kolibrios/programs/develop/libraries/TinyGL/asm_fork/zmath.asm

648 lines
12 KiB
NASM
Raw Normal View History

; Some simple mathematical functions. Don't look for some logic in
; the function names :-)
; ******* Gestion des matrices 4x4 ******
if DEBUG
f_m4m db 'gl_M4_Mul',0
f_m4ml db 'gl_M4_MulLeft',0
end if
align 4
proc gl_M4_Id uses eax ecx edi, a:dword
mov edi,[a]
add edi,4
mov ecx,14
mov eax,0.0
rep stosd
mov eax,1.0
stosd
mov edi,[a]
stosd
add edi,16
stosd
add edi,16
stosd
ret
endp
align 4
proc gl_M4_IsId uses ebx ecx, a:dword
mov eax,[a]
xor ebx,ebx
xor ecx,ecx
.cycle_01:
fld dword[eax]
cmp ecx,ebx
je .once
ftst ;<3B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> 0.0
fstsw ax
sahf
je @f
jmp .not_1 ;<3B><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD> 0.0 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
.once:
fld1
fcomp st1 ;<3B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> 1.0
fstsw ax
test ah,0x40
je .not_1 ;<3B><><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD> 1.0 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
@@:
ffree st0
fincstp
add eax,4
inc ebx
btr ebx,2
jnc .cycle_01
inc ecx
bt ecx,2 ;<3B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> ecx==4
jnc .cycle_01
mov eax,1
jmp @f
.not_1:
ffree st0
fincstp
xor eax,eax
@@:
ret
endp
align 4
proc gl_M4_Mul, c:dword,a:dword,b:dword
pushad
mov edx,[c]
xor eax,eax
.cycle_0: ;i
xor ebx,ebx
.cycle_1: ;j
fldz ;sum=0
xor ecx,ecx
M4_reg edi,[a],eax,0
.cycle_2: ;k
fld dword[edi]
add edi,4
M4_reg esi,[b],ecx,ebx
fmul dword[esi]
faddp ;sum += a[i][k] * b[k][j]
inc ecx
cmp ecx,4
jl .cycle_2
fstp dword[edx] ;c[i][j] = sum
add edx,4
inc ebx
cmp ebx,4
jl .cycle_1
inc eax
cmp eax,4
jl .cycle_0
if DEBUG ;gl_M4_Mul
stdcall dbg_print,f_m4m,txt_nl
stdcall gl_print_matrix,[c],4
stdcall dbg_print,txt_sp,txt_nl
end if
popad
ret
endp
; c=c*a
align 4
proc gl_M4_MulLeft, c:dword,b:dword
locals
i dd ?
a M4
endl
pushad
mov ecx,16
mov esi,[c]
mov edi,ebp
sub edi,sizeof.M4
rep movsd ;<3B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> [a]=[c]
mov edx,[c]
mov dword[i],0
mov eax,ebp
sub eax,sizeof.M4
.cycle_0: ;i
xor ebx,ebx ;j=0
.cycle_1: ;j
fldz ;sum=0
xor ecx,ecx ;k=0
M4_reg edi,eax,dword[i],0
.cycle_2: ;k
fld dword[edi]
add edi,4
M4_reg esi,[b],ecx,ebx
fmul dword[esi]
faddp ;sum += a[i][k] * b[k][j]
inc ecx
cmp ecx,4
jl .cycle_2
fstp dword[edx] ;c[i][j] = sum
add edx,4
inc ebx
cmp ebx,4
jl .cycle_1
inc dword[i]
cmp dword[i],4
jl .cycle_0
if DEBUG ;gl_M4_MulLeft
stdcall dbg_print,f_m4ml,txt_nl
stdcall gl_print_matrix,[c],4
stdcall dbg_print,txt_sp,txt_nl
end if
popad
ret
endp
align 4
proc gl_M4_Move uses ecx edi esi, a:dword,b:dword
mov edi,[a]
mov esi,[b]
mov ecx,sizeof.M4/4
rep movsd
ret
endp
align 4
proc gl_MoveV3 uses edi esi, a:dword,b:dword
mov edi,[a]
mov esi,[b]
movsd
movsd
movsd
ret
endp
;void gl_MulM4V3(V3 *a,M4 *b,V3 *c)
;{
; a->X=b->m[0][0]*c->X+b->m[0][1]*c->Y+b->m[0][2]*c->Z+b->m[0][3];
; a->Y=b->m[1][0]*c->X+b->m[1][1]*c->Y+b->m[1][2]*c->Z+b->m[1][3];
; a->Z=b->m[2][0]*c->X+b->m[2][1]*c->Y+b->m[2][2]*c->Z+b->m[2][3];
;}
;void gl_MulM3V3(V3 *a,M4 *b,V3 *c)
;{
; a->X=b->m[0][0]*c->X+b->m[0][1]*c->Y+b->m[0][2]*c->Z;
; a->Y=b->m[1][0]*c->X+b->m[1][1]*c->Y+b->m[1][2]*c->Z;
; a->Z=b->m[2][0]*c->X+b->m[2][1]*c->Y+b->m[2][2]*c->Z;
;}
align 4
proc gl_M4_MulV4 uses ebx ecx edx, a:dword, b:dword, c:dword ;V4 *a, M4 *b, V4 *c
mov ebx,[b]
mov edx,[c]
fld dword[edx]
fld dword[edx+4]
fld dword[edx+8]
fld dword[edx+12]
mov edx,[a]
mov ecx,4
.cycle_1:
fld dword[ebx] ;st0 = m[_][0]
fmul st0,st4 ;st0 *= c.X
fld dword[ebx+4] ;st0 = m[_][1]
fmul st0,st4 ;st0 *= c.Y
faddp
fld dword[ebx+8] ;st0 = m[_][2]
fmul st0,st3 ;st0 *= c.Z
faddp
fld dword[ebx+12] ;st0 += m[_][3]
fmul st0,st2 ;st0 *= c.Z
faddp
fstp dword[edx] ;a.X = b.m[_][0]*c.X +b.m[_][1]*c.Y +b.m[_][2]*c.Z +b.m[_][3]*c.W
add ebx,16 ;<3B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
add edx,4 ;<3B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
loop .cycle_1
ffree st0
fincstp
ffree st0
fincstp
ffree st0
fincstp
ffree st0
fincstp
ret
endp
; transposition of a 4x4 matrix
align 4
proc gl_M4_Transpose uses eax ecx edx, a:dword, b:dword
mov eax,[a]
mov ecx,[b]
mov edx,[ecx]
mov [eax],edx
mov edx,[ecx+0x10]
mov [eax+0x4],edx
mov edx,[ecx+0x20]
mov [eax+0x8],edx
mov edx,[ecx+0x30]
mov [eax+0x0c],edx
mov edx,[ecx+0x4]
mov [eax+0x10],edx
mov edx,[ecx+0x14]
mov [eax+0x14],edx
mov edx,[ecx+0x24]
mov [eax+0x18],edx
mov edx,[ecx+0x34]
mov [eax+0x1c],edx
mov edx,[ecx+0x8]
mov [eax+0x20],edx
mov edx,[ecx+0x18]
mov [eax+0x24],edx
mov edx,[ecx+0x28]
mov [eax+0x28],edx
mov edx,[ecx+0x38]
mov [eax+0x2c],edx
mov edx,[ecx+0x0c]
mov [eax+0x30],edx
mov edx,[ecx+0x1c]
mov [eax+0x34],edx
mov edx,[ecx+0x2c]
mov [eax+0x38],edx
mov edx,[ecx+0x3c]
mov [eax+0x3c],edx
ret
endp
; inversion of an orthogonal matrix of type Y=M.X+P
;void gl_M4_InvOrtho(M4 *a,M4 b)
;{
; int i,j;
; float s;
; for(i=0;i<3;i++)
; for(j=0;j<3;j++) a->m[i][j]=b.m[j][i];
; a->m[3][0]=0.0; a->m[3][1]=0.0; a->m[3][2]=0.0; a->m[3][3]=1.0;
; for(i=0;i<3;i++) {
; s=0;
; for(j=0;j<3;j++) s-=b.m[j][i]*b.m[j][3];
; a->m[i][3]=s;
; }
;}
; Inversion of a general nxn matrix.
; Note : m is destroyed
align 4
proc Matrix_Inv uses ebx ecx edx edi esi, r:dword, m:dword, n:dword ;(float *r,float *m,int n)
locals
max dd ? ;float
tmp dd ?
endl
; identit<69>e dans r
mov eax,0.0
mov ecx,[n]
imul ecx,ecx
mov edi,[r]
rep stosd ;for(i=0;i<n*n;i++) r[i]=0
mov eax,1.0
xor ebx,ebx
mov edi,[r]
mov ecx,[n]
shl ecx,2
@@: ;for(i=0;i<n;i++)
cmp ebx,[n]
jge .end_0
stosd ;r[i*n+i]=1
add edi,ecx
inc ebx
jmp @b
.end_0:
; ebx -> n
; ecx -> j
; edx -> k
; edi -> i
; esi -> l
mov ebx,[n]
xor ecx,ecx
.cycle_0: ;for(j=0;j<n;j++)
cmp ecx,ebx
jge .cycle_0_end
; recherche du nombre de plus grand module sur la colonne j
mov eax,ecx
imul eax,ebx
add eax,ecx
shl eax,2
add eax,[m]
mov eax,[eax]
mov [max],eax ;max=m[j*n+j]
mov edx,ecx ;k=j
mov edi,ecx
inc edi
.cycle_1: ;for(i=j+1;i<n;i++)
cmp edi,ebx
jge .cycle_1_end
mov eax,edi
imul eax,ebx
add eax,ecx
shl eax,2
add eax,[m]
fld dword[eax]
fcom dword[max] ;if (fabs(m[i*n+j])>fabs(max))
fstsw ax
sahf
jbe @f
mov edx,edi ;k=i
fst dword[max]
@@:
ffree st0
fincstp
inc edi
jmp .cycle_1
.cycle_1_end:
; non intersible matrix
fld dword[max]
ftst ;if (max==0)
fstsw ax
ffree st0
fincstp
sahf
jne @f
xor eax,eax
inc eax
jmp .end_f ;return 1
@@:
; permutation des lignes j et k
cmp ecx,edx ;if (j!=k)
je .cycle_2_end
xor edi,edi
.cycle_2: ;for(i=0;i<n;i++)
cmp edi,ebx
jge .cycle_2_end
;<3B><><EFBFBD> <20><><EFBFBD><EFBFBD> esi != l
mov eax,ecx
imul eax,ebx
add eax,edi
shl eax,2
add eax,[m]
mov esi,[eax]
mov [tmp],esi ;tmp=m[j*n+i]
mov esi,edx
imul esi,ebx
add esi,edi
shl esi,2
add esi,[m]
m2m dword[eax],dword[esi] ;m[j*n+i]=m[k*n+i]
mov eax,[tmp]
mov [esi],eax ;m[k*n+i]=tmp
mov eax,ecx
imul eax,ebx
add eax,edi
shl eax,2
add eax,[r]
mov esi,[eax]
mov [tmp],esi ;tmp=r[j*n+i]
mov esi,edx
imul esi,ebx
add esi,edi
shl esi,2
add esi,[r]
m2m dword[eax],dword[esi] ;r[j*n+i]=r[k*n+i]
mov eax,[tmp]
mov [esi],eax ;r[k*n+i]=tmp
inc edi
jmp .cycle_2
.cycle_2_end:
; multiplication de la ligne j par 1/max
fld1
fdiv dword[max]
fst dword[max] ;max=1/max
xor edi,edi
mov eax,ecx
imul eax,ebx
shl eax,2
.cycle_3: ;for(i=0;i<n;i++)
cmp edi,ebx
jge .cycle_3_end
add eax,[m]
fld dword[eax]
fmul st0,st1
fstp dword[eax] ;m[j*n+i]*=max
sub eax,[m]
add eax,[r]
fld dword[eax]
fmul st0,st1
fstp dword[eax] ;r[j*n+i]*=max
sub eax,[r]
add eax,4
inc edi
jmp .cycle_3
.cycle_3_end:
ffree st0 ;max
fincstp
xor esi,esi
.cycle_4: ;for(l=0;l<n;l++)
cmp esi,ebx
jge .cycle_4_end
cmp esi,ecx ;if (l!=j)
je .if_end
mov eax,esi
imul eax,ebx
add eax,ecx
shl eax,2
add eax,[m]
fld dword[eax] ;t=m[l*n+j]
xor edi,edi
.cycle_5: ;for(i=0;i<n;i++)
cmp edi,ebx
jge .cycle_5_end
mov eax,ecx
imul eax,ebx
add eax,edi
shl eax,2
add eax,[m]
fld dword[eax]
fmul st0,st1
mov eax,esi
imul eax,ebx
add eax,edi
shl eax,2
add eax,[m]
fsub dword[eax]
fchs
fstp dword[eax] ;m[l*n+i]-=m[j*n+i]*t
mov eax,ecx
imul eax,ebx
add eax,edi
shl eax,2
add eax,[r]
fld dword[eax]
fmul st0,st1
mov eax,esi
imul eax,ebx
add eax,edi
shl eax,2
add eax,[r]
fsub dword[eax]
fchs
fstp dword[eax] ;r[l*n+i]-=r[j*n+i]*t
inc edi
jmp .cycle_5
.cycle_5_end:
ffree st0 ;t
fincstp
.if_end:
inc esi
jmp .cycle_4
.cycle_4_end:
inc ecx
jmp .cycle_0
.cycle_0_end:
xor eax,eax ;return 0
.end_f:
ret
endp
; inversion of a 4x4 matrix
align 4
proc gl_M4_Inv uses eax ecx edi esi, a:dword, b:dword
locals
tmp M4
endl
mov esi,[b]
mov edi,ebp
sub edi,sizeof.M4 ;edi = &tmp
mov ecx,16
rep movsd
sub edi,sizeof.M4 ;edi = &tmp
stdcall Matrix_Inv,[a],edi,4 ;<3B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> eax <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> uses <20><><EFBFBD><EFBFBD> eax
ret
endp
align 4
proc gl_M4_Rotate uses eax ecx, a:dword,t:dword,u:dword
locals
s dd ? ;float
c dd ? ;float
v dd ? ;int
w dd ? ;int
endl
mov eax,[u]
inc eax
cmp eax,2
jle @f
xor eax,eax
@@:
mov [v],eax
inc eax
cmp eax,2
jle @f
xor eax,eax
@@:
mov [w],eax
fld dword [t]
fsin
fstp dword [s]
fld dword [t]
fcos
fstp dword [c]
stdcall gl_M4_Id,[a]
M4_reg ecx,[a],[v],[v]
mov eax,[c]
mov [ecx],eax
M4_reg ecx,[a],[v],[w]
fld dword [s]
fchs
fstp dword [ecx]
M4_reg ecx,[a],[w],[v]
mov eax,[s]
mov [ecx],eax
M4_reg ecx,[a],[w],[w]
mov eax,[c]
mov [ecx],eax
ret
endp
; inverse of a 3x3 matrix
;void gl_M3_Inv(M3 *a,M3 *m)
;{
; float det;
; det = m->m[0][0]*m->m[1][1]*m->m[2][2]-m->m[0][0]*m->m[1][2]*m->m[2][1]-
; m->m[1][0]*m->m[0][1]*m->m[2][2]+m->m[1][0]*m->m[0][2]*m->m[2][1]+
; m->m[2][0]*m->m[0][1]*m->m[1][2]-m->m[2][0]*m->m[0][2]*m->m[1][1];
; a->m[0][0] = (m->m[1][1]*m->m[2][2]-m->m[1][2]*m->m[2][1])/det;
; a->m[0][1] = -(m->m[0][1]*m->m[2][2]-m->m[0][2]*m->m[2][1])/det;
; a->m[0][2] = -(-m->m[0][1]*m->m[1][2]+m->m[0][2]*m->m[1][1])/det;
; a->m[1][0] = -(m->m[1][0]*m->m[2][2]-m->m[1][2]*m->m[2][0])/det;
; a->m[1][1] = (m->m[0][0]*m->m[2][2]-m->m[0][2]*m->m[2][0])/det;
; a->m[1][2] = -(m->m[0][0]*m->m[1][2]-m->m[0][2]*m->m[1][0])/det;
; a->m[2][0] = (m->m[1][0]*m->m[2][1]-m->m[1][1]*m->m[2][0])/det;
; a->m[2][1] = -(m->m[0][0]*m->m[2][1]-m->m[0][1]*m->m[2][0])/det;
; a->m[2][2] = (m->m[0][0]*m->m[1][1]-m->m[0][1]*m->m[1][0])/det;
;}
; vector arithmetic
align 4
proc gl_V3_Norm uses ebx, a:dword
mov ebx,[a]
fld dword[ebx]
fmul st0,st0
fld dword[ebx+4]
fmul st0,st0
faddp
fld dword[ebx+8]
fmul st0,st0
faddp
fsqrt ;st0 = sqrt(a.X^2 +a.Y^2 +a.Z^2)
ftst
fstsw ax
sahf
je .r1 ;if (sqrt(...)==0) return 1
fld dword[ebx] ;offs_X = 0
fdiv st0,st1
fstp dword[ebx] ;a.X/=sqrt(...)
fld dword[ebx+4]
fdiv st0,st1
fstp dword[ebx+4] ;a.Y/=sqrt(...)
fld dword[ebx+8]
fdiv st0,st1
fstp dword[ebx+8] ;a.Z/=sqrt(...)
xor eax,eax
jmp @f
.r1:
xor eax,eax
inc eax
@@:
ffree st0
fincstp
ret
endp
macro gl_V3_New p_mem, x, y, z
{
mov dword[p_mem],x
mov dword[p_mem+4],y
mov dword[p_mem+8],z
}
macro gl_V4_New p_mem, x, y, z, w
{
mov dword[p_mem],x
mov dword[p_mem+4],y
mov dword[p_mem+8],z
mov dword[p_mem+12],w
}