_unref(__old);
}
void copy(_CharT* __buffer) const {
destroy(__buffer, __buffer + size());
_S_flatten(_M_tree_ptr, __buffer);
}
// This is the copy function from the standard, but
// with the arguments reordered to make it consistent with the
// rest of the interface.
// Note that this guaranteed not to compile if the draft standard
// order is assumed.
size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const
{
size_t __size = size();
size_t __len = (__pos + __n > __size? __size - __pos : __n);
destroy(__buffer, __buffer + __len);
_S_flatten(_M_tree_ptr, __pos, __len, __buffer);
return __len;
}
// Print to stdout, exposing structure. May be useful for
// performance debugging.
void dump() {
_S_dump(_M_tree_ptr);
}
// Convert to 0 terminated string in new allocated memory.
// Embedded 0s in the input do not terminate the copy.
const _CharT* c_str() const;
// As above, but lso use the flattened representation as the
// the new rope representation.
const _CharT* replace_with_c_str();
// Reclaim memory for the c_str generated flattened string.
// Intentionally undocumented, since it's hard to say when this
// is safe for multiple threads.
void delete_c_str () {
if (0 == _M_tree_ptr) return;
if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag &&
((_RopeLeaf*)_M_tree_ptr)->_M_data ==
_M_tree_ptr->_M_c_string) {
// Representation shared
return;
}
# ifndef __GC
_M_tree_ptr->_M_free_c_string();
# endif
_M_tree_ptr->_M_c_string = 0;
}
_CharT operator[] (size_type __pos) const {
return _S_fetch(_M_tree_ptr, __pos);
}
_CharT at(size_type __pos) const {
// if (__pos >= size()) throw out_of_range; // XXX
return (*this)[__pos];
}
const_iterator begin() const {
return(const_iterator(_M_tree_ptr, 0));
}
// An easy way to get a const iterator from a non-const container.
const_iterator const_begin() const {
return(const_iterator(_M_tree_ptr, 0));
}
const_iterator end() const {
return(const_iterator(_M_tree_ptr, size()));
}
const_iterator const_end() const {
return(const_iterator(_M_tree_ptr, size()));
}
size_type size() const {
return(0 == _M_tree_ptr? 0 : _M_tree_ptr->_M_size);
}
size_type length() const {
return size();
}
size_type max_size() const {
return _S_min_len[_RopeRep::_S_max_rope_depth-1] - 1;
// Guarantees that the result can be sufficirntly
// balanced. Longer ropes will probably still work,
// but it's harder to make guarantees.
}
typedef reverse_iterator<const_iterator> const_reverse_iterator;
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator const_rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_reverse_iterator const_rend() const {
return const_reverse_iterator(begin());
}
template<class _CharT2, class _Alloc2>
friend rope<_CharT2,_Alloc2>
operator+ (const rope<_CharT2,_Alloc2>& __left,
const rope<_CharT2,_Alloc2>& __right);
template<class _CharT2, class _Alloc2>
friend rope<_CharT2,_Alloc2>
operator+ (const rope<_CharT2,_Alloc2>& __left,
const _CharT2* __right);
template<class _CharT2, class _Alloc2>
friend rope<_CharT2,_Alloc2>
operator+ (const rope<_CharT2,_Alloc2>& __left, _CharT2 __right);
// The symmetric cases are intentionally omitted, since they're presumed
// to be less common, and we don't handle them as well.
// The following should really be templatized.
// The first argument should be an input iterator or
// forward iterator with value_type _CharT.
rope& append(const _CharT* __iter, size_t __n) {
_RopeRep* __result =
_S_destr_concat_char_iter(_M_tree_ptr, __iter, __n);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
rope& append(const _CharT* __c_string) {
size_t __len = _S_char_ptr_len(__c_string);
append(__c_string, __len);
return(*this);
}
rope& append(const _CharT* __s, const _CharT* __e) {
_RopeRep* __result =
_S_destr_concat_char_iter(_M_tree_ptr, __s, __e - __s);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
rope& append(const_iterator __s, const_iterator __e) {
__stl_assert(__s._M_root == __e._M_root);
__stl_assert(get_allocator() == __s._M_root->get_allocator());
_Self_destruct_ptr __appendee(_S_substring(
__s._M_root, __s._M_current_pos, __e._M_current_pos));
_RopeRep* __result =
_S_concat(_M_tree_ptr, (_RopeRep*)__appendee);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
rope& append(_CharT __c) {
_RopeRep* __result =
_S_destr_concat_char_iter(_M_tree_ptr, &__c, 1);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
rope& append() { return append(_CharT()); } // XXX why?
rope& append(const rope& __y) {
__stl_assert(__y.get_allocator() == get_allocator());
_RopeRep* __result = _S_concat(_M_tree_ptr, __y._M_tree_ptr);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
rope& append(size_t __n, _CharT __c) {
rope<_CharT,_Alloc> __last(__n, __c);
return append(__last);
}
void swap(rope& __b) {
__stl_assert(get_allocator() == __b.get_allocator());
_RopeRep* __tmp = _M_tree_ptr;
_M_tree_ptr = __b._M_tree_ptr;
__b._M_tree_ptr = __tmp;
}
protected:
// Result is included in refcount.
static _RopeRep* replace(_RopeRep* __old, size_t __pos1,
size_t __pos2, _RopeRep* __r) {
if (0 == __old) { _S_ref(__r); return __r; }
_Self_destruct_ptr __left(
_S_substring(__old, 0, __pos1));
_Self_destruct_ptr __right(
_S_substring(__old, __pos2, __old->_M_size));
_RopeRep* __result;
__stl_assert(__old->get_allocator() == __r->get_allocator());
if (0 == __r) {
__result = _S_concat(__left, __right);
} else {
_Self_destruct_ptr __left_result(_S_concat(__left, __r));
__result = _S_concat(__left_result, __right);
}
return __result;
}
public:
void insert(size_t __p, const rope& __r) {
_RopeRep* __result =
replace(_M_tree_ptr, __p, __p, __r._M_tree_ptr);
__stl_assert(get_allocator() == __r.get_allocator());
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
void insert(size_t __p, size_t __n, _CharT __c) {
rope<_CharT,_Alloc> __r(__n,__c);
insert(__p, __r);
}
void insert(size_t __p, const _CharT* __i, size_t __n) {
_Self_destruct_ptr __left(_S_substring(_M_tree_ptr, 0, __p));
_Self_destruct_ptr __right(_S_substring(_M_tree_ptr, __p, size()));
_Self_destruct_ptr __left_result(
_S_concat_char_iter(__left, __i, __n));
// _S_ destr_concat_char_iter should be safe here.
// But as it stands it's probably not a win, since __left
// is likely to have additional references.
_RopeRep* __result = _S_concat(__left_result, __right);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
void insert(size_t __p, const _CharT* __c_string) {
insert(__p, __c_string, _S_char_ptr_len(__c_string));
}
void insert(size_t __p, _CharT __c) {
insert(__p, &__c, 1);
}
void insert(size_t __p) {
_CharT __c = _CharT();
insert(__p, &__c, 1);
}
void insert(size_t __p, const _CharT* __i, const _CharT* __j) {
rope __r(__i, __j);
insert(__p, __r);
}
void insert(size_t __p, const const_iterator& __i,
const const_iterator& __j) {
rope __r(__i, __j);
insert(__p, __r);
}
void insert(size_t __p, const iterator& __i,
const iterator& __j) {
rope __r(__i, __j);
insert(__p, __r);
}
// (position, length) versions of replace operations:
void replace(size_t __p, size_t __n, const rope& __r) {
_RopeRep* __result =
replace(_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
void replace(size_t __p, size_t __n,
const _CharT* __i, size_t __i_len) {
rope __r(__i, __i_len);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n, _CharT __c) {
rope __r(__c);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n, const _CharT* __c_string) {
rope __r(__c_string);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n,
const _CharT* __i, const _CharT* __j) {
rope __r(__i, __j);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n,
const const_iterator& __i, const const_iterator& __j) {
rope __r(__i, __j);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n,
const iterator& __i, const iterator& __j) {
rope __r(__i, __j);
replace(__p, __n, __r);
}
// Single character variants:
void replace(size_t __p, _CharT __c) {
iterator __i(this, __p);
*__i = __c;
}
void replace(size_t __p, const rope& __r) {
replace(__p, 1, __r);
}
void replace(size_t __p, const _CharT* __i, size_t __i_len) {
replace(__p, 1, __i, __i_len);
}
void replace(size_t __p, const _CharT* __c_string) {
replace(__p, 1, __c_string);
}
void replace(size_t __p, const _CharT* __i, const _CharT* __j) {
replace(__p, 1, __i, __j);
}
void replace(size_t __p, const const_iterator& __i,
const const_iterator& __j) {
replace(__p, 1, __i, __j);
}
void replace(size_t __p, const iterator& __i,
const iterator& __j) {
replace(__p, 1, __i, __j);
}
// Erase, (position, size) variant.
void erase(size_t __p, size_t __n) {
_RopeRep* __result = replace(_M_tree_ptr, __p, __p + __n, 0);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
// Erase, single character
void erase(size_t __p) {
erase(__p, __p + 1);
}
// Insert, iterator variants.
iterator insert(const iterator& __p, const rope& __r)
{ insert(__p.index(), __r); return __p; }
iterator insert(const iterator& __p, size_t __n, _CharT __c)
{ insert(__p.index(), __n, __c); return __p; }
iterator insert(const iterator& __p, _CharT __c)
{ insert(__p.index(), __c); return __p; }
iterator insert(const iterator& __p )
{ insert(__p.index()); return __p; }
iterator insert(const iterator& __p, const _CharT* c_string)
{ insert(__p.index(), c_string); return __p; }
iterator insert(const iterator& __p, const _CharT* __i, size_t __n)
{ insert(__p.index(), __i, __n); return __p; }
iterator insert(const iterator& __p, const _CharT* __i,
const _CharT* __j)
{ insert(__p.index(), __i, __j); return __p; }
iterator insert(const iterator& __p,
const const_iterator& __i, const const_iterator& __j)
{ insert(__p.index(), __i, __j); return __p; }
iterator insert(const iterator& __p,
const iterator& __i, const iterator& __j)
{ insert(__p.index(), __i, __j); return __p; }
// Replace, range variants.
void replace(const iterator& __p, const iterator& __q,
const rope& __r)
{ replace(__p.index(), __q.index() - __p.index(), __r); }
void replace(const iterator& __p, const iterator& __q, _CharT __c)
{ replace(__p.index(), __q.index() - __p.index(), __c); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __c_string)
{ replace(__p.index(), __q.index() - __p.index(), __c_string); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __i, size_t __n)
{ replace(__p.index(), __q.index() - __p.index(), __i, __n); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void replace(const iterator& __p, const iterator& __q,
const const_iterator& __i, const const_iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void replace(const iterator& __p, const iterator& __q,
const iterator& __i, const iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
// Replace, iterator variants.
void replace(const iterator& __p, const rope& __r)
{ replace(__p.index(), __r); }
void replace(const iterator& __p, _CharT __c)
{ replace(__p.index(), __c); }
void replace(const iterator& __p, const _CharT* __c_string)
{ replace(__p.index(), __c_string); }
void replace(const iterator& __p, const _CharT* __i, size_t __n)
{ replace(__p.index(), __i, __n); }
void replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __i, __j); }
void replace(const iterator& __p, const_iterator __i,
const_iterator __j)
{ replace(__p.index(), __i, __j); }
void replace(const iterator& __p, iterator __i, iterator __j)
{ replace(__p.index(), __i, __j); }
// Iterator and range variants of erase
iterator erase(const iterator& __p, const iterator& __q) {
size_t __p_index = __p.index();
erase(__p_index, __q.index() - __p_index);
return iterator(this, __p_index);
}
iterator erase(const iterator& __p) {
size_t __p_index = __p.index();
erase(__p_index, 1);
return iterator(this, __p_index);
}
rope substr(size_t __start, size_t __len = 1) const {
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __start, __start + __len));
}
rope substr(iterator __start, iterator __end) const {
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __start.index(), __end.index()));
}
rope substr(iterator __start) const {
size_t __pos = __start.index();
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __pos, __pos + 1));
}
rope substr(const_iterator __start, const_iterator __end) const {
// This might eventually take advantage of the cache in the
// iterator.
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __start.index(), __end.index()));
}
rope<_CharT,_Alloc> substr(const_iterator __start) {
size_t __pos = __start.index();
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __pos, __pos + 1));
}
static const size_type npos;
size_type find(_CharT __c, size_type __pos = 0) const;
size_type find(const _CharT* __s, size_type __pos = 0) const {
size_type __result_pos;
const_iterator __result = search(const_begin() + __pos, const_end(),
__s, __s + _S_char_ptr_len(__s));
__result_pos = __result.index();
# ifndef __STL_OLD_ROPE_SEMANTICS
if (__result_pos == size()) __result_pos = npos;
# endif
return __result_pos;
}
iterator mutable_begin() {
return(iterator(this, 0));
}
iterator mutable_end() {
return(iterator(this, size()));
}
typedef reverse_iterator<iterator> reverse_iterator;
reverse_iterator mutable_rbegin() {
return reverse_iterator(mutable_end());
}
reverse_iterator mutable_rend() {
return reverse_iterator(mutable_begin());
}
reference mutable_reference_at(size_type __pos) {
return reference(this, __pos);
}
# ifdef __STD_STUFF
reference operator[] (size_type __pos) {
return _char_ref_proxy(this, __pos);
}
reference at(size_type __pos) {
// if (__pos >= size()) throw out_of_range; // XXX
return (*this)[__pos];
}
void resize(size_type __n, _CharT __c) {}
void resize(size_type __n) {}
void reserve(size_type __res_arg = 0) {}
size_type capacity() const {
return max_size();
}
// Stuff below this line is dangerous because it's error prone.
// I would really like to get rid of it.
// copy function with funny arg ordering.
size_type copy(_CharT* __buffer, size_type __n,
size_type __pos = 0) const {
return copy(__pos, __n, __buffer);
}
iterator end() { return mutable_end(); }
iterator begin() { return mutable_begin(); }
reverse_iterator rend() { return mutable_rend(); }
reverse_iterator rbegin() { return mutable_rbegin(); }
# else
const_iterator end() { return const_end(); }
const_iterator begin() { return const_begin(); }
const_reverse_iterator rend() { return const_rend(); }
const_reverse_iterator rbegin() { return const_rbegin(); }
# endif
};
template <class _CharT, class _Alloc>
const rope<_CharT, _Alloc>::size_type rope<_CharT, _Alloc>::npos =
(size_type)(-1);
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos == __y._M_current_pos &&
__x._M_root == __y._M_root);
}
template <class _CharT, class _Alloc>
inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos < __y._M_current_pos);
}
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
template <class _CharT, class _Alloc>
inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return __y < __x;
}
template <class _CharT, class _Alloc>
inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return !(__y < __x);
}
template <class _CharT, class _Alloc>
inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return !(__x < __y);
}
template <class _CharT, class _Alloc>
inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
}
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
return _Rope_const_iterator<_CharT,_Alloc>(
__x._M_root, __x._M_current_pos - __n);
}
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
return _Rope_const_iterator<_CharT,_Alloc>(
__x._M_root, __x._M_current_pos + __n);
}
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) {
return _Rope_const_iterator<_CharT,_Alloc>(
__x._M_root, __x._M_current_pos + __n);
}
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos == __y._M_current_pos &&
__x._M_root_rope == __y._M_root_rope);
}
template <class _CharT, class _Alloc>
inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos < __y._M_current_pos);
}
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
template <class _CharT, class _Alloc>
inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return __y < __x;
}
template <class _CharT, class _Alloc>
inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return !(__y < __x);
}
template <class _CharT, class _Alloc>
inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return !(__x < __y);
}
template <class _CharT, class _Alloc>
inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
}
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n) {
return _Rope_iterator<_CharT,_Alloc>(
__x._M_root_rope, __x._M_current_pos - __n);
}
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator+(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n) {
return _Rope_iterator<_CharT,_Alloc>(
__x._M_root_rope, __x._M_current_pos + __n);
}
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) {
return _Rope_iterator<_CharT,_Alloc>(
__x._M_root_rope, __x._M_current_pos + __n);
}
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right)
{
__stl_assert(__left.get_allocator() == __right.get_allocator());
return rope<_CharT,_Alloc>(
rope<_CharT,_Alloc>::_S_concat(__left._M_tree_ptr, __right._M_tree_ptr));
// Inlining this should make it possible to keep __left and
// __right in registers.
}
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right)
{
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left,
const _CharT* __right) {
size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right);
return rope<_CharT,_Alloc>(
rope<_CharT,_Alloc>::_S_concat_char_iter(
__left._M_tree_ptr, __right, __rlen));
}
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left,
const _CharT* __right) {
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) {
return rope<_CharT,_Alloc>(
rope<_CharT,_Alloc>::_S_concat_char_iter(
__left._M_tree_ptr, &__right, 1));
}
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) {
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
bool
operator< (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
return __left.compare(__right) < 0;
}
template <class _CharT, class _Alloc>
bool
operator== (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
return __left.compare(__right) == 0;
}
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root);
}
template <class _CharT, class _Alloc>
inline bool
operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
template <class _CharT, class _Alloc>
inline bool
operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return __y < __x;
}
template <class _CharT, class _Alloc>
inline bool
operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__y < __x);
}
template <class _CharT, class _Alloc>
inline bool
operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__x < __y);
}
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>& operator<<
(basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r);
typedef rope<char> crope;
typedef rope<wchar_t> wrope;
inline crope::reference __mutable_reference_at(crope& __c, size_t __i)
{
return __c.mutable_reference_at(__i);
}
inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i)
{
return __c.mutable_reference_at(__i);
}
template <class _CharT, class _Alloc>
inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) {
__x.swap(__y);
}
// Hash functions should probably be revisited later:
template<> struct hash<crope>
{
size_t operator()(const crope& __str) const
{
size_t __size = __str.size();
if (0 == __size) return 0;
return 13*__str[0] + 5*__str[__size - 1] + __size;
}
};
template<> struct hash<wrope>
{
size_t operator()(const wrope& __str) const
{
size_t __size = __str.size();
if (0 == __size) return 0;
return 13*__str[0] + 5*__str[__size - 1] + __size;
}
};
} // namespace std
# include <ext/ropeimpl.h>
# endif /* __SGI_STL_INTERNAL_ROPE_H */
// Local Variables:
// mode:C++
// End: