forked from KolibriOS/kolibrios
286 lines
10 KiB
C
286 lines
10 KiB
C
|
/*
|
||
|
* Copyright © 2014 Intel Corporation
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
* copy of this software and associated documentation files (the "Software"),
|
||
|
* to deal in the Software without restriction, including without limitation
|
||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||
|
* Software is furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice (including the next
|
||
|
* paragraph) shall be included in all copies or substantial portions of the
|
||
|
* Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
* IN THE SOFTWARE.
|
||
|
*
|
||
|
* Please try to maintain the following order within this file unless it makes
|
||
|
* sense to do otherwise. From top to bottom:
|
||
|
* 1. typedefs
|
||
|
* 2. #defines, and macros
|
||
|
* 3. structure definitions
|
||
|
* 4. function prototypes
|
||
|
*
|
||
|
* Within each section, please try to order by generation in ascending order,
|
||
|
* from top to bottom (ie. gen6 on the top, gen8 on the bottom).
|
||
|
*/
|
||
|
|
||
|
#ifndef __I915_GEM_GTT_H__
|
||
|
#define __I915_GEM_GTT_H__
|
||
|
|
||
|
typedef uint32_t gen6_gtt_pte_t;
|
||
|
typedef uint64_t gen8_gtt_pte_t;
|
||
|
typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
|
||
|
|
||
|
#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
|
||
|
|
||
|
#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
|
||
|
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
|
||
|
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
|
||
|
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
|
||
|
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
|
||
|
#define GEN6_PTE_CACHE_LLC (2 << 1)
|
||
|
#define GEN6_PTE_UNCACHED (1 << 1)
|
||
|
#define GEN6_PTE_VALID (1 << 0)
|
||
|
|
||
|
#define GEN6_PPGTT_PD_ENTRIES 512
|
||
|
#define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
|
||
|
#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
|
||
|
#define GEN6_PDE_VALID (1 << 0)
|
||
|
|
||
|
#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
|
||
|
|
||
|
#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
|
||
|
#define BYT_PTE_WRITEABLE (1 << 1)
|
||
|
|
||
|
/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
|
||
|
* 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
|
||
|
*/
|
||
|
#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
|
||
|
(((bits) & 0x8) << (11 - 3)))
|
||
|
#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
|
||
|
#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
|
||
|
#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
|
||
|
#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
|
||
|
#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
|
||
|
#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
|
||
|
#define HSW_PTE_UNCACHED (0)
|
||
|
#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
|
||
|
#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
|
||
|
|
||
|
/* GEN8 legacy style address is defined as a 3 level page table:
|
||
|
* 31:30 | 29:21 | 20:12 | 11:0
|
||
|
* PDPE | PDE | PTE | offset
|
||
|
* The difference as compared to normal x86 3 level page table is the PDPEs are
|
||
|
* programmed via register.
|
||
|
*/
|
||
|
#define GEN8_PDPE_SHIFT 30
|
||
|
#define GEN8_PDPE_MASK 0x3
|
||
|
#define GEN8_PDE_SHIFT 21
|
||
|
#define GEN8_PDE_MASK 0x1ff
|
||
|
#define GEN8_PTE_SHIFT 12
|
||
|
#define GEN8_PTE_MASK 0x1ff
|
||
|
#define GEN8_LEGACY_PDPS 4
|
||
|
#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
|
||
|
#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
|
||
|
|
||
|
#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
|
||
|
#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
|
||
|
#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
|
||
|
#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
|
||
|
|
||
|
#define CHV_PPAT_SNOOP (1<<6)
|
||
|
#define GEN8_PPAT_AGE(x) (x<<4)
|
||
|
#define GEN8_PPAT_LLCeLLC (3<<2)
|
||
|
#define GEN8_PPAT_LLCELLC (2<<2)
|
||
|
#define GEN8_PPAT_LLC (1<<2)
|
||
|
#define GEN8_PPAT_WB (3<<0)
|
||
|
#define GEN8_PPAT_WT (2<<0)
|
||
|
#define GEN8_PPAT_WC (1<<0)
|
||
|
#define GEN8_PPAT_UC (0<<0)
|
||
|
#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
|
||
|
#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
|
||
|
|
||
|
enum i915_cache_level;
|
||
|
/**
|
||
|
* A VMA represents a GEM BO that is bound into an address space. Therefore, a
|
||
|
* VMA's presence cannot be guaranteed before binding, or after unbinding the
|
||
|
* object into/from the address space.
|
||
|
*
|
||
|
* To make things as simple as possible (ie. no refcounting), a VMA's lifetime
|
||
|
* will always be <= an objects lifetime. So object refcounting should cover us.
|
||
|
*/
|
||
|
struct i915_vma {
|
||
|
struct drm_mm_node node;
|
||
|
struct drm_i915_gem_object *obj;
|
||
|
struct i915_address_space *vm;
|
||
|
|
||
|
/** This object's place on the active/inactive lists */
|
||
|
struct list_head mm_list;
|
||
|
|
||
|
struct list_head vma_link; /* Link in the object's VMA list */
|
||
|
|
||
|
/** This vma's place in the batchbuffer or on the eviction list */
|
||
|
struct list_head exec_list;
|
||
|
|
||
|
/**
|
||
|
* Used for performing relocations during execbuffer insertion.
|
||
|
*/
|
||
|
struct hlist_node exec_node;
|
||
|
unsigned long exec_handle;
|
||
|
struct drm_i915_gem_exec_object2 *exec_entry;
|
||
|
|
||
|
/**
|
||
|
* How many users have pinned this object in GTT space. The following
|
||
|
* users can each hold at most one reference: pwrite/pread, pin_ioctl
|
||
|
* (via user_pin_count), execbuffer (objects are not allowed multiple
|
||
|
* times for the same batchbuffer), and the framebuffer code. When
|
||
|
* switching/pageflipping, the framebuffer code has at most two buffers
|
||
|
* pinned per crtc.
|
||
|
*
|
||
|
* In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
|
||
|
* bits with absolutely no headroom. So use 4 bits. */
|
||
|
unsigned int pin_count:4;
|
||
|
#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
|
||
|
|
||
|
/** Unmap an object from an address space. This usually consists of
|
||
|
* setting the valid PTE entries to a reserved scratch page. */
|
||
|
void (*unbind_vma)(struct i915_vma *vma);
|
||
|
/* Map an object into an address space with the given cache flags. */
|
||
|
#define GLOBAL_BIND (1<<0)
|
||
|
#define PTE_READ_ONLY (1<<1)
|
||
|
void (*bind_vma)(struct i915_vma *vma,
|
||
|
enum i915_cache_level cache_level,
|
||
|
u32 flags);
|
||
|
};
|
||
|
|
||
|
struct i915_address_space {
|
||
|
struct drm_mm mm;
|
||
|
struct drm_device *dev;
|
||
|
struct list_head global_link;
|
||
|
unsigned long start; /* Start offset always 0 for dri2 */
|
||
|
size_t total; /* size addr space maps (ex. 2GB for ggtt) */
|
||
|
|
||
|
struct {
|
||
|
dma_addr_t addr;
|
||
|
struct page *page;
|
||
|
} scratch;
|
||
|
|
||
|
/**
|
||
|
* List of objects currently involved in rendering.
|
||
|
*
|
||
|
* Includes buffers having the contents of their GPU caches
|
||
|
* flushed, not necessarily primitives. last_rendering_seqno
|
||
|
* represents when the rendering involved will be completed.
|
||
|
*
|
||
|
* A reference is held on the buffer while on this list.
|
||
|
*/
|
||
|
struct list_head active_list;
|
||
|
|
||
|
/**
|
||
|
* LRU list of objects which are not in the ringbuffer and
|
||
|
* are ready to unbind, but are still in the GTT.
|
||
|
*
|
||
|
* last_rendering_seqno is 0 while an object is in this list.
|
||
|
*
|
||
|
* A reference is not held on the buffer while on this list,
|
||
|
* as merely being GTT-bound shouldn't prevent its being
|
||
|
* freed, and we'll pull it off the list in the free path.
|
||
|
*/
|
||
|
struct list_head inactive_list;
|
||
|
|
||
|
/* FIXME: Need a more generic return type */
|
||
|
gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
|
||
|
enum i915_cache_level level,
|
||
|
bool valid, u32 flags); /* Create a valid PTE */
|
||
|
void (*clear_range)(struct i915_address_space *vm,
|
||
|
uint64_t start,
|
||
|
uint64_t length,
|
||
|
bool use_scratch);
|
||
|
void (*insert_entries)(struct i915_address_space *vm,
|
||
|
struct sg_table *st,
|
||
|
uint64_t start,
|
||
|
enum i915_cache_level cache_level, u32 flags);
|
||
|
void (*cleanup)(struct i915_address_space *vm);
|
||
|
};
|
||
|
|
||
|
/* The Graphics Translation Table is the way in which GEN hardware translates a
|
||
|
* Graphics Virtual Address into a Physical Address. In addition to the normal
|
||
|
* collateral associated with any va->pa translations GEN hardware also has a
|
||
|
* portion of the GTT which can be mapped by the CPU and remain both coherent
|
||
|
* and correct (in cases like swizzling). That region is referred to as GMADR in
|
||
|
* the spec.
|
||
|
*/
|
||
|
struct i915_gtt {
|
||
|
struct i915_address_space base;
|
||
|
size_t stolen_size; /* Total size of stolen memory */
|
||
|
|
||
|
unsigned long mappable_end; /* End offset that we can CPU map */
|
||
|
struct io_mapping *mappable; /* Mapping to our CPU mappable region */
|
||
|
phys_addr_t mappable_base; /* PA of our GMADR */
|
||
|
|
||
|
/** "Graphics Stolen Memory" holds the global PTEs */
|
||
|
void __iomem *gsm;
|
||
|
|
||
|
bool do_idle_maps;
|
||
|
|
||
|
int mtrr;
|
||
|
|
||
|
/* global gtt ops */
|
||
|
int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
|
||
|
size_t *stolen, phys_addr_t *mappable_base,
|
||
|
unsigned long *mappable_end);
|
||
|
};
|
||
|
|
||
|
struct i915_hw_ppgtt {
|
||
|
struct i915_address_space base;
|
||
|
struct kref ref;
|
||
|
struct drm_mm_node node;
|
||
|
unsigned num_pd_entries;
|
||
|
unsigned num_pd_pages; /* gen8+ */
|
||
|
union {
|
||
|
struct page **pt_pages;
|
||
|
struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
|
||
|
};
|
||
|
struct page *pd_pages;
|
||
|
union {
|
||
|
uint32_t pd_offset;
|
||
|
dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
|
||
|
};
|
||
|
union {
|
||
|
dma_addr_t *pt_dma_addr;
|
||
|
dma_addr_t *gen8_pt_dma_addr[4];
|
||
|
};
|
||
|
|
||
|
struct intel_context *ctx;
|
||
|
|
||
|
int (*enable)(struct i915_hw_ppgtt *ppgtt);
|
||
|
int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
|
||
|
struct intel_engine_cs *ring,
|
||
|
bool synchronous);
|
||
|
// void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
|
||
|
};
|
||
|
|
||
|
int i915_gem_gtt_init(struct drm_device *dev);
|
||
|
void i915_gem_init_global_gtt(struct drm_device *dev);
|
||
|
void i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start,
|
||
|
unsigned long mappable_end, unsigned long end);
|
||
|
|
||
|
bool intel_enable_ppgtt(struct drm_device *dev, bool full);
|
||
|
int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
|
||
|
|
||
|
void i915_check_and_clear_faults(struct drm_device *dev);
|
||
|
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
|
||
|
void i915_gem_restore_gtt_mappings(struct drm_device *dev);
|
||
|
|
||
|
int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
|
||
|
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
|
||
|
|
||
|
#endif
|