kolibrios-gitea/drivers/video/drm/vmwgfx/main.c
Sergey Semyonov (Serge) 8ee34fed7b i915-4.4.3
git-svn-id: svn://kolibrios.org@6296 a494cfbc-eb01-0410-851d-a64ba20cac60
2016-02-27 20:16:35 +00:00

1119 lines
26 KiB
C

#include <syscall.h>
#include <drm/drmP.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/pci.h>
#include "vmwgfx_drv.h"
#include <display.h>
#define VMW_DEV_CLOSE 0
#define VMW_DEV_INIT 1
#define VMW_DEV_READY 2
void cpu_detect1();
int kmap_init();
unsigned long volatile jiffies;
int oops_in_progress;
int x86_clflush_size;
unsigned int tsc_khz;
struct workqueue_struct *system_wq;
int driver_wq_state;
struct drm_device *main_device;
struct drm_file *drm_file_handlers[256];
int kms_modeset = 1;
static char log[256];
int vmw_init(void);
int kms_init(struct drm_device *dev);
void vmw_driver_thread();
void parse_cmdline(char *cmdline, char *log);
int _stdcall display_handler(ioctl_t *io);
void kms_update();
void vmw_fb_update(struct vmw_private *vmw_priv);
int gem_getparam(struct drm_device *dev, void *data);
void vmw_driver_thread()
{
struct vmw_private *dev_priv = NULL;
struct workqueue_struct *cwq = NULL;
unsigned long irqflags;
printf("%s\n",__FUNCTION__);
while(driver_wq_state == VMW_DEV_INIT)
{
jiffies = GetClockNs() / 10000000;
delay(1);
};
if( driver_wq_state == VMW_DEV_CLOSE)
{
asm volatile ("int $0x40"::"a"(-1));
};
dev_priv = main_device->dev_private;
cwq = system_wq;
while(driver_wq_state != VMW_DEV_CLOSE )
{
jiffies = GetClockNs() / 10000000;
// kms_update();
spin_lock_irqsave(&cwq->lock, irqflags);
while (!list_empty(&cwq->worklist))
{
struct work_struct *work = list_entry(cwq->worklist.next,
struct work_struct, entry);
work_func_t f = work->func;
list_del_init(cwq->worklist.next);
spin_unlock_irqrestore(&cwq->lock, irqflags);
f(work);
spin_lock_irqsave(&cwq->lock, irqflags);
}
spin_unlock_irqrestore(&cwq->lock, irqflags);
vmw_fb_update(dev_priv);
delay(2);
};
asm volatile ("int $0x40"::"a"(-1));
}
u32 __attribute__((externally_visible)) drvEntry(int action, char *cmdline)
{
static pci_dev_t device;
const struct pci_device_id *ent;
char *safecmdline;
int err = 0;
if(action != 1)
{
driver_wq_state = VMW_DEV_CLOSE;
return 0;
};
if( GetService("DISPLAY") != 0 )
return 0;
if( cmdline && *cmdline )
parse_cmdline(cmdline, log);
if( *log && !dbg_open(log))
{
printf("Can't open %s\nExit\n", log);
return 0;
}
cpu_detect1();
err = enum_pci_devices();
if( unlikely(err != 0) )
{
dbgprintf("Device enumeration failed\n");
return 0;
}
err = kmap_init();
if( unlikely(err != 0) )
{
dbgprintf("kmap initialization failed\n");
return 0;
}
driver_wq_state = VMW_DEV_INIT;
CreateKernelThread(vmw_driver_thread);
err = vmw_init();
if(unlikely(err!= 0))
{
driver_wq_state = VMW_DEV_CLOSE;
dbgprintf("Epic Fail :(\n");
delay(100);
return 0;
};
LINE();
driver_wq_state = VMW_DEV_READY;
// kms_init(main_device);
err = RegService("DISPLAY", display_handler);
if( err != 0)
dbgprintf("Set DISPLAY handler\n");
return err;
};
#define CURRENT_API 0x0200 /* 2.00 */
#define COMPATIBLE_API 0x0100 /* 1.00 */
#define API_VERSION (COMPATIBLE_API << 16) | CURRENT_API
#define DISPLAY_VERSION API_VERSION
#define SRV_GETVERSION 0
#define SRV_ENUM_MODES 1
#define SRV_SET_MODE 2
#define SRV_GET_CAPS 3
#define SRV_CMDLINE 4
#define SRV_GET_PCI_INFO 20
#define check_input(size) \
if( unlikely((inp==NULL)||(io->inp_size != (size))) ) \
break;
#define check_output(size) \
if( unlikely((outp==NULL)||(io->out_size != (size))) ) \
break;
int _stdcall display_handler(ioctl_t *io)
{
struct drm_file *file;
int retval = -1;
u32 *inp;
u32 *outp;
inp = io->input;
outp = io->output;
file = drm_file_handlers[0];
switch(io->io_code)
{
case SRV_GETVERSION:
check_output(4);
*outp = DISPLAY_VERSION;
retval = 0;
break;
case SRV_ENUM_MODES:
// dbgprintf("SRV_ENUM_MODES inp %x inp_size %x out_size %x\n",
// inp, io->inp_size, io->out_size );
// check_output(4);
// check_input(*outp * sizeof(videomode_t));
if( kms_modeset)
retval = get_videomodes((videomode_t*)inp, outp);
break;
case SRV_SET_MODE:
// dbgprintf("SRV_SET_MODE inp %x inp_size %x\n",
// inp, io->inp_size);
// check_input(sizeof(videomode_t));
if( kms_modeset )
retval = set_user_mode((videomode_t*)inp);
break;
#if 0
case SRV_GET_CAPS:
retval = get_driver_caps((hwcaps_t*)inp);
break;
case SRV_GET_PCI_INFO:
get_pci_info((struct pci_device *)inp);
retval = 0;
break;
case SRV_GET_PARAM:
retval = gem_getparam(main_device, inp);
break;
case SRV_I915_GEM_CREATE:
retval = i915_gem_create_ioctl(main_device, inp, file);
break;
case SRV_DRM_GEM_CLOSE:
retval = drm_gem_close_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_PIN:
retval = i915_gem_pin_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_SET_CACHEING:
retval = i915_gem_set_caching_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_GET_APERTURE:
retval = i915_gem_get_aperture_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_PWRITE:
retval = i915_gem_pwrite_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_BUSY:
retval = i915_gem_busy_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_SET_DOMAIN:
retval = i915_gem_set_domain_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_THROTTLE:
retval = i915_gem_throttle_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_MMAP:
retval = i915_gem_mmap_ioctl(main_device, inp, file);
break;
case SRV_I915_GEM_MMAP_GTT:
retval = i915_gem_mmap_gtt_ioctl(main_device, inp, file);
break;
case SRV_FBINFO:
retval = i915_fbinfo(inp);
break;
case SRV_I915_GEM_EXECBUFFER2:
retval = i915_gem_execbuffer2(main_device, inp, file);
break;
case SRV_MASK_UPDATE:
retval = i915_mask_update(main_device, inp, file);
break;
#endif
};
return retval;
}
#define PCI_CLASS_REVISION 0x08
#define PCI_CLASS_DISPLAY_VGA 0x0300
#define PCI_CLASS_BRIDGE_HOST 0x0600
#define PCI_CLASS_BRIDGE_ISA 0x0601
int pci_scan_filter(u32 id, u32 busnr, u32 devfn)
{
u16 vendor, device;
u32 class;
int ret = 0;
vendor = id & 0xffff;
device = (id >> 16) & 0xffff;
if(vendor == 0x15AD )
{
class = PciRead32(busnr, devfn, PCI_CLASS_REVISION);
class >>= 16;
if( class == PCI_CLASS_DISPLAY_VGA )
ret = 1;
}
return ret;
};
static char* parse_path(char *p, char *log)
{
char c;
while( (c = *p++) == ' ');
p--;
while( (c = *log++ = *p++) && (c != ' '));
*log = 0;
return p;
};
void parse_cmdline(char *cmdline, char *log)
{
char *p = cmdline;
char c = *p++;
while( c )
{
if( c == '-')
{
switch(*p++)
{
case 'l':
p = parse_path(p, log);
break;
};
};
c = *p++;
};
};
struct mtrr
{
u64 base;
u64 mask;
};
struct cpuinfo
{
u64 caps;
u64 def_mtrr;
u64 mtrr_cap;
int var_mtrr_count;
int fix_mtrr_count;
struct mtrr var_mtrr[9];
char model_name[64];
};
static u32 deftype_lo, deftype_hi;
void cpu_detect1()
{
struct cpuinfo cpuinfo;
u32 junk, tfms, cap0, misc;
int i;
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
if (cap0 & (1<<19))
{
x86_clflush_size = ((misc >> 8) & 0xff) * 8;
}
tsc_khz = (unsigned int)(GetCpuFreq()/1000);
}
/*
int get_driver_caps(hwcaps_t *caps)
{
int ret = 0;
switch(caps->idx)
{
case 0:
caps->opt[0] = 0;
caps->opt[1] = 0;
break;
case 1:
caps->cap1.max_tex_width = 4096;
caps->cap1.max_tex_height = 4096;
break;
default:
ret = 1;
};
caps->idx = 1;
return ret;
}
void get_pci_info(struct pci_device *dev)
{
struct pci_dev *pdev = main_device->pdev;
memset(dev, sizeof(*dev), 0);
dev->domain = 0;
dev->bus = pdev->busnr;
dev->dev = pdev->devfn >> 3;
dev->func = pdev->devfn & 7;
dev->vendor_id = pdev->vendor;
dev->device_id = pdev->device;
dev->revision = pdev->revision;
};
*/
#include <ddk.h>
#include <linux/mm.h>
#include <drm/drmP.h>
#include <linux/ctype.h>
#include "vmwgfx_kms.h"
void kms_update();
extern struct drm_device *main_device;
#define CURSOR_WIDTH 64
#define CURSOR_HEIGHT 64
display_t *os_display;
static int count_connector_modes(struct drm_connector* connector)
{
struct drm_display_mode *mode;
int count = 0;
list_for_each_entry(mode, &connector->modes, head)
{
count++;
};
return count;
};
static void __stdcall restore_cursor(int x, int y){};
static void disable_mouse(void) {};
static void __stdcall move_cursor_kms(cursor_t *cursor, int x, int y)
{
struct drm_crtc *crtc = os_display->crtc;
struct vmw_private *dev_priv = vmw_priv(crtc->dev);
struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
du->cursor_x = x;
du->cursor_y = y;
vmw_cursor_update_position(dev_priv, true, x,y);
};
static cursor_t* __stdcall select_cursor_kms(cursor_t *cursor)
{
struct vmw_private *dev_priv = vmw_priv(os_display->ddev);
struct vmw_display_unit *du = vmw_crtc_to_du(os_display->crtc);
cursor_t *old;
old = os_display->cursor;
os_display->cursor = cursor;
vmw_cursor_update_image(dev_priv, cursor->data,
64, 64, cursor->hot_x, cursor->hot_y);
vmw_cursor_update_position(dev_priv, true,
du->cursor_x, du->cursor_y);
return old;
};
int kms_init(struct drm_device *dev)
{
struct drm_connector *connector;
struct drm_encoder *encoder;
struct drm_crtc *crtc = NULL;
struct vmw_display_unit *du;
cursor_t *cursor;
int mode_count;
u32 ifl;
int err;
crtc = list_entry(dev->mode_config.crtc_list.next, typeof(*crtc), head);
encoder = list_entry(dev->mode_config.encoder_list.next, typeof(*encoder), head);
connector = list_entry(dev->mode_config.connector_list.next, typeof(*connector), head);
connector->encoder = encoder;
mode_count = count_connector_modes(connector);
if(mode_count == 0)
{
struct drm_display_mode *mode;
connector->funcs->fill_modes(connector,
dev->mode_config.max_width,
dev->mode_config.max_height);
list_for_each_entry(mode, &connector->modes, head)
mode_count++;
};
DRM_DEBUG_KMS("CONNECTOR %x ID:%d status:%d ENCODER %x CRTC %x ID:%d\n",
connector, connector->base.id,
connector->status, connector->encoder,
crtc, crtc->base.id );
os_display = GetDisplay();
os_display->ddev = dev;
os_display->connector = connector;
os_display->crtc = crtc;
os_display->supported_modes = mode_count;
ifl = safe_cli();
{
os_display->restore_cursor(0,0);
os_display->select_cursor = select_cursor_kms;
os_display->show_cursor = NULL;
os_display->move_cursor = move_cursor_kms;
os_display->restore_cursor = restore_cursor;
os_display->disable_mouse = disable_mouse;
};
safe_sti(ifl);
du = vmw_crtc_to_du(os_display->crtc);
du->cursor_x = os_display->width/2;
du->cursor_y = os_display->height/2;
select_cursor_kms(os_display->cursor);
return 0;
};
void kms_update()
{
struct vmw_private *dev_priv = vmw_priv(main_device);
size_t fifo_size;
u32 ifl;
int i;
struct {
uint32_t header;
SVGAFifoCmdUpdate body;
} *cmd;
fifo_size = sizeof(*cmd);
cmd = vmw_fifo_reserve(dev_priv, fifo_size);
if (unlikely(cmd == NULL)) {
DRM_ERROR("Fifo reserve failed.\n");
return;
}
os_display = GetDisplay();
cmd->header = cpu_to_le32(SVGA_CMD_UPDATE);
cmd->body.x = 0;
cmd->body.y = 0;
cmd->body.width = os_display->width;
cmd->body.height = os_display->height;
vmw_fifo_commit(dev_priv, fifo_size);
}
int get_videomodes(videomode_t *mode, int *count)
{
struct drm_display_mode *drmmode;
int err = -1;
if( *count == 0 )
{
*count = os_display->supported_modes;
err = 0;
}
else if( mode != NULL )
{
int i = 0;
if( *count > os_display->supported_modes)
*count = os_display->supported_modes;
list_for_each_entry(drmmode, &os_display->connector->modes, head)
{
if( i < *count)
{
// mode->width = drm_mode_width(drmmode);
// mode->height = drm_mode_height(drmmode);
mode->bpp = 32;
mode->freq = drmmode->vrefresh;
i++;
mode++;
}
else break;
};
*count = i;
err = 0;
};
return err;
};
bool set_mode(struct drm_device *dev, struct drm_connector *connector,
videomode_t *reqmode, bool strict);
int set_user_mode(videomode_t *mode)
{
int err = -1;
dbgprintf("width %d height %d vrefresh %d\n",
mode->width, mode->height, mode->freq);
if( (mode->width != 0) &&
(mode->height != 0) &&
(mode->freq != 0 ) &&
( (mode->width != os_display->width) ||
(mode->height != os_display->height) ||
(mode->freq != os_display->vrefresh) ) )
{
// if( set_mode(os_display->ddev, os_display->connector, mode, true) )
// err = 0;
};
return err;
};
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
{
struct file *filep;
int count;
filep = __builtin_malloc(sizeof(*filep));
if(unlikely(filep == NULL))
return ERR_PTR(-ENOMEM);
count = size / PAGE_SIZE;
filep->pages = kzalloc(sizeof(struct page *) * count, 0);
if(unlikely(filep->pages == NULL))
{
kfree(filep);
return ERR_PTR(-ENOMEM);
};
filep->count = count;
filep->allocated = 0;
filep->vma = NULL;
// printf("%s file %p pages %p count %d\n",
// __FUNCTION__,filep, filep->pages, count);
return filep;
}
struct page *shmem_read_mapping_page_gfp(struct file *filep,
pgoff_t index, gfp_t gfp)
{
struct page *page;
// dbgprintf("%s, file %p index %d\n", __FUNCTION__, filep, index);
if(unlikely(index >= filep->count))
return ERR_PTR(-EINVAL);
page = filep->pages[index];
if(unlikely(page == NULL))
{
page = (struct page *)AllocPage();
if(unlikely(page == NULL))
return ERR_PTR(-ENOMEM);
filep->pages[index] = page;
};
return page;
};
ktime_t ktime_get(void)
{
ktime_t t;
t.tv64 = GetClockNs();
return t;
}
bool reservation_object_test_signaled_rcu(struct reservation_object *obj,
bool test_all)
{
return true;
}
int reservation_object_reserve_shared(struct reservation_object *obj)
{
return 0;
}
void reservation_object_add_shared_fence(struct reservation_object *obj,
struct fence *fence)
{};
void reservation_object_add_excl_fence(struct reservation_object *obj,
struct fence *fence)
{};
#define KMAP_MAX 256
static struct mutex kmap_mutex;
static struct page* kmap_table[KMAP_MAX];
static int kmap_av;
static int kmap_first;
static void* kmap_base;
int kmap_init()
{
kmap_base = AllocKernelSpace(KMAP_MAX*4096);
if(kmap_base == NULL)
return -1;
kmap_av = KMAP_MAX;
MutexInit(&kmap_mutex);
return 0;
};
void *kmap(struct page *page)
{
void *vaddr = NULL;
int i;
do
{
MutexLock(&kmap_mutex);
if(kmap_av != 0)
{
for(i = kmap_first; i < KMAP_MAX; i++)
{
if(kmap_table[i] == NULL)
{
kmap_av--;
kmap_first = i;
kmap_table[i] = page;
vaddr = kmap_base + (i<<12);
MapPage(vaddr,(addr_t)page,3);
break;
};
};
};
MutexUnlock(&kmap_mutex);
}while(vaddr == NULL);
return vaddr;
};
void *kmap_atomic(struct page *page) __attribute__ ((alias ("kmap")));
void kunmap(struct page *page)
{
void *vaddr;
int i;
MutexLock(&kmap_mutex);
for(i = 0; i < KMAP_MAX; i++)
{
if(kmap_table[i] == page)
{
kmap_av++;
if(i < kmap_first)
kmap_first = i;
kmap_table[i] = NULL;
vaddr = kmap_base + (i<<12);
MapPage(vaddr,0,0);
break;
};
};
MutexUnlock(&kmap_mutex);
};
void kunmap_atomic(void *vaddr)
{
int i;
MapPage(vaddr,0,0);
i = (vaddr - kmap_base) >> 12;
MutexLock(&kmap_mutex);
kmap_av++;
if(i < kmap_first)
kmap_first = i;
kmap_table[i] = NULL;
MutexUnlock(&kmap_mutex);
}
#include <linux/rcupdate.h>
struct rcu_ctrlblk {
struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
struct rcu_head **curtail; /* ->next pointer of last CB. */
// RCU_TRACE(long qlen); /* Number of pending CBs. */
// RCU_TRACE(unsigned long gp_start); /* Start time for stalls. */
// RCU_TRACE(unsigned long ticks_this_gp); /* Statistic for stalls. */
// RCU_TRACE(unsigned long jiffies_stall); /* Jiffies at next stall. */
// RCU_TRACE(const char *name); /* Name of RCU type. */
};
/* Definition for rcupdate control block. */
static struct rcu_ctrlblk rcu_sched_ctrlblk = {
.donetail = &rcu_sched_ctrlblk.rcucblist,
.curtail = &rcu_sched_ctrlblk.rcucblist,
// RCU_TRACE(.name = "rcu_sched")
};
static void __call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *rcu),
struct rcu_ctrlblk *rcp)
{
unsigned long flags;
// debug_rcu_head_queue(head);
head->func = func;
head->next = NULL;
local_irq_save(flags);
*rcp->curtail = head;
rcp->curtail = &head->next;
// RCU_TRACE(rcp->qlen++);
local_irq_restore(flags);
}
/*
* Post an RCU callback to be invoked after the end of an RCU-sched grace
* period. But since we have but one CPU, that would be after any
* quiescent state.
*/
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_sched_ctrlblk);
}
fb_get_options(const char *name, char **option)
{
return 1;
}
static void *check_bytes8(const u8 *start, u8 value, unsigned int bytes)
{
while (bytes) {
if (*start != value)
return (void *)start;
start++;
bytes--;
}
return NULL;
}
/**
* memchr_inv - Find an unmatching character in an area of memory.
* @start: The memory area
* @c: Find a character other than c
* @bytes: The size of the area.
*
* returns the address of the first character other than @c, or %NULL
* if the whole buffer contains just @c.
*/
void *memchr_inv(const void *start, int c, size_t bytes)
{
u8 value = c;
u64 value64;
unsigned int words, prefix;
if (bytes <= 16)
return check_bytes8(start, value, bytes);
value64 = value;
#if defined(ARCH_HAS_FAST_MULTIPLIER) && BITS_PER_LONG == 64
value64 *= 0x0101010101010101;
#elif defined(ARCH_HAS_FAST_MULTIPLIER)
value64 *= 0x01010101;
value64 |= value64 << 32;
#else
value64 |= value64 << 8;
value64 |= value64 << 16;
value64 |= value64 << 32;
#endif
prefix = (unsigned long)start % 8;
if (prefix) {
u8 *r;
prefix = 8 - prefix;
r = check_bytes8(start, value, prefix);
if (r)
return r;
start += prefix;
bytes -= prefix;
}
words = bytes / 8;
while (words) {
if (*(u64 *)start != value64)
return check_bytes8(start, value, 8);
start += 8;
words--;
}
return check_bytes8(start, value, bytes % 8);
}
void drm_master_put(struct drm_master **master)
{};
bool ttm_ref_object_exists(struct ttm_object_file *tfile,
struct ttm_base_object *base)
{
return true;
};
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
list_del_init(&wait->task_list);
return 1;
}
struct file *fd_array[32];
struct file *fget(unsigned int fd)
{
struct file *file;
file = fd_array[fd];
get_file_rcu(file);
return file;
}
void fput(struct file *file)
{
if (atomic_long_dec_and_test(&file->f_count))
{
}
}
struct dma_buf *dma_buf_get(int fd)
{
struct file *file;
file = fget(fd);
if (!file)
return ERR_PTR(-EBADF);
// if (!is_dma_buf_file(file)) {
// fput(file);
// return ERR_PTR(-EINVAL);
// }
return file->private_data;
}
int get_unused_fd_flags(unsigned flags)
{
return 1;
}
void fd_install(unsigned int fd, struct file *file)
{
fd_array[fd] = file;
}
int dma_buf_fd(struct dma_buf *dmabuf, int flags)
{
int fd;
if (!dmabuf || !dmabuf->file)
return -EINVAL;
fd = get_unused_fd_flags(flags);
if (fd < 0)
return fd;
fd_install(fd, dmabuf->file);
return fd;
}
void dma_buf_put(struct dma_buf *dmabuf)
{
if (WARN_ON(!dmabuf || !dmabuf->file))
return;
fput(dmabuf->file);
}
struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
{
struct dma_buf *dmabuf;
struct reservation_object *resv = exp_info->resv;
struct file *file;
size_t alloc_size = sizeof(struct dma_buf);
if (!exp_info->resv)
alloc_size += sizeof(struct reservation_object);
else
/* prevent &dma_buf[1] == dma_buf->resv */
alloc_size += 1;
if (WARN_ON(!exp_info->priv
|| !exp_info->ops
|| !exp_info->ops->map_dma_buf
|| !exp_info->ops->unmap_dma_buf
|| !exp_info->ops->release
|| !exp_info->ops->kmap_atomic
|| !exp_info->ops->kmap
|| !exp_info->ops->mmap)) {
return ERR_PTR(-EINVAL);
}
dmabuf = kzalloc(alloc_size, GFP_KERNEL);
if (!dmabuf) {
return ERR_PTR(-ENOMEM);
}
dmabuf->priv = exp_info->priv;
dmabuf->ops = exp_info->ops;
dmabuf->size = exp_info->size;
dmabuf->exp_name = exp_info->exp_name;
if (!resv) {
resv = (struct reservation_object *)&dmabuf[1];
reservation_object_init(resv);
}
// dmabuf->resv = resv;
// file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
// exp_info->flags);
// if (IS_ERR(file)) {
// kfree(dmabuf);
// return ERR_CAST(file);
// }
// file->f_mode |= FMODE_LSEEK;
// dmabuf->file = file;
mutex_init(&dmabuf->lock);
INIT_LIST_HEAD(&dmabuf->attachments);
// mutex_lock(&db_list.lock);
// list_add(&dmabuf->list_node, &db_list.head);
// mutex_unlock(&db_list.lock);
return dmabuf;
}
int dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
struct scatterlist *s;
int i;
for_each_sg(sglist, s, nelems, i) {
s->dma_address = (dma_addr_t)sg_phys(s);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
s->dma_length = s->length;
#endif
}
return nelems;
}
void *vmalloc(unsigned long size)
{
return KernelAlloc(size);
}
void vfree(const void *addr)
{
KernelFree(addr);
}