kolibrios/contrib/sdk/sources/ffmpeg/libavcodec/arm/dcadsp_vfp.S

494 lines
16 KiB
ArmAsm
Raw Normal View History

/*
* Copyright (c) 2013 RISC OS Open Ltd
* Author: Ben Avison <bavison@riscosopen.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/arm/asm.S"
POUT .req a1
PIN .req a2
PCOEF .req a3
DECIFACTOR .req a4
OLDFPSCR .req a4
COUNTER .req ip
SCALE32 .req s28 @ use vector of 4 in place of 9th scalar when decifactor=32 / JMAX=8
SCALE64 .req s0 @ spare register in scalar bank when decifactor=64 / JMAX=4
IN0 .req s4
IN1 .req s5
IN2 .req s6
IN3 .req s7
IN4 .req s0
IN5 .req s1
IN6 .req s2
IN7 .req s3
COEF0 .req s8 @ coefficient elements
COEF1 .req s9
COEF2 .req s10
COEF3 .req s11
COEF4 .req s12
COEF5 .req s13
COEF6 .req s14
COEF7 .req s15
ACCUM0 .req s16 @ double-buffered multiply-accumulate results
ACCUM4 .req s20
POST0 .req s24 @ do long-latency post-multiply in this vector in parallel
POST1 .req s25
POST2 .req s26
POST3 .req s27
.macro inner_loop decifactor, dir, tail, head
.ifc "\dir","up"
.set X, 0
.set Y, 4
.else
.set X, 4*JMAX*4 - 4
.set Y, -4
.endif
.ifnc "\head",""
vldr COEF0, [PCOEF, #X + (0*JMAX + 0) * Y]
vldr COEF1, [PCOEF, #X + (1*JMAX + 0) * Y]
vldr COEF2, [PCOEF, #X + (2*JMAX + 0) * Y]
vldr COEF3, [PCOEF, #X + (3*JMAX + 0) * Y]
.endif
.ifnc "\tail",""
vadd.f POST0, ACCUM0, ACCUM4 @ vector operation
.endif
.ifnc "\head",""
vmul.f ACCUM0, COEF0, IN0 @ vector = vector * scalar
vldr COEF4, [PCOEF, #X + (0*JMAX + 1) * Y]
vldr COEF5, [PCOEF, #X + (1*JMAX + 1) * Y]
vldr COEF6, [PCOEF, #X + (2*JMAX + 1) * Y]
.endif
.ifnc "\tail",""
vmul.f POST0, POST0, SCALE\decifactor @ vector operation (SCALE may be scalar)
.endif
.ifnc "\head",""
vldr COEF7, [PCOEF, #X + (3*JMAX + 1) * Y]
.ifc "\tail",""
vmul.f ACCUM4, COEF4, IN1 @ vector operation
.endif
vldr COEF0, [PCOEF, #X + (0*JMAX + 2) * Y]
vldr COEF1, [PCOEF, #X + (1*JMAX + 2) * Y]
.ifnc "\tail",""
vmul.f ACCUM4, COEF4, IN1 @ vector operation
.endif
vldr COEF2, [PCOEF, #X + (2*JMAX + 2) * Y]
vldr COEF3, [PCOEF, #X + (3*JMAX + 2) * Y]
.endif
.ifnc "\tail",""
vstmia POUT!, {POST0-POST3}
.endif
.ifnc "\head",""
vmla.f ACCUM0, COEF0, IN2 @ vector = vector * scalar
vldr COEF4, [PCOEF, #X + (0*JMAX + 3) * Y]
vldr COEF5, [PCOEF, #X + (1*JMAX + 3) * Y]
vldr COEF6, [PCOEF, #X + (2*JMAX + 3) * Y]
vldr COEF7, [PCOEF, #X + (3*JMAX + 3) * Y]
vmla.f ACCUM4, COEF4, IN3 @ vector = vector * scalar
.if \decifactor == 32
vldr COEF0, [PCOEF, #X + (0*JMAX + 4) * Y]
vldr COEF1, [PCOEF, #X + (1*JMAX + 4) * Y]
vldr COEF2, [PCOEF, #X + (2*JMAX + 4) * Y]
vldr COEF3, [PCOEF, #X + (3*JMAX + 4) * Y]
vmla.f ACCUM0, COEF0, IN4 @ vector = vector * scalar
vldr COEF4, [PCOEF, #X + (0*JMAX + 5) * Y]
vldr COEF5, [PCOEF, #X + (1*JMAX + 5) * Y]
vldr COEF6, [PCOEF, #X + (2*JMAX + 5) * Y]
vldr COEF7, [PCOEF, #X + (3*JMAX + 5) * Y]
vmla.f ACCUM4, COEF4, IN5 @ vector = vector * scalar
vldr COEF0, [PCOEF, #X + (0*JMAX + 6) * Y]
vldr COEF1, [PCOEF, #X + (1*JMAX + 6) * Y]
vldr COEF2, [PCOEF, #X + (2*JMAX + 6) * Y]
vldr COEF3, [PCOEF, #X + (3*JMAX + 6) * Y]
vmla.f ACCUM0, COEF0, IN6 @ vector = vector * scalar
vldr COEF4, [PCOEF, #X + (0*JMAX + 7) * Y]
vldr COEF5, [PCOEF, #X + (1*JMAX + 7) * Y]
vldr COEF6, [PCOEF, #X + (2*JMAX + 7) * Y]
vldr COEF7, [PCOEF, #X + (3*JMAX + 7) * Y]
vmla.f ACCUM4, COEF4, IN7 @ vector = vector * scalar
.endif
.endif
.endm
.macro dca_lfe_fir decifactor
.if \decifactor == 32
.set JMAX, 8
vpush {s16-s31}
vmov SCALE32, s0 @ duplicate scalar across vector
vldr IN4, [PIN, #-4*4]
vldr IN5, [PIN, #-5*4]
vldr IN6, [PIN, #-6*4]
vldr IN7, [PIN, #-7*4]
.else
.set JMAX, 4
vpush {s16-s27}
.endif
mov COUNTER, #\decifactor/4 - 1
inner_loop \decifactor, up,, head
1: add PCOEF, PCOEF, #4*JMAX*4
subs COUNTER, COUNTER, #1
inner_loop \decifactor, up, tail, head
bne 1b
inner_loop \decifactor, up, tail
mov COUNTER, #\decifactor/4 - 1
inner_loop \decifactor, down,, head
1: sub PCOEF, PCOEF, #4*JMAX*4
subs COUNTER, COUNTER, #1
inner_loop \decifactor, down, tail, head
bne 1b
inner_loop \decifactor, down, tail
.if \decifactor == 32
vpop {s16-s31}
.else
vpop {s16-s27}
.endif
fmxr FPSCR, OLDFPSCR
bx lr
.endm
/* void ff_dca_lfe_fir_vfp(float *out, const float *in, const float *coefs,
* int decifactor, float scale)
*/
function ff_dca_lfe_fir_vfp, export=1
teq DECIFACTOR, #32
fmrx OLDFPSCR, FPSCR
ldr ip, =0x03030000 @ RunFast mode, short vectors of length 4, stride 1
fmxr FPSCR, ip
NOVFP vldr s0, [sp]
vldr IN0, [PIN, #-0*4]
vldr IN1, [PIN, #-1*4]
vldr IN2, [PIN, #-2*4]
vldr IN3, [PIN, #-3*4]
beq 32f
64: dca_lfe_fir 64
.ltorg
32: dca_lfe_fir 32
endfunc
.unreq POUT
.unreq PIN
.unreq PCOEF
.unreq DECIFACTOR
.unreq OLDFPSCR
.unreq COUNTER
.unreq SCALE32
.unreq SCALE64
.unreq IN0
.unreq IN1
.unreq IN2
.unreq IN3
.unreq IN4
.unreq IN5
.unreq IN6
.unreq IN7
.unreq COEF0
.unreq COEF1
.unreq COEF2
.unreq COEF3
.unreq COEF4
.unreq COEF5
.unreq COEF6
.unreq COEF7
.unreq ACCUM0
.unreq ACCUM4
.unreq POST0
.unreq POST1
.unreq POST2
.unreq POST3
IN .req a1
SBACT .req a2
OLDFPSCR .req a3
IMDCT .req a4
WINDOW .req v1
OUT .req v2
BUF .req v3
SCALEINT .req v4 @ only used in softfp case
COUNT .req v5
SCALE .req s0
/* Stack layout differs in softfp and hardfp cases:
*
* hardfp
* fp -> 6 arg words saved by caller
* a3,a4,v1-v3,v5,fp,lr on entry (a3 just to pad to 8 bytes)
* s16-s23 on entry
* align 16
* buf -> 8*32*4 bytes buffer
* s0 on entry
* sp -> 3 arg words for callee
*
* softfp
* fp -> 7 arg words saved by caller
* a4,v1-v5,fp,lr on entry
* s16-s23 on entry
* align 16
* buf -> 8*32*4 bytes buffer
* sp -> 4 arg words for callee
*/
/* void ff_dca_qmf_32_subbands_vfp(float samples_in[32][8], int sb_act,
* SynthFilterContext *synth, FFTContext *imdct,
* float (*synth_buf_ptr)[512],
* int *synth_buf_offset, float (*synth_buf2)[32],
* const float (*window)[512], float *samples_out,
* float (*raXin)[32], float scale);
*/
function ff_dca_qmf_32_subbands_vfp, export=1
VFP push {a3-a4,v1-v3,v5,fp,lr}
NOVFP push {a4,v1-v5,fp,lr}
add fp, sp, #8*4
vpush {s16-s23}
@ The buffer pointed at by raXin isn't big enough for us to do a
@ complete matrix transposition as we want to, so allocate an
@ alternative buffer from the stack. Align to 4 words for speed.
sub BUF, sp, #8*32*4
bic BUF, BUF, #15
mov sp, BUF
ldr lr, =0x03330000 @ RunFast mode, short vectors of length 4, stride 2
fmrx OLDFPSCR, FPSCR
fmxr FPSCR, lr
@ COUNT is used to count down 2 things at once:
@ bits 0-4 are the number of word pairs remaining in the output row
@ bits 5-31 are the number of words to copy (with possible negation)
@ from the source matrix before we start zeroing the remainder
mov COUNT, #(-4 << 5) + 16
adds COUNT, COUNT, SBACT, lsl #5
bmi 2f
1:
vldr s8, [IN, #(0*8+0)*4]
vldr s10, [IN, #(0*8+1)*4]
vldr s12, [IN, #(0*8+2)*4]
vldr s14, [IN, #(0*8+3)*4]
vldr s16, [IN, #(0*8+4)*4]
vldr s18, [IN, #(0*8+5)*4]
vldr s20, [IN, #(0*8+6)*4]
vldr s22, [IN, #(0*8+7)*4]
vneg.f s8, s8
vldr s9, [IN, #(1*8+0)*4]
vldr s11, [IN, #(1*8+1)*4]
vldr s13, [IN, #(1*8+2)*4]
vldr s15, [IN, #(1*8+3)*4]
vneg.f s16, s16
vldr s17, [IN, #(1*8+4)*4]
vldr s19, [IN, #(1*8+5)*4]
vldr s21, [IN, #(1*8+6)*4]
vldr s23, [IN, #(1*8+7)*4]
vstr d4, [BUF, #(0*32+0)*4]
vstr d5, [BUF, #(1*32+0)*4]
vstr d6, [BUF, #(2*32+0)*4]
vstr d7, [BUF, #(3*32+0)*4]
vstr d8, [BUF, #(4*32+0)*4]
vstr d9, [BUF, #(5*32+0)*4]
vstr d10, [BUF, #(6*32+0)*4]
vstr d11, [BUF, #(7*32+0)*4]
vldr s9, [IN, #(3*8+0)*4]
vldr s11, [IN, #(3*8+1)*4]
vldr s13, [IN, #(3*8+2)*4]
vldr s15, [IN, #(3*8+3)*4]
vldr s17, [IN, #(3*8+4)*4]
vldr s19, [IN, #(3*8+5)*4]
vldr s21, [IN, #(3*8+6)*4]
vldr s23, [IN, #(3*8+7)*4]
vneg.f s9, s9
vldr s8, [IN, #(2*8+0)*4]
vldr s10, [IN, #(2*8+1)*4]
vldr s12, [IN, #(2*8+2)*4]
vldr s14, [IN, #(2*8+3)*4]
vneg.f s17, s17
vldr s16, [IN, #(2*8+4)*4]
vldr s18, [IN, #(2*8+5)*4]
vldr s20, [IN, #(2*8+6)*4]
vldr s22, [IN, #(2*8+7)*4]
vstr d4, [BUF, #(0*32+2)*4]
vstr d5, [BUF, #(1*32+2)*4]
vstr d6, [BUF, #(2*32+2)*4]
vstr d7, [BUF, #(3*32+2)*4]
vstr d8, [BUF, #(4*32+2)*4]
vstr d9, [BUF, #(5*32+2)*4]
vstr d10, [BUF, #(6*32+2)*4]
vstr d11, [BUF, #(7*32+2)*4]
add IN, IN, #4*8*4
add BUF, BUF, #4*4
subs COUNT, COUNT, #(4 << 5) + 2
bpl 1b
2: @ Now deal with trailing < 4 samples
adds COUNT, COUNT, #3 << 5
bmi 4f @ sb_act was a multiple of 4
bics lr, COUNT, #0x1F
bne 3f
@ sb_act was n*4+1
vldr s8, [IN, #(0*8+0)*4]
vldr s10, [IN, #(0*8+1)*4]
vldr s12, [IN, #(0*8+2)*4]
vldr s14, [IN, #(0*8+3)*4]
vldr s16, [IN, #(0*8+4)*4]
vldr s18, [IN, #(0*8+5)*4]
vldr s20, [IN, #(0*8+6)*4]
vldr s22, [IN, #(0*8+7)*4]
vneg.f s8, s8
vldr s9, zero
vldr s11, zero
vldr s13, zero
vldr s15, zero
vneg.f s16, s16
vldr s17, zero
vldr s19, zero
vldr s21, zero
vldr s23, zero
vstr d4, [BUF, #(0*32+0)*4]
vstr d5, [BUF, #(1*32+0)*4]
vstr d6, [BUF, #(2*32+0)*4]
vstr d7, [BUF, #(3*32+0)*4]
vstr d8, [BUF, #(4*32+0)*4]
vstr d9, [BUF, #(5*32+0)*4]
vstr d10, [BUF, #(6*32+0)*4]
vstr d11, [BUF, #(7*32+0)*4]
add BUF, BUF, #2*4
sub COUNT, COUNT, #1
b 4f
3: @ sb_act was n*4+2 or n*4+3, so do the first 2
vldr s8, [IN, #(0*8+0)*4]
vldr s10, [IN, #(0*8+1)*4]
vldr s12, [IN, #(0*8+2)*4]
vldr s14, [IN, #(0*8+3)*4]
vldr s16, [IN, #(0*8+4)*4]
vldr s18, [IN, #(0*8+5)*4]
vldr s20, [IN, #(0*8+6)*4]
vldr s22, [IN, #(0*8+7)*4]
vneg.f s8, s8
vldr s9, [IN, #(1*8+0)*4]
vldr s11, [IN, #(1*8+1)*4]
vldr s13, [IN, #(1*8+2)*4]
vldr s15, [IN, #(1*8+3)*4]
vneg.f s16, s16
vldr s17, [IN, #(1*8+4)*4]
vldr s19, [IN, #(1*8+5)*4]
vldr s21, [IN, #(1*8+6)*4]
vldr s23, [IN, #(1*8+7)*4]
vstr d4, [BUF, #(0*32+0)*4]
vstr d5, [BUF, #(1*32+0)*4]
vstr d6, [BUF, #(2*32+0)*4]
vstr d7, [BUF, #(3*32+0)*4]
vstr d8, [BUF, #(4*32+0)*4]
vstr d9, [BUF, #(5*32+0)*4]
vstr d10, [BUF, #(6*32+0)*4]
vstr d11, [BUF, #(7*32+0)*4]
add BUF, BUF, #2*4
sub COUNT, COUNT, #(2 << 5) + 1
bics lr, COUNT, #0x1F
bne 4f
@ sb_act was n*4+3
vldr s8, [IN, #(2*8+0)*4]
vldr s10, [IN, #(2*8+1)*4]
vldr s12, [IN, #(2*8+2)*4]
vldr s14, [IN, #(2*8+3)*4]
vldr s16, [IN, #(2*8+4)*4]
vldr s18, [IN, #(2*8+5)*4]
vldr s20, [IN, #(2*8+6)*4]
vldr s22, [IN, #(2*8+7)*4]
vldr s9, zero
vldr s11, zero
vldr s13, zero
vldr s15, zero
vldr s17, zero
vldr s19, zero
vldr s21, zero
vldr s23, zero
vstr d4, [BUF, #(0*32+0)*4]
vstr d5, [BUF, #(1*32+0)*4]
vstr d6, [BUF, #(2*32+0)*4]
vstr d7, [BUF, #(3*32+0)*4]
vstr d8, [BUF, #(4*32+0)*4]
vstr d9, [BUF, #(5*32+0)*4]
vstr d10, [BUF, #(6*32+0)*4]
vstr d11, [BUF, #(7*32+0)*4]
add BUF, BUF, #2*4
sub COUNT, COUNT, #1
4: @ Now fill the remainder with 0
vldr s8, zero
vldr s9, zero
ands COUNT, COUNT, #0x1F
beq 6f
5: vstr d4, [BUF, #(0*32+0)*4]
vstr d4, [BUF, #(1*32+0)*4]
vstr d4, [BUF, #(2*32+0)*4]
vstr d4, [BUF, #(3*32+0)*4]
vstr d4, [BUF, #(4*32+0)*4]
vstr d4, [BUF, #(5*32+0)*4]
vstr d4, [BUF, #(6*32+0)*4]
vstr d4, [BUF, #(7*32+0)*4]
add BUF, BUF, #2*4
subs COUNT, COUNT, #1
bne 5b
6:
fmxr FPSCR, OLDFPSCR
ldr WINDOW, [fp, #3*4]
ldr OUT, [fp, #4*4]
sub BUF, BUF, #32*4
NOVFP ldr SCALEINT, [fp, #6*4]
mov COUNT, #8
VFP vpush {SCALE}
VFP sub sp, sp, #3*4
NOVFP sub sp, sp, #4*4
7:
VFP ldr a1, [fp, #-7*4] @ imdct
NOVFP ldr a1, [fp, #-8*4]
ldmia fp, {a2-a4}
VFP stmia sp, {WINDOW, OUT, BUF}
NOVFP stmia sp, {WINDOW, OUT, BUF, SCALEINT}
VFP vldr SCALE, [sp, #3*4]
bl X(ff_synth_filter_float_vfp)
add OUT, OUT, #32*4
add BUF, BUF, #32*4
subs COUNT, COUNT, #1
bne 7b
A sub sp, fp, #(8+8)*4
T sub fp, fp, #(8+8)*4
T mov sp, fp
vpop {s16-s23}
VFP pop {a3-a4,v1-v3,v5,fp,pc}
NOVFP pop {a4,v1-v5,fp,pc}
endfunc
.unreq IN
.unreq SBACT
.unreq OLDFPSCR
.unreq IMDCT
.unreq WINDOW
.unreq OUT
.unreq BUF
.unreq SCALEINT
.unreq COUNT
.unreq SCALE
.align 2
zero: .word 0