forked from KolibriOS/kolibrios
319 lines
8.4 KiB
C
319 lines
8.4 KiB
C
|
/*
|
||
|
* DMA Pool allocator
|
||
|
*
|
||
|
* Copyright 2001 David Brownell
|
||
|
* Copyright 2007 Intel Corporation
|
||
|
* Author: Matthew Wilcox <willy@linux.intel.com>
|
||
|
*
|
||
|
* This software may be redistributed and/or modified under the terms of
|
||
|
* the GNU General Public License ("GPL") version 2 as published by the
|
||
|
* Free Software Foundation.
|
||
|
*
|
||
|
* This allocator returns small blocks of a given size which are DMA-able by
|
||
|
* the given device. It uses the dma_alloc_coherent page allocator to get
|
||
|
* new pages, then splits them up into blocks of the required size.
|
||
|
* Many older drivers still have their own code to do this.
|
||
|
*
|
||
|
* The current design of this allocator is fairly simple. The pool is
|
||
|
* represented by the 'struct dma_pool' which keeps a doubly-linked list of
|
||
|
* allocated pages. Each page in the page_list is split into blocks of at
|
||
|
* least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
|
||
|
* list of free blocks within the page. Used blocks aren't tracked, but we
|
||
|
* keep a count of how many are currently allocated from each page.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <ddk.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <syscall.h>
|
||
|
|
||
|
|
||
|
struct dma_pool { /* the pool */
|
||
|
struct list_head page_list;
|
||
|
struct mutex lock;
|
||
|
size_t size;
|
||
|
size_t allocation;
|
||
|
size_t boundary;
|
||
|
struct list_head pools;
|
||
|
};
|
||
|
|
||
|
struct dma_page { /* cacheable header for 'allocation' bytes */
|
||
|
struct list_head page_list;
|
||
|
void *vaddr;
|
||
|
dma_addr_t dma;
|
||
|
unsigned int in_use;
|
||
|
unsigned int offset;
|
||
|
};
|
||
|
|
||
|
|
||
|
static DEFINE_MUTEX(pools_lock);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* dma_pool_create - Creates a pool of consistent memory blocks, for dma.
|
||
|
* @name: name of pool, for diagnostics
|
||
|
* @dev: device that will be doing the DMA
|
||
|
* @size: size of the blocks in this pool.
|
||
|
* @align: alignment requirement for blocks; must be a power of two
|
||
|
* @boundary: returned blocks won't cross this power of two boundary
|
||
|
* Context: !in_interrupt()
|
||
|
*
|
||
|
* Returns a dma allocation pool with the requested characteristics, or
|
||
|
* null if one can't be created. Given one of these pools, dma_pool_alloc()
|
||
|
* may be used to allocate memory. Such memory will all have "consistent"
|
||
|
* DMA mappings, accessible by the device and its driver without using
|
||
|
* cache flushing primitives. The actual size of blocks allocated may be
|
||
|
* larger than requested because of alignment.
|
||
|
*
|
||
|
* If @boundary is nonzero, objects returned from dma_pool_alloc() won't
|
||
|
* cross that size boundary. This is useful for devices which have
|
||
|
* addressing restrictions on individual DMA transfers, such as not crossing
|
||
|
* boundaries of 4KBytes.
|
||
|
*/
|
||
|
struct dma_pool *dma_pool_create(const char *name, struct device *dev,
|
||
|
size_t size, size_t align, size_t boundary)
|
||
|
{
|
||
|
struct dma_pool *retval;
|
||
|
size_t allocation;
|
||
|
|
||
|
if (align == 0) {
|
||
|
align = 1;
|
||
|
} else if (align & (align - 1)) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (size == 0) {
|
||
|
return NULL;
|
||
|
} else if (size < 4) {
|
||
|
size = 4;
|
||
|
}
|
||
|
|
||
|
if ((size % align) != 0)
|
||
|
size = ALIGN(size, align);
|
||
|
|
||
|
allocation = max_t(size_t, size, PAGE_SIZE);
|
||
|
|
||
|
allocation = (allocation+0x7FFF) & ~0x7FFF;
|
||
|
|
||
|
if (!boundary) {
|
||
|
boundary = allocation;
|
||
|
} else if ((boundary < size) || (boundary & (boundary - 1))) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
retval = kmalloc(sizeof(*retval), GFP_KERNEL);
|
||
|
|
||
|
if (!retval)
|
||
|
return retval;
|
||
|
|
||
|
INIT_LIST_HEAD(&retval->page_list);
|
||
|
|
||
|
// spin_lock_init(&retval->lock);
|
||
|
|
||
|
retval->size = size;
|
||
|
retval->boundary = boundary;
|
||
|
retval->allocation = allocation;
|
||
|
|
||
|
INIT_LIST_HEAD(&retval->pools);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
|
||
|
{
|
||
|
unsigned int offset = 0;
|
||
|
unsigned int next_boundary = pool->boundary;
|
||
|
|
||
|
do {
|
||
|
unsigned int next = offset + pool->size;
|
||
|
if (unlikely((next + pool->size) >= next_boundary)) {
|
||
|
next = next_boundary;
|
||
|
next_boundary += pool->boundary;
|
||
|
}
|
||
|
*(int *)(page->vaddr + offset) = next;
|
||
|
offset = next;
|
||
|
} while (offset < pool->allocation);
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct dma_page *pool_alloc_page(struct dma_pool *pool)
|
||
|
{
|
||
|
struct dma_page *page;
|
||
|
|
||
|
page = malloc(sizeof(*page));
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
page->vaddr = (void*)KernelAlloc(pool->allocation);
|
||
|
|
||
|
dbgprintf("%s 0x%0x ",__FUNCTION__, page->vaddr);
|
||
|
|
||
|
if (page->vaddr)
|
||
|
{
|
||
|
page->dma = GetPgAddr(page->vaddr);
|
||
|
|
||
|
dbgprintf("dma 0x%0x\n", page->dma);
|
||
|
|
||
|
pool_initialise_page(pool, page);
|
||
|
list_add(&page->page_list, &pool->page_list);
|
||
|
page->in_use = 0;
|
||
|
page->offset = 0;
|
||
|
} else {
|
||
|
free(page);
|
||
|
page = NULL;
|
||
|
}
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static inline int is_page_busy(struct dma_page *page)
|
||
|
{
|
||
|
return page->in_use != 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
|
||
|
{
|
||
|
dma_addr_t dma = page->dma;
|
||
|
|
||
|
KernelFree(page->vaddr);
|
||
|
list_del(&page->page_list);
|
||
|
free(page);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* dma_pool_destroy - destroys a pool of dma memory blocks.
|
||
|
* @pool: dma pool that will be destroyed
|
||
|
* Context: !in_interrupt()
|
||
|
*
|
||
|
* Caller guarantees that no more memory from the pool is in use,
|
||
|
* and that nothing will try to use the pool after this call.
|
||
|
*/
|
||
|
void dma_pool_destroy(struct dma_pool *pool)
|
||
|
{
|
||
|
mutex_lock(&pools_lock);
|
||
|
list_del(&pool->pools);
|
||
|
mutex_unlock(&pools_lock);
|
||
|
|
||
|
while (!list_empty(&pool->page_list)) {
|
||
|
struct dma_page *page;
|
||
|
page = list_entry(pool->page_list.next,
|
||
|
struct dma_page, page_list);
|
||
|
if (is_page_busy(page))
|
||
|
{
|
||
|
printk(KERN_ERR "dma_pool_destroy %p busy\n",
|
||
|
page->vaddr);
|
||
|
/* leak the still-in-use consistent memory */
|
||
|
list_del(&page->page_list);
|
||
|
kfree(page);
|
||
|
} else
|
||
|
pool_free_page(pool, page);
|
||
|
}
|
||
|
|
||
|
kfree(pool);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* dma_pool_alloc - get a block of consistent memory
|
||
|
* @pool: dma pool that will produce the block
|
||
|
* @mem_flags: GFP_* bitmask
|
||
|
* @handle: pointer to dma address of block
|
||
|
*
|
||
|
* This returns the kernel virtual address of a currently unused block,
|
||
|
* and reports its dma address through the handle.
|
||
|
* If such a memory block can't be allocated, %NULL is returned.
|
||
|
*/
|
||
|
void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
|
||
|
dma_addr_t *handle)
|
||
|
{
|
||
|
u32_t efl;
|
||
|
struct dma_page *page;
|
||
|
size_t offset;
|
||
|
void *retval;
|
||
|
|
||
|
efl = safe_cli();
|
||
|
restart:
|
||
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
||
|
if (page->offset < pool->allocation)
|
||
|
goto ready;
|
||
|
}
|
||
|
page = pool_alloc_page(pool);
|
||
|
if (!page)
|
||
|
{
|
||
|
retval = NULL;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
ready:
|
||
|
page->in_use++;
|
||
|
offset = page->offset;
|
||
|
page->offset = *(int *)(page->vaddr + offset);
|
||
|
retval = offset + page->vaddr;
|
||
|
*handle = offset + page->dma;
|
||
|
done:
|
||
|
safe_sti(efl);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
|
||
|
{
|
||
|
struct dma_page *page;
|
||
|
u32_t efl;
|
||
|
|
||
|
efl = safe_cli();
|
||
|
|
||
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
||
|
if (dma < page->dma)
|
||
|
continue;
|
||
|
if (dma < (page->dma + pool->allocation))
|
||
|
goto done;
|
||
|
}
|
||
|
page = NULL;
|
||
|
done:
|
||
|
safe_sti(efl);
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* dma_pool_free - put block back into dma pool
|
||
|
* @pool: the dma pool holding the block
|
||
|
* @vaddr: virtual address of block
|
||
|
* @dma: dma address of block
|
||
|
*
|
||
|
* Caller promises neither device nor driver will again touch this block
|
||
|
* unless it is first re-allocated.
|
||
|
*/
|
||
|
void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
|
||
|
{
|
||
|
struct dma_page *page;
|
||
|
unsigned long flags;
|
||
|
unsigned int offset;
|
||
|
|
||
|
u32_t efl;
|
||
|
|
||
|
page = pool_find_page(pool, dma);
|
||
|
if (!page) {
|
||
|
printk(KERN_ERR "dma_pool_free %p/%lx (bad dma)\n",
|
||
|
vaddr, (unsigned long)dma);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
offset = vaddr - page->vaddr;
|
||
|
|
||
|
efl = safe_cli();
|
||
|
{
|
||
|
page->in_use--;
|
||
|
*(int *)vaddr = page->offset;
|
||
|
page->offset = offset;
|
||
|
/*
|
||
|
* Resist a temptation to do
|
||
|
* if (!is_page_busy(page)) pool_free_page(pool, page);
|
||
|
* Better have a few empty pages hang around.
|
||
|
*/
|
||
|
}safe_sti(efl);
|
||
|
}
|
||
|
|