kolibrios-gitea/kernel/branches/kolibri_pe/core/slab.c
Sergey Semyonov (Serge) 2b91637d4d 1) slab allocator
2) new kernel heap

git-svn-id: svn://kolibrios.org@859 a494cfbc-eb01-0410-851d-a64ba20cac60
2008-09-10 13:04:24 +00:00

472 lines
11 KiB
C

#include <types.h>
#include <core.h>
#include <spinlock.h>
#include <link.h>
#include <mm.h>
#include <slab.h>
extern zone_t z_core;
static LIST_INITIALIZE(slab_cache_list);
static slab_cache_t *slab_cache;
static slab_cache_t slab_cache_cache;
static slab_t *slab_create();
static slab_cache_t * slab_cache_alloc();
void slab_free(slab_cache_t *cache, void *obj);
/**
* Allocate frames for slab space and initialize
*
*/
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
{
void *data;
slab_t *slab;
size_t fsize;
unsigned int i;
u32_t p;
data = (void*)PA2KA(core_alloc(cache->order));
if (!data) {
return NULL;
}
slab = (slab_t*)slab_create();
if (!slab) {
core_free(KA2PA(data));
return NULL;
}
/* Fill in slab structures */
for (i = 0; i < ((u32_t) 1 << cache->order); i++)
frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab);
slab->start = data;
slab->available = cache->objects;
slab->nextavail = (void*)data;
slab->cache = cache;
for (i = 0, p = (u32_t)slab->start; i < cache->objects; i++)
{
*(addr_t *)p = p+cache->size;
p = p+cache->size;
};
atomic_inc(&cache->allocated_slabs);
return slab;
}
/**
* Take new object from slab or create new if needed
*
* @return Object address or null
*/
static void * slab_obj_create(slab_cache_t *cache, int flags)
{
slab_t *slab;
void *obj;
spinlock_lock(&cache->slablock);
if (list_empty(&cache->partial_slabs)) {
/* Allow recursion and reclaiming
* - this should work, as the slab control structures
* are small and do not need to allocate with anything
* other than frame_alloc when they are allocating,
* that's why we should get recursion at most 1-level deep
*/
slab = slab_space_alloc(cache, flags);
if (!slab)
{
spinlock_unlock(&cache->slablock);
return NULL;
}
} else {
slab = list_get_instance(cache->partial_slabs.next, slab_t, link);
list_remove(&slab->link);
}
obj = slab->nextavail;
slab->nextavail = *(void**)obj;
slab->available--;
if (!slab->available)
list_prepend(&slab->link, &cache->full_slabs);
else
list_prepend(&slab->link, &cache->partial_slabs);
spinlock_unlock(&cache->slablock);
// if (cache->constructor && cache->constructor(obj, flags)) {
/* Bad, bad, construction failed */
// slab_obj_destroy(cache, obj, slab);
// return NULL;
// }
return obj;
}
/** Map object to slab structure */
static slab_t * obj2slab(void *obj)
{
return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)));
}
/** Allocate new object from cache - if no flags given, always returns
memory */
void* __fastcall slab_alloc(slab_cache_t *cache, int flags)
{
eflags_t efl;
void *result = NULL;
/* Disable interrupts to avoid deadlocks with interrupt handlers */
efl = safe_cli();
// if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
// result = magazine_obj_get(cache);
// }
// if (!result)
result = slab_obj_create(cache, flags);
safe_sti(efl);
// if (result)
// atomic_inc(&cache->allocated_objs);
return result;
}
/**************************************/
/* Slab cache functions */
/** Return number of objects that fit in certain cache size */
static unsigned int comp_objects(slab_cache_t *cache)
{
if (cache->flags & SLAB_CACHE_SLINSIDE)
return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
else
return (PAGE_SIZE << cache->order) / cache->size;
}
/** Return wasted space in slab */
static unsigned int badness(slab_cache_t *cache)
{
unsigned int objects;
unsigned int ssize;
size_t val;
objects = comp_objects(cache);
ssize = PAGE_SIZE << cache->order;
if (cache->flags & SLAB_CACHE_SLINSIDE)
ssize -= sizeof(slab_t);
val = ssize - objects * cache->size;
return val;
}
/** Initialize allocated memory as a slab cache */
static void
_slab_cache_create(slab_cache_t *cache,
size_t size,
size_t align,
int (*constructor)(void *obj, int kmflag),
int (*destructor)(void *obj),
int flags)
{
int pages;
// ipl_t ipl;
// memsetb((uintptr_t)cache, sizeof(*cache), 0);
// cache->name = name;
//if (align < sizeof(unative_t))
// align = sizeof(unative_t);
// size = ALIGN_UP(size, align);
cache->size = size;
// cache->constructor = constructor;
// cache->destructor = destructor;
cache->flags = flags;
list_initialize(&cache->full_slabs);
list_initialize(&cache->partial_slabs);
list_initialize(&cache->magazines);
// spinlock_initialize(&cache->slablock, "slab_lock");
// spinlock_initialize(&cache->maglock, "slab_maglock");
// if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
// make_magcache(cache);
/* Compute slab sizes, object counts in slabs etc. */
/* Minimum slab order */
pages = SIZE2FRAMES(cache->size);
/* We need the 2^order >= pages */
if (pages == 1)
cache->order = 0;
else
cache->order = fnzb(pages-1)+1;
while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
cache->order += 1;
}
cache->objects = comp_objects(cache);
/* Add cache to cache list */
// ipl = interrupts_disable();
// spinlock_lock(&slab_cache_lock);
list_append(&cache->link, &slab_cache_list);
// spinlock_unlock(&slab_cache_lock);
// interrupts_restore(ipl);
}
/** Create slab cache */
slab_cache_t * slab_cache_create(
size_t size,
size_t align,
int (*constructor)(void *obj, int kmflag),
int (*destructor)(void *obj),
int flags)
{
slab_cache_t *cache;
cache = (slab_cache_t*)slab_cache_alloc();
_slab_cache_create(cache, size, align, constructor, destructor, flags);
return cache;
}
/**
* Deallocate space associated with slab
*
* @return number of freed frames
*/
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
{
frame_free(KA2PA(slab->start));
if (! (cache->flags & SLAB_CACHE_SLINSIDE))
slab_free(slab_cache, slab);
// atomic_dec(&cache->allocated_slabs);
return 1 << cache->order;
}
/**
* Return object to slab and call a destructor
*
* @param slab If the caller knows directly slab of the object, otherwise NULL
*
* @return Number of freed pages
*/
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
slab_t *slab)
{
int freed = 0;
if (!slab)
slab = obj2slab(obj);
// ASSERT(slab->cache == cache);
// if (cache->destructor)
// freed = cache->destructor(obj);
// spinlock_lock(&cache->slablock);
// ASSERT(slab->available < cache->objects);
*(void**)obj = slab->nextavail;
slab->nextavail = obj;
slab->available++;
/* Move it to correct list */
if (slab->available == cache->objects) {
/* Free associated memory */
list_remove(&slab->link);
// spinlock_unlock(&cache->slablock);
return freed + slab_space_free(cache, slab);
} else if (slab->available == 1) {
/* It was in full, move to partial */
list_remove(&slab->link);
list_prepend(&slab->link, &cache->partial_slabs);
}
// spinlock_unlock(&cache->slablock);
return freed;
}
/** Return object to cache, use slab if known */
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
{
// ipl_t ipl;
// ipl = interrupts_disable();
// if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
|| magazine_obj_put(cache, obj)) {
slab_obj_destroy(cache, obj, slab);
// }
// interrupts_restore(ipl);
// atomic_dec(&cache->allocated_objs);
}
/** Return slab object to cache */
void slab_free(slab_cache_t *cache, void *obj)
{
_slab_free(cache, obj, NULL);
}
static slab_t *slab_create()
{
slab_t *slab;
void *obj;
u32_t p;
// spinlock_lock(&cache->slablock);
if (list_empty(&slab_cache->partial_slabs)) {
/* Allow recursion and reclaiming
* - this should work, as the slab control structures
* are small and do not need to allocate with anything
* other than frame_alloc when they are allocating,
* that's why we should get recursion at most 1-level deep
*/
// spinlock_unlock(&cache->slablock);
// slab = slab_create();
void *data;
unsigned int i;
data = (void*)PA2KA(core_alloc(0));
if (!data) {
return NULL;
}
slab = (slab_t*)((u32_t)data + PAGE_SIZE - sizeof(slab_t));
/* Fill in slab structures */
frame_set_parent(ADDR2PFN(KA2PA(data)), slab);
slab->start = data;
slab->available = slab_cache->objects;
slab->nextavail = (void*)data;
slab->cache = slab_cache;
for (i = 0,p = (u32_t)slab->start;i < slab_cache->objects; i++)
{
*(int *)p = p+slab_cache->size;
p = p+slab_cache->size;
};
atomic_inc(&slab_cache->allocated_slabs);
// spinlock_lock(&cache->slablock);
} else {
slab = list_get_instance(slab_cache->partial_slabs.next, slab_t, link);
list_remove(&slab->link);
}
obj = slab->nextavail;
slab->nextavail = *((void**)obj);
slab->available--;
if (!slab->available)
list_prepend(&slab->link, &slab_cache->full_slabs);
else
list_prepend(&slab->link, &slab_cache->partial_slabs);
// spinlock_unlock(&cache->slablock);
return (slab_t*)obj;
}
static slab_cache_t * slab_cache_alloc()
{
slab_t *slab;
void *obj;
u32_t *p;
if (list_empty(&slab_cache_cache.partial_slabs)) {
/* Allow recursion and reclaiming
* - this should work, as the slab control structures
* are small and do not need to allocate with anything
* other than frame_alloc when they are allocating,
* that's why we should get recursion at most 1-level deep
*/
// spinlock_unlock(&cache->slablock);
// slab = slab_create();
void *data;
unsigned int i;
data = (void*)(PA2KA(core_alloc(0)));
if (!data) {
return NULL;
}
slab = (slab_t*)((u32_t)data + PAGE_SIZE - sizeof(slab_t));
/* Fill in slab structures */
frame_set_parent(ADDR2PFN(KA2PA(data)), slab);
slab->start = data;
slab->available = slab_cache_cache.objects;
slab->nextavail = (void*)data;
slab->cache = &slab_cache_cache;
for (i = 0,p = (u32_t*)slab->start;i < slab_cache_cache.objects; i++)
{
*p = (u32_t)p+slab_cache_cache.size;
p = (u32_t*)((u32_t)p+slab_cache_cache.size);
};
atomic_inc(&slab_cache_cache.allocated_slabs);
// spinlock_lock(&cache->slablock);
} else {
slab = list_get_instance(slab_cache_cache.partial_slabs.next, slab_t, link);
list_remove(&slab->link);
}
obj = slab->nextavail;
slab->nextavail = *((void**)obj);
slab->available--;
if (!slab->available)
list_prepend(&slab->link, &slab_cache_cache.full_slabs);
else
list_prepend(&slab->link, &slab_cache_cache.partial_slabs);
// spinlock_unlock(&cache->slablock);
return (slab_cache_t*)obj;
}
void slab_cache_init(void)
{
_slab_cache_create(&slab_cache_cache, sizeof(slab_cache_t),
sizeof(void *), NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
/* Initialize external slab cache */
slab_cache = slab_cache_create(sizeof(slab_t),
0, NULL, NULL,SLAB_CACHE_MAGDEFERRED);
};