kolibrios-gitea/contrib/sdk/sources/newlib/libc/include/tgmath.h
Sergey Semyonov (Serge) 7315bb05c0 newlib-2.1.0
git-svn-id: svn://kolibrios.org@4921 a494cfbc-eb01-0410-851d-a64ba20cac60
2014-05-10 22:12:19 +00:00

185 lines
7.9 KiB
C

/* http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/tgmath.h.html */
/*-
* Copyright (c) 2004 Stefan Farfeleder.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _TGMATH_H_
#define _TGMATH_H_
#include <complex.h>
#include <math.h>
#ifdef log2
#undef log2
#endif
/*
* This implementation of <tgmath.h> requires two implementation-dependent
* macros to be defined:
* __tg_impl_simple(x, y, z, fn, fnf, fnl, ...)
* Invokes fnl() if the corresponding real type of x, y or z is long
* double, fn() if it is double or any has an integer type, and fnf()
* otherwise.
* __tg_impl_full(x, y, z, fn, fnf, fnl, cfn, cfnf, cfnl, ...)
* Invokes [c]fnl() if the corresponding real type of x, y or z is long
* double, [c]fn() if it is double or any has an integer type, and
* [c]fnf() otherwise. The function with the 'c' prefix is called if
* any of x, y or z is a complex number.
* Both macros call the chosen function with all additional arguments passed
* to them, as given by __VA_ARGS__.
*
* Note that these macros cannot be implemented with C's ?: operator,
* because the return type of the whole expression would incorrectly be long
* double complex regardless of the argument types.
*/
/* requires GCC >= 3.1 */
#if !__GNUC_PREREQ (3, 1)
#error "<tgmath.h> not implemented for this compiler"
#endif
#define __tg_type(__e, __t) \
__builtin_types_compatible_p(__typeof__(__e), __t)
#define __tg_type3(__e1, __e2, __e3, __t) \
(__tg_type(__e1, __t) || __tg_type(__e2, __t) || \
__tg_type(__e3, __t))
#define __tg_type_corr(__e1, __e2, __e3, __t) \
(__tg_type3(__e1, __e2, __e3, __t) || \
__tg_type3(__e1, __e2, __e3, __t _Complex))
#define __tg_integer(__e1, __e2, __e3) \
(((__typeof__(__e1))1.5 == 1) || ((__typeof__(__e2))1.5 == 1) || \
((__typeof__(__e3))1.5 == 1))
#define __tg_is_complex(__e1, __e2, __e3) \
(__tg_type3(__e1, __e2, __e3, float _Complex) || \
__tg_type3(__e1, __e2, __e3, double _Complex) || \
__tg_type3(__e1, __e2, __e3, long double _Complex) || \
__tg_type3(__e1, __e2, __e3, __typeof__(_Complex_I)))
#ifdef _LDBL_EQ_DBL
#define __tg_impl_simple(x, y, z, fn, fnf, fnl, ...) \
__builtin_choose_expr(__tg_type_corr(x, y, z, long double), \
fnl(__VA_ARGS__), __builtin_choose_expr( \
__tg_type_corr(x, y, z, double) || __tg_integer(x, y, z),\
fn(__VA_ARGS__), fnf(__VA_ARGS__)))
#else
#define __tg_impl_simple(__x, __y, __z, __fn, __fnf, __fnl, ...) \
(__tg_type_corr(__x, __y, __z, double) || __tg_integer(__x, __y, __z)) \
? __fn(__VA_ARGS__) : __fnf(__VA_ARGS__)
#endif
#define __tg_impl_full(__x, __y, __z, __fn, __fnf, __fnl, __cfn, __cfnf, __cfnl, ...) \
__builtin_choose_expr(__tg_is_complex(__x, __y, __z), \
__tg_impl_simple(__x, __y, __z, __cfn, __cfnf, __cfnl, __VA_ARGS__), \
__tg_impl_simple(__x, __y, __z, __fn, __fnf, __fnl, __VA_ARGS__))
/* Macros to save lots of repetition below */
#define __tg_simple(__x, __fn) \
__tg_impl_simple(__x, __x, __x, __fn, __fn##f, __fn##l, __x)
#define __tg_simple2(__x, __y, __fn) \
__tg_impl_simple(__x, __x, __y, __fn, __fn##f, __fn##l, __x, __y)
#define __tg_simplev(__x, __fn, ...) \
__tg_impl_simple(__x, __x, __x, __fn, __fn##f, __fn##l, __VA_ARGS__)
#define __tg_full(__x, __fn) \
__tg_impl_full(__x, __x, __x, __fn, __fn##f, __fn##l, c##__fn, c##__fn##f, c##__fn##l, __x)
/* 7.22#4 -- These macros expand to real or complex functions, depending on
* the type of their arguments. */
#define acos(__x) __tg_full(__x, acos)
#define asin(__x) __tg_full(__x, asin)
#define atan(__x) __tg_full(__x, atan)
#define acosh(__x) __tg_full(__x, acosh)
#define asinh(__x) __tg_full(__x, asinh)
#define atanh(__x) __tg_full(__x, atanh)
#define cos(__x) __tg_full(__x, cos)
#define sin(__x) __tg_full(__x, sin)
#define tan(__x) __tg_full(__x, tan)
#define cosh(__x) __tg_full(__x, cosh)
#define sinh(__x) __tg_full(__x, sinh)
#define tanh(__x) __tg_full(__x, tanh)
#define exp(__x) __tg_full(__x, exp)
#define log(__x) __tg_full(__x, log)
#define pow(__x, __y) __tg_impl_full(__x, __x, __y, pow, powf, powl, \
cpow, cpowf, cpowl, __x, __y)
#define sqrt(__x) __tg_full(__x, sqrt)
/* "The corresponding type-generic macro for fabs and cabs is fabs." */
#define fabs(__x) __tg_impl_full(__x, __x, __x, fabs, fabsf, fabsl, \
cabs, cabsf, cabsl, __x)
/* 7.22#5 -- These macros are only defined for arguments with real type. */
#define atan2(__x, __y) __tg_simple2(__x, __y, atan2)
#define cbrt(__x) __tg_simple(__x, cbrt)
#define ceil(__x) __tg_simple(__x, ceil)
#define copysign(__x, __y) __tg_simple2(__x, __y, copysign)
#define erf(__x) __tg_simple(__x, erf)
#define erfc(__x) __tg_simple(__x, erfc)
#define exp2(__x) __tg_simple(__x, exp2)
#define expm1(__x) __tg_simple(__x, expm1)
#define fdim(__x, __y) __tg_simple2(__x, __y, fdim)
#define floor(__x) __tg_simple(__x, floor)
#define fma(__x, __y, __z) __tg_impl_simple(__x, __y, __z, fma, fmaf, fmal, \
__x, __y, __z)
#define fmax(__x, __y) __tg_simple2(__x, __y, fmax)
#define fmin(__x, __y) __tg_simple2(__x, __y, fmin)
#define fmod(__x, __y) __tg_simple2(__x, __y, fmod)
#define frexp(__x, __y) __tg_simplev(__x, frexp, __x, __y)
#define hypot(__x, __y) __tg_simple2(__x, __y, hypot)
#define ilogb(__x) __tg_simple(__x, ilogb)
#define ldexp(__x, __y) __tg_simplev(__x, ldexp, __x, __y)
#define lgamma(__x) __tg_simple(__x, lgamma)
#define llrint(__x) __tg_simple(__x, llrint)
#define llround(__x) __tg_simple(__x, llround)
#define log10(__x) __tg_simple(__x, log10)
#define log1p(__x) __tg_simple(__x, log1p)
#define log2(__x) __tg_simple(__x, log2)
#define logb(__x) __tg_simple(__x, logb)
#define lrint(__x) __tg_simple(__x, lrint)
#define lround(__x) __tg_simple(__x, lround)
#define nearbyint(__x) __tg_simple(__x, nearbyint)
#define nextafter(__x, __y) __tg_simple2(__x, __y, nextafter)
/* not yet implemented even for _LDBL_EQ_DBL platforms
#define nexttoward(__x, __y) __tg_simplev(__x, nexttoward, __x, __y)
*/
#define remainder(__x, __y) __tg_simple2(__x, __y, remainder)
#define remquo(__x, __y, __z) __tg_impl_simple(__x, __x, __y, remquo, remquof, \
remquol, __x, __y, __z)
#define rint(__x) __tg_simple(__x, rint)
#define round(__x) __tg_simple(__x, round)
#define scalbn(__x, __y) __tg_simplev(__x, scalbn, __x, __y)
#define scalbln(__x, __y) __tg_simplev(__x, scalbln, __x, __y)
#define tgamma(__x) __tg_simple(__x, tgamma)
#define trunc(__x) __tg_simple(__x, trunc)
/* 7.22#6 -- These macros always expand to complex functions. */
#define carg(__x) __tg_simple(__x, carg)
#define cimag(__x) __tg_simple(__x, cimag)
#define conj(__x) __tg_simple(__x, conj)
#define cproj(__x) __tg_simple(__x, cproj)
#define creal(__x) __tg_simple(__x, creal)
#endif /* !_TGMATH_H_ */