kolibrios-gitea/contrib/media/updf/xps/xps_path.c
right-hearted 4f7ee97ec9 uPDF with buttons
git-svn-id: svn://kolibrios.org@4680 a494cfbc-eb01-0410-851d-a64ba20cac60
2014-03-22 21:00:40 +00:00

991 lines
23 KiB
C

#include "fitz.h"
#include "muxps.h"
static fz_point
fz_currentpoint(fz_path *path)
{
fz_point c, m;
int i;
c.x = c.y = m.x = m.y = 0;
i = 0;
while (i < path->len)
{
switch (path->items[i++].k)
{
case FZ_MOVETO:
m.x = c.x = path->items[i++].v;
m.y = c.y = path->items[i++].v;
break;
case FZ_LINETO:
c.x = path->items[i++].v;
c.y = path->items[i++].v;
break;
case FZ_CURVETO:
i += 4;
c.x = path->items[i++].v;
c.y = path->items[i++].v;
break;
case FZ_CLOSE_PATH:
c = m;
}
}
return c;
}
/* Draw an arc segment transformed by the matrix, we approximate with straight
* line segments. We cannot use the fz_arc function because they only draw
* circular arcs, we need to transform the line to make them elliptical but
* without transforming the line width.
*/
static void
xps_draw_arc_segment(fz_path *path, fz_matrix mtx, float th0, float th1, int iscw)
{
float t, d;
fz_point p;
while (th1 < th0)
th1 += (float)M_PI * 2;
d = (float)M_PI / 180; /* 1-degree precision */
if (iscw)
{
p.x = cosf(th0);
p.y = sinf(th0);
p = fz_transform_point(mtx, p);
fz_lineto(path, p.x, p.y);
for (t = th0; t < th1; t += d)
{
p.x = cosf(t);
p.y = sinf(t);
p = fz_transform_point(mtx, p);
fz_lineto(path, p.x, p.y);
}
p.x = cosf(th1);
p.y = sinf(th1);
p = fz_transform_point(mtx, p);
fz_lineto(path, p.x, p.y);
}
else
{
th0 += (float)M_PI * 2;
p.x = cosf(th0);
p.y = sinf(th0);
p = fz_transform_point(mtx, p);
fz_lineto(path, p.x, p.y);
for (t = th0; t > th1; t -= d)
{
p.x = cosf(t);
p.y = sinf(t);
p = fz_transform_point(mtx, p);
fz_lineto(path, p.x, p.y);
}
p.x = cosf(th1);
p.y = sinf(th1);
p = fz_transform_point(mtx, p);
fz_lineto(path, p.x, p.y);
}
}
/* Given two vectors find the angle between them. */
static float
angle_between(const fz_point u, const fz_point v)
{
float det = u.x * v.y - u.y * v.x;
float sign = (det < 0 ? -1 : 1);
float magu = u.x * u.x + u.y * u.y;
float magv = v.x * v.x + v.y * v.y;
float udotv = u.x * v.x + u.y * v.y;
float t = udotv / (magu * magv);
/* guard against rounding errors when near |1| (where acos will return NaN) */
if (t < -1) t = -1;
if (t > 1) t = 1;
return sign * acosf(t);
}
static void
xps_draw_arc(fz_path *path,
float size_x, float size_y, float rotation_angle,
int is_large_arc, int is_clockwise,
float point_x, float point_y)
{
fz_matrix rotmat, revmat;
fz_matrix mtx;
fz_point pt;
float rx, ry;
float x1, y1, x2, y2;
float x1t, y1t;
float cxt, cyt, cx, cy;
float t1, t2, t3;
float sign;
float th1, dth;
pt = fz_currentpoint(path);
x1 = pt.x;
y1 = pt.y;
x2 = point_x;
y2 = point_y;
rx = size_x;
ry = size_y;
if (is_clockwise != is_large_arc)
sign = 1;
else
sign = -1;
rotmat = fz_rotate(rotation_angle);
revmat = fz_rotate(-rotation_angle);
/* http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes */
/* Conversion from endpoint to center parameterization */
/* F.6.6.1 -- ensure radii are positive and non-zero */
rx = fabsf(rx);
ry = fabsf(ry);
if (rx < 0.001f || ry < 0.001f)
{
fz_lineto(path, x2, y2);
return;
}
/* F.6.5.1 */
pt.x = (x1 - x2) / 2;
pt.y = (y1 - y2) / 2;
pt = fz_transform_vector(revmat, pt);
x1t = pt.x;
y1t = pt.y;
/* F.6.6.2 -- ensure radii are large enough */
t1 = (x1t * x1t) / (rx * rx) + (y1t * y1t) / (ry * ry);
if (t1 > 1)
{
rx = rx * sqrtf(t1);
ry = ry * sqrtf(t1);
}
/* F.6.5.2 */
t1 = (rx * rx * ry * ry) - (rx * rx * y1t * y1t) - (ry * ry * x1t * x1t);
t2 = (rx * rx * y1t * y1t) + (ry * ry * x1t * x1t);
t3 = t1 / t2;
/* guard against rounding errors; sqrt of negative numbers is bad for your health */
if (t3 < 0) t3 = 0;
t3 = sqrtf(t3);
cxt = sign * t3 * (rx * y1t) / ry;
cyt = sign * t3 * -(ry * x1t) / rx;
/* F.6.5.3 */
pt.x = cxt;
pt.y = cyt;
pt = fz_transform_vector(rotmat, pt);
cx = pt.x + (x1 + x2) / 2;
cy = pt.y + (y1 + y2) / 2;
/* F.6.5.4 */
{
fz_point coord1, coord2, coord3, coord4;
coord1.x = 1;
coord1.y = 0;
coord2.x = (x1t - cxt) / rx;
coord2.y = (y1t - cyt) / ry;
coord3.x = (x1t - cxt) / rx;
coord3.y = (y1t - cyt) / ry;
coord4.x = (-x1t - cxt) / rx;
coord4.y = (-y1t - cyt) / ry;
th1 = angle_between(coord1, coord2);
dth = angle_between(coord3, coord4);
if (dth < 0 && !is_clockwise)
dth += (((float)M_PI / 180) * 360);
if (dth > 0 && is_clockwise)
dth -= (((float)M_PI / 180) * 360);
}
mtx = fz_identity;
mtx = fz_concat(fz_translate(cx, cy), mtx);
mtx = fz_concat(fz_rotate(rotation_angle), mtx);
mtx = fz_concat(fz_scale(rx, ry), mtx);
xps_draw_arc_segment(path, mtx, th1, th1 + dth, is_clockwise);
fz_lineto(path, point_x, point_y);
}
/*
* Parse an abbreviated geometry string, and call
* ghostscript moveto/lineto/curveto functions to
* build up a path.
*/
static fz_path *
xps_parse_abbreviated_geometry(xps_context *ctx, char *geom, int *fill_rule)
{
fz_path *path;
char **args;
char **pargs;
char *s = geom;
fz_point pt;
int i, n;
int cmd, old;
float x1, y1, x2, y2, x3, y3;
float smooth_x, smooth_y; /* saved cubic bezier control point for smooth curves */
int reset_smooth;
path = fz_new_path();
args = fz_calloc(strlen(geom) + 1, sizeof(char*));
pargs = args;
while (*s)
{
if ((*s >= 'A' && *s <= 'Z') || (*s >= 'a' && *s <= 'z'))
{
*pargs++ = s++;
}
else if ((*s >= '0' && *s <= '9') || *s == '.' || *s == '+' || *s == '-' || *s == 'e' || *s == 'E')
{
*pargs++ = s;
while ((*s >= '0' && *s <= '9') || *s == '.' || *s == '+' || *s == '-' || *s == 'e' || *s == 'E')
s ++;
}
else
{
s++;
}
}
pargs[0] = s;
pargs[1] = 0;
n = pargs - args;
i = 0;
old = 0;
reset_smooth = 1;
smooth_x = 0;
smooth_y = 0;
while (i < n)
{
cmd = args[i][0];
if (cmd == '+' || cmd == '.' || cmd == '-' || (cmd >= '0' && cmd <= '9'))
cmd = old; /* it's a number, repeat old command */
else
i ++;
if (reset_smooth)
{
smooth_x = 0;
smooth_y = 0;
}
reset_smooth = 1;
switch (cmd)
{
case 'F':
*fill_rule = atoi(args[i]);
i ++;
break;
case 'M':
fz_moveto(path, fz_atof(args[i]), fz_atof(args[i+1]));
i += 2;
break;
case 'm':
pt = fz_currentpoint(path);
fz_moveto(path, pt.x + fz_atof(args[i]), pt.y + fz_atof(args[i+1]));
i += 2;
break;
case 'L':
fz_lineto(path, fz_atof(args[i]), fz_atof(args[i+1]));
i += 2;
break;
case 'l':
pt = fz_currentpoint(path);
fz_lineto(path, pt.x + fz_atof(args[i]), pt.y + fz_atof(args[i+1]));
i += 2;
break;
case 'H':
pt = fz_currentpoint(path);
fz_lineto(path, fz_atof(args[i]), pt.y);
i += 1;
break;
case 'h':
pt = fz_currentpoint(path);
fz_lineto(path, pt.x + fz_atof(args[i]), pt.y);
i += 1;
break;
case 'V':
pt = fz_currentpoint(path);
fz_lineto(path, pt.x, fz_atof(args[i]));
i += 1;
break;
case 'v':
pt = fz_currentpoint(path);
fz_lineto(path, pt.x, pt.y + fz_atof(args[i]));
i += 1;
break;
case 'C':
x1 = fz_atof(args[i+0]);
y1 = fz_atof(args[i+1]);
x2 = fz_atof(args[i+2]);
y2 = fz_atof(args[i+3]);
x3 = fz_atof(args[i+4]);
y3 = fz_atof(args[i+5]);
fz_curveto(path, x1, y1, x2, y2, x3, y3);
i += 6;
reset_smooth = 0;
smooth_x = x3 - x2;
smooth_y = y3 - y2;
break;
case 'c':
pt = fz_currentpoint(path);
x1 = fz_atof(args[i+0]) + pt.x;
y1 = fz_atof(args[i+1]) + pt.y;
x2 = fz_atof(args[i+2]) + pt.x;
y2 = fz_atof(args[i+3]) + pt.y;
x3 = fz_atof(args[i+4]) + pt.x;
y3 = fz_atof(args[i+5]) + pt.y;
fz_curveto(path, x1, y1, x2, y2, x3, y3);
i += 6;
reset_smooth = 0;
smooth_x = x3 - x2;
smooth_y = y3 - y2;
break;
case 'S':
pt = fz_currentpoint(path);
x1 = fz_atof(args[i+0]);
y1 = fz_atof(args[i+1]);
x2 = fz_atof(args[i+2]);
y2 = fz_atof(args[i+3]);
fz_curveto(path, pt.x + smooth_x, pt.y + smooth_y, x1, y1, x2, y2);
i += 4;
reset_smooth = 0;
smooth_x = x2 - x1;
smooth_y = y2 - y1;
break;
case 's':
pt = fz_currentpoint(path);
x1 = fz_atof(args[i+0]) + pt.x;
y1 = fz_atof(args[i+1]) + pt.y;
x2 = fz_atof(args[i+2]) + pt.x;
y2 = fz_atof(args[i+3]) + pt.y;
fz_curveto(path, pt.x + smooth_x, pt.y + smooth_y, x1, y1, x2, y2);
i += 4;
reset_smooth = 0;
smooth_x = x2 - x1;
smooth_y = y2 - y1;
break;
case 'Q':
pt = fz_currentpoint(path);
x1 = fz_atof(args[i+0]);
y1 = fz_atof(args[i+1]);
x2 = fz_atof(args[i+2]);
y2 = fz_atof(args[i+3]);
fz_curveto(path,
(pt.x + 2 * x1) / 3, (pt.y + 2 * y1) / 3,
(x2 + 2 * x1) / 3, (y2 + 2 * y1) / 3,
x2, y2);
i += 4;
break;
case 'q':
pt = fz_currentpoint(path);
x1 = fz_atof(args[i+0]) + pt.x;
y1 = fz_atof(args[i+1]) + pt.y;
x2 = fz_atof(args[i+2]) + pt.x;
y2 = fz_atof(args[i+3]) + pt.y;
fz_curveto(path,
(pt.x + 2 * x1) / 3, (pt.y + 2 * y1) / 3,
(x2 + 2 * x1) / 3, (y2 + 2 * y1) / 3,
x2, y2);
i += 4;
break;
case 'A':
xps_draw_arc(path,
fz_atof(args[i+0]), fz_atof(args[i+1]), fz_atof(args[i+2]),
atoi(args[i+3]), atoi(args[i+4]),
fz_atof(args[i+5]), fz_atof(args[i+6]));
i += 7;
break;
case 'a':
pt = fz_currentpoint(path);
xps_draw_arc(path,
fz_atof(args[i+0]), fz_atof(args[i+1]), fz_atof(args[i+2]),
atoi(args[i+3]), atoi(args[i+4]),
fz_atof(args[i+5]) + pt.x, fz_atof(args[i+6]) + pt.y);
i += 7;
break;
case 'Z':
case 'z':
fz_closepath(path);
break;
default:
/* eek */
break;
}
old = cmd;
}
fz_free(args);
return path;
}
static void
xps_parse_arc_segment(fz_path *path, xml_element *root, int stroking, int *skipped_stroke)
{
/* ArcSegment pretty much follows the SVG algorithm for converting an
* arc in endpoint representation to an arc in centerpoint
* representation. Once in centerpoint it can be given to the
* graphics library in the form of a postscript arc. */
float rotation_angle;
int is_large_arc, is_clockwise;
float point_x, point_y;
float size_x, size_y;
int is_stroked;
char *point_att = xml_att(root, "Point");
char *size_att = xml_att(root, "Size");
char *rotation_angle_att = xml_att(root, "RotationAngle");
char *is_large_arc_att = xml_att(root, "IsLargeArc");
char *sweep_direction_att = xml_att(root, "SweepDirection");
char *is_stroked_att = xml_att(root, "IsStroked");
if (!point_att || !size_att || !rotation_angle_att || !is_large_arc_att || !sweep_direction_att)
{
fz_warn("ArcSegment element is missing attributes");
return;
}
is_stroked = 1;
if (is_stroked_att && !strcmp(is_stroked_att, "false"))
is_stroked = 0;
if (!is_stroked)
*skipped_stroke = 1;
sscanf(point_att, "%g,%g", &point_x, &point_y);
sscanf(size_att, "%g,%g", &size_x, &size_y);
rotation_angle = fz_atof(rotation_angle_att);
is_large_arc = !strcmp(is_large_arc_att, "true");
is_clockwise = !strcmp(sweep_direction_att, "Clockwise");
if (stroking && !is_stroked)
{
fz_moveto(path, point_x, point_y);
return;
}
xps_draw_arc(path, size_x, size_y, rotation_angle, is_large_arc, is_clockwise, point_x, point_y);
}
static void
xps_parse_poly_quadratic_bezier_segment(fz_path *path, xml_element *root, int stroking, int *skipped_stroke)
{
char *points_att = xml_att(root, "Points");
char *is_stroked_att = xml_att(root, "IsStroked");
float x[2], y[2];
int is_stroked;
fz_point pt;
char *s;
int n;
if (!points_att)
{
fz_warn("PolyQuadraticBezierSegment element has no points");
return;
}
is_stroked = 1;
if (is_stroked_att && !strcmp(is_stroked_att, "false"))
is_stroked = 0;
if (!is_stroked)
*skipped_stroke = 1;
s = points_att;
n = 0;
while (*s != 0)
{
while (*s == ' ') s++;
sscanf(s, "%g,%g", &x[n], &y[n]);
while (*s != ' ' && *s != 0) s++;
n ++;
if (n == 2)
{
if (stroking && !is_stroked)
{
fz_moveto(path, x[1], y[1]);
}
else
{
pt = fz_currentpoint(path);
fz_curveto(path,
(pt.x + 2 * x[0]) / 3, (pt.y + 2 * y[0]) / 3,
(x[1] + 2 * x[0]) / 3, (y[1] + 2 * y[0]) / 3,
x[1], y[1]);
}
n = 0;
}
}
}
static void
xps_parse_poly_bezier_segment(fz_path *path, xml_element *root, int stroking, int *skipped_stroke)
{
char *points_att = xml_att(root, "Points");
char *is_stroked_att = xml_att(root, "IsStroked");
float x[3], y[3];
int is_stroked;
char *s;
int n;
if (!points_att)
{
fz_warn("PolyBezierSegment element has no points");
return;
}
is_stroked = 1;
if (is_stroked_att && !strcmp(is_stroked_att, "false"))
is_stroked = 0;
if (!is_stroked)
*skipped_stroke = 1;
s = points_att;
n = 0;
while (*s != 0)
{
while (*s == ' ') s++;
sscanf(s, "%g,%g", &x[n], &y[n]);
while (*s != ' ' && *s != 0) s++;
n ++;
if (n == 3)
{
if (stroking && !is_stroked)
fz_moveto(path, x[2], y[2]);
else
fz_curveto(path, x[0], y[0], x[1], y[1], x[2], y[2]);
n = 0;
}
}
}
static void
xps_parse_poly_line_segment(fz_path *path, xml_element *root, int stroking, int *skipped_stroke)
{
char *points_att = xml_att(root, "Points");
char *is_stroked_att = xml_att(root, "IsStroked");
int is_stroked;
float x, y;
char *s;
if (!points_att)
{
fz_warn("PolyLineSegment element has no points");
return;
}
is_stroked = 1;
if (is_stroked_att && !strcmp(is_stroked_att, "false"))
is_stroked = 0;
if (!is_stroked)
*skipped_stroke = 1;
s = points_att;
while (*s != 0)
{
while (*s == ' ') s++;
sscanf(s, "%g,%g", &x, &y);
if (stroking && !is_stroked)
fz_moveto(path, x, y);
else
fz_lineto(path, x, y);
while (*s != ' ' && *s != 0) s++;
}
}
static void
xps_parse_path_figure(fz_path *path, xml_element *root, int stroking)
{
xml_element *node;
char *is_closed_att;
char *start_point_att;
char *is_filled_att;
int is_closed = 0;
int is_filled = 1;
float start_x = 0;
float start_y = 0;
int skipped_stroke = 0;
is_closed_att = xml_att(root, "IsClosed");
start_point_att = xml_att(root, "StartPoint");
is_filled_att = xml_att(root, "IsFilled");
if (is_closed_att)
is_closed = !strcmp(is_closed_att, "true");
if (is_filled_att)
is_filled = !strcmp(is_filled_att, "true");
if (start_point_att)
sscanf(start_point_att, "%g,%g", &start_x, &start_y);
if (!stroking && !is_filled) /* not filled, when filling */
return;
fz_moveto(path, start_x, start_y);
for (node = xml_down(root); node; node = xml_next(node))
{
if (!strcmp(xml_tag(node), "ArcSegment"))
xps_parse_arc_segment(path, node, stroking, &skipped_stroke);
if (!strcmp(xml_tag(node), "PolyBezierSegment"))
xps_parse_poly_bezier_segment(path, node, stroking, &skipped_stroke);
if (!strcmp(xml_tag(node), "PolyLineSegment"))
xps_parse_poly_line_segment(path, node, stroking, &skipped_stroke);
if (!strcmp(xml_tag(node), "PolyQuadraticBezierSegment"))
xps_parse_poly_quadratic_bezier_segment(path, node, stroking, &skipped_stroke);
}
if (is_closed)
{
if (stroking && skipped_stroke)
fz_lineto(path, start_x, start_y); /* we've skipped using fz_moveto... */
else
fz_closepath(path); /* no skipped segments, safe to closepath properly */
}
}
fz_path *
xps_parse_path_geometry(xps_context *ctx, xps_resource *dict, xml_element *root, int stroking, int *fill_rule)
{
xml_element *node;
char *figures_att;
char *fill_rule_att;
char *transform_att;
xml_element *transform_tag = NULL;
xml_element *figures_tag = NULL; /* only used by resource */
fz_matrix transform;
fz_path *path;
figures_att = xml_att(root, "Figures");
fill_rule_att = xml_att(root, "FillRule");
transform_att = xml_att(root, "Transform");
for (node = xml_down(root); node; node = xml_next(node))
{
if (!strcmp(xml_tag(node), "PathGeometry.Transform"))
transform_tag = xml_down(node);
}
xps_resolve_resource_reference(ctx, dict, &transform_att, &transform_tag, NULL);
xps_resolve_resource_reference(ctx, dict, &figures_att, &figures_tag, NULL);
if (fill_rule_att)
{
if (!strcmp(fill_rule_att, "NonZero"))
*fill_rule = 1;
if (!strcmp(fill_rule_att, "EvenOdd"))
*fill_rule = 0;
}
transform = fz_identity;
if (transform_att)
xps_parse_render_transform(ctx, transform_att, &transform);
if (transform_tag)
xps_parse_matrix_transform(ctx, transform_tag, &transform);
if (figures_att)
path = xps_parse_abbreviated_geometry(ctx, figures_att, fill_rule);
else
path = fz_new_path();
if (figures_tag)
xps_parse_path_figure(path, figures_tag, stroking);
for (node = xml_down(root); node; node = xml_next(node))
{
if (!strcmp(xml_tag(node), "PathFigure"))
xps_parse_path_figure(path, node, stroking);
}
if (transform_att || transform_tag)
fz_transform_path(path, transform);
return path;
}
static int
xps_parse_line_cap(char *attr)
{
if (attr)
{
if (!strcmp(attr, "Flat")) return 0;
if (!strcmp(attr, "Round")) return 1;
if (!strcmp(attr, "Square")) return 2;
if (!strcmp(attr, "Triangle")) return 3;
}
return 0;
}
void
xps_clip(xps_context *ctx, fz_matrix ctm, xps_resource *dict, char *clip_att, xml_element *clip_tag)
{
fz_path *path;
int fill_rule = 0;
if (clip_att)
path = xps_parse_abbreviated_geometry(ctx, clip_att, &fill_rule);
else if (clip_tag)
path = xps_parse_path_geometry(ctx, dict, clip_tag, 0, &fill_rule);
else
path = fz_new_path();
fz_clip_path(ctx->dev, path, NULL, fill_rule == 0, ctm);
fz_free_path(path);
}
/*
* Parse an XPS <Path> element, and call relevant ghostscript
* functions for drawing and/or clipping the child elements.
*/
void
xps_parse_path(xps_context *ctx, fz_matrix ctm, char *base_uri, xps_resource *dict, xml_element *root)
{
xml_element *node;
char *fill_uri;
char *stroke_uri;
char *opacity_mask_uri;
char *transform_att;
char *clip_att;
char *data_att;
char *fill_att;
char *stroke_att;
char *opacity_att;
char *opacity_mask_att;
xml_element *transform_tag = NULL;
xml_element *clip_tag = NULL;
xml_element *data_tag = NULL;
xml_element *fill_tag = NULL;
xml_element *stroke_tag = NULL;
xml_element *opacity_mask_tag = NULL;
char *fill_opacity_att = NULL;
char *stroke_opacity_att = NULL;
char *stroke_dash_array_att;
char *stroke_dash_cap_att;
char *stroke_dash_offset_att;
char *stroke_end_line_cap_att;
char *stroke_start_line_cap_att;
char *stroke_line_join_att;
char *stroke_miter_limit_att;
char *stroke_thickness_att;
fz_stroke_state stroke;
fz_matrix transform;
float samples[32];
fz_colorspace *colorspace;
fz_path *path;
fz_rect area;
int fill_rule;
/*
* Extract attributes and extended attributes.
*/
transform_att = xml_att(root, "RenderTransform");
clip_att = xml_att(root, "Clip");
data_att = xml_att(root, "Data");
fill_att = xml_att(root, "Fill");
stroke_att = xml_att(root, "Stroke");
opacity_att = xml_att(root, "Opacity");
opacity_mask_att = xml_att(root, "OpacityMask");
stroke_dash_array_att = xml_att(root, "StrokeDashArray");
stroke_dash_cap_att = xml_att(root, "StrokeDashCap");
stroke_dash_offset_att = xml_att(root, "StrokeDashOffset");
stroke_end_line_cap_att = xml_att(root, "StrokeEndLineCap");
stroke_start_line_cap_att = xml_att(root, "StrokeStartLineCap");
stroke_line_join_att = xml_att(root, "StrokeLineJoin");
stroke_miter_limit_att = xml_att(root, "StrokeMiterLimit");
stroke_thickness_att = xml_att(root, "StrokeThickness");
for (node = xml_down(root); node; node = xml_next(node))
{
if (!strcmp(xml_tag(node), "Path.RenderTransform"))
transform_tag = xml_down(node);
if (!strcmp(xml_tag(node), "Path.OpacityMask"))
opacity_mask_tag = xml_down(node);
if (!strcmp(xml_tag(node), "Path.Clip"))
clip_tag = xml_down(node);
if (!strcmp(xml_tag(node), "Path.Fill"))
fill_tag = xml_down(node);
if (!strcmp(xml_tag(node), "Path.Stroke"))
stroke_tag = xml_down(node);
if (!strcmp(xml_tag(node), "Path.Data"))
data_tag = xml_down(node);
}
fill_uri = base_uri;
stroke_uri = base_uri;
opacity_mask_uri = base_uri;
xps_resolve_resource_reference(ctx, dict, &data_att, &data_tag, NULL);
xps_resolve_resource_reference(ctx, dict, &clip_att, &clip_tag, NULL);
xps_resolve_resource_reference(ctx, dict, &transform_att, &transform_tag, NULL);
xps_resolve_resource_reference(ctx, dict, &fill_att, &fill_tag, &fill_uri);
xps_resolve_resource_reference(ctx, dict, &stroke_att, &stroke_tag, &stroke_uri);
xps_resolve_resource_reference(ctx, dict, &opacity_mask_att, &opacity_mask_tag, &opacity_mask_uri);
/*
* Act on the information we have gathered:
*/
if (!data_att && !data_tag)
return;
if (fill_tag && !strcmp(xml_tag(fill_tag), "SolidColorBrush"))
{
fill_opacity_att = xml_att(fill_tag, "Opacity");
fill_att = xml_att(fill_tag, "Color");
fill_tag = NULL;
}
if (stroke_tag && !strcmp(xml_tag(stroke_tag), "SolidColorBrush"))
{
stroke_opacity_att = xml_att(stroke_tag, "Opacity");
stroke_att = xml_att(stroke_tag, "Color");
stroke_tag = NULL;
}
stroke.start_cap = xps_parse_line_cap(stroke_start_line_cap_att);
stroke.dash_cap = xps_parse_line_cap(stroke_dash_cap_att);
stroke.end_cap = xps_parse_line_cap(stroke_end_line_cap_att);
stroke.linejoin = 0;
if (stroke_line_join_att)
{
if (!strcmp(stroke_line_join_att, "Miter")) stroke.linejoin = 0;
if (!strcmp(stroke_line_join_att, "Round")) stroke.linejoin = 1;
if (!strcmp(stroke_line_join_att, "Bevel")) stroke.linejoin = 2;
}
stroke.miterlimit = 10;
if (stroke_miter_limit_att)
stroke.miterlimit = fz_atof(stroke_miter_limit_att);
stroke.linewidth = 1;
if (stroke_thickness_att)
stroke.linewidth = fz_atof(stroke_thickness_att);
stroke.dash_phase = 0;
stroke.dash_len = 0;
if (stroke_dash_array_att)
{
char *s = stroke_dash_array_att;
if (stroke_dash_offset_att)
stroke.dash_phase = fz_atof(stroke_dash_offset_att) * stroke.linewidth;
while (*s && stroke.dash_len < nelem(stroke.dash_list))
{
while (*s == ' ')
s++;
stroke.dash_list[stroke.dash_len++] = fz_atof(s) * stroke.linewidth;
while (*s && *s != ' ')
s++;
}
}
transform = fz_identity;
if (transform_att)
xps_parse_render_transform(ctx, transform_att, &transform);
if (transform_tag)
xps_parse_matrix_transform(ctx, transform_tag, &transform);
ctm = fz_concat(transform, ctm);
if (clip_att || clip_tag)
xps_clip(ctx, ctm, dict, clip_att, clip_tag);
fill_rule = 0;
if (data_att)
path = xps_parse_abbreviated_geometry(ctx, data_att, &fill_rule);
else if (data_tag)
path = xps_parse_path_geometry(ctx, dict, data_tag, 0, &fill_rule);
if (stroke_att || stroke_tag)
area = fz_bound_path(path, &stroke, ctm);
else
area = fz_bound_path(path, NULL, ctm);
xps_begin_opacity(ctx, ctm, area, opacity_mask_uri, dict, opacity_att, opacity_mask_tag);
if (fill_att)
{
xps_parse_color(ctx, base_uri, fill_att, &colorspace, samples);
if (fill_opacity_att)
samples[0] = fz_atof(fill_opacity_att);
xps_set_color(ctx, colorspace, samples);
fz_fill_path(ctx->dev, path, fill_rule == 0, ctm,
ctx->colorspace, ctx->color, ctx->alpha);
}
if (fill_tag)
{
area = fz_bound_path(path, NULL, ctm);
fz_clip_path(ctx->dev, path, NULL, fill_rule == 0, ctm);
xps_parse_brush(ctx, ctm, area, fill_uri, dict, fill_tag);
fz_pop_clip(ctx->dev);
}
if (stroke_att)
{
xps_parse_color(ctx, base_uri, stroke_att, &colorspace, samples);
if (stroke_opacity_att)
samples[0] = fz_atof(stroke_opacity_att);
xps_set_color(ctx, colorspace, samples);
fz_stroke_path(ctx->dev, path, &stroke, ctm,
ctx->colorspace, ctx->color, ctx->alpha);
}
if (stroke_tag)
{
fz_clip_stroke_path(ctx->dev, path, NULL, &stroke, ctm);
xps_parse_brush(ctx, ctm, area, stroke_uri, dict, stroke_tag);
fz_pop_clip(ctx->dev);
}
xps_end_opacity(ctx, opacity_mask_uri, dict, opacity_att, opacity_mask_tag);
fz_free_path(path);
path = NULL;
if (clip_att || clip_tag)
fz_pop_clip(ctx->dev);
}