diff --git a/drivers/ddk/Makefile b/drivers/ddk/Makefile index 3c1f15ae31..694f40125a 100644 --- a/drivers/ddk/Makefile +++ b/drivers/ddk/Makefile @@ -1,6 +1,4 @@ - - CC = gcc AS = as @@ -11,7 +9,7 @@ INCLUDES = -I$(DRV_INCLUDES) -I$(DRV_INCLUDES)/linux -I$(DRV_INCLUDES)/linux/as DEFINES = -DKOLIBRI -D__KERNEL__ -DCONFIG_X86_32 CFLAGS = -c -O2 $(INCLUDES) $(DEFINES) -fomit-frame-pointer -fno-builtin-printf -NAME:= libdrv +NAME:= libddk CORE_SRC= core.S @@ -25,6 +23,7 @@ NAME_SRCS:= \ linux/idr.c \ linux/firmware.c \ linux/list_sort.c \ + linux/dmapool.c \ malloc/malloc.c \ stdio/icompute.c \ stdio/vsprintf.c \ diff --git a/drivers/ddk/core.S b/drivers/ddk/core.S index aa29f21c1f..f16a797cde 100644 --- a/drivers/ddk/core.S +++ b/drivers/ddk/core.S @@ -21,6 +21,7 @@ .global _GetEvent .global _GetPgAddr .global _GetService + .global _GetTimerTicks .global _KernelAlloc .global _KernelFree @@ -68,6 +69,7 @@ .def _GetEvent; .scl 2; .type 32; .endef .def _GetPgAddr; .scl 2; .type 32; .endef .def _GetService; .scl 2; .type 32; .endef + .def _GetTimerTicks; .scl 2; .type 32; .endef .def _KernelAlloc; .scl 2; .type 32; .endef .def _KernelFree; .scl 2; .type 32; .endef @@ -117,6 +119,7 @@ _GetDisplay: _GetEvent: _GetPgAddr: _GetService: +_GetTimerTicks: _KernelAlloc: _KernelFree: @@ -167,6 +170,7 @@ _WaitEvent: .ascii " -export:GetEvent" # .ascii " -export:GetPgAddr" # stdcall .ascii " -export:GetService" # stdcall + .ascii " -export:GetTimerTicks" # .ascii " -export:KernelAlloc" # stdcall .ascii " -export:KernelFree" # stdcall diff --git a/drivers/ddk/debug/dbglog.c b/drivers/ddk/debug/dbglog.c index 5785940799..9bbe6dc6b9 100644 --- a/drivers/ddk/debug/dbglog.c +++ b/drivers/ddk/debug/dbglog.c @@ -1,5 +1,6 @@ -#include +#include +#include #include #pragma pack(push, 1) diff --git a/drivers/ddk/linux/dmapool.c b/drivers/ddk/linux/dmapool.c new file mode 100644 index 0000000000..b97a804b4c --- /dev/null +++ b/drivers/ddk/linux/dmapool.c @@ -0,0 +1,318 @@ +/* + * DMA Pool allocator + * + * Copyright 2001 David Brownell + * Copyright 2007 Intel Corporation + * Author: Matthew Wilcox + * + * This software may be redistributed and/or modified under the terms of + * the GNU General Public License ("GPL") version 2 as published by the + * Free Software Foundation. + * + * This allocator returns small blocks of a given size which are DMA-able by + * the given device. It uses the dma_alloc_coherent page allocator to get + * new pages, then splits them up into blocks of the required size. + * Many older drivers still have their own code to do this. + * + * The current design of this allocator is fairly simple. The pool is + * represented by the 'struct dma_pool' which keeps a doubly-linked list of + * allocated pages. Each page in the page_list is split into blocks of at + * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked + * list of free blocks within the page. Used blocks aren't tracked, but we + * keep a count of how many are currently allocated from each page. + */ + + +#include +#include +#include + + +struct dma_pool { /* the pool */ + struct list_head page_list; + struct mutex lock; + size_t size; + size_t allocation; + size_t boundary; + struct list_head pools; +}; + +struct dma_page { /* cacheable header for 'allocation' bytes */ + struct list_head page_list; + void *vaddr; + dma_addr_t dma; + unsigned int in_use; + unsigned int offset; +}; + + +static DEFINE_MUTEX(pools_lock); + + +/** + * dma_pool_create - Creates a pool of consistent memory blocks, for dma. + * @name: name of pool, for diagnostics + * @dev: device that will be doing the DMA + * @size: size of the blocks in this pool. + * @align: alignment requirement for blocks; must be a power of two + * @boundary: returned blocks won't cross this power of two boundary + * Context: !in_interrupt() + * + * Returns a dma allocation pool with the requested characteristics, or + * null if one can't be created. Given one of these pools, dma_pool_alloc() + * may be used to allocate memory. Such memory will all have "consistent" + * DMA mappings, accessible by the device and its driver without using + * cache flushing primitives. The actual size of blocks allocated may be + * larger than requested because of alignment. + * + * If @boundary is nonzero, objects returned from dma_pool_alloc() won't + * cross that size boundary. This is useful for devices which have + * addressing restrictions on individual DMA transfers, such as not crossing + * boundaries of 4KBytes. + */ +struct dma_pool *dma_pool_create(const char *name, struct device *dev, + size_t size, size_t align, size_t boundary) +{ + struct dma_pool *retval; + size_t allocation; + + if (align == 0) { + align = 1; + } else if (align & (align - 1)) { + return NULL; + } + + if (size == 0) { + return NULL; + } else if (size < 4) { + size = 4; + } + + if ((size % align) != 0) + size = ALIGN(size, align); + + allocation = max_t(size_t, size, PAGE_SIZE); + + allocation = (allocation+0x7FFF) & ~0x7FFF; + + if (!boundary) { + boundary = allocation; + } else if ((boundary < size) || (boundary & (boundary - 1))) { + return NULL; + } + + retval = kmalloc(sizeof(*retval), GFP_KERNEL); + + if (!retval) + return retval; + + INIT_LIST_HEAD(&retval->page_list); + +// spin_lock_init(&retval->lock); + + retval->size = size; + retval->boundary = boundary; + retval->allocation = allocation; + + INIT_LIST_HEAD(&retval->pools); + + return retval; +} + +static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) +{ + unsigned int offset = 0; + unsigned int next_boundary = pool->boundary; + + do { + unsigned int next = offset + pool->size; + if (unlikely((next + pool->size) >= next_boundary)) { + next = next_boundary; + next_boundary += pool->boundary; + } + *(int *)(page->vaddr + offset) = next; + offset = next; + } while (offset < pool->allocation); +} + + +static struct dma_page *pool_alloc_page(struct dma_pool *pool) +{ + struct dma_page *page; + + page = malloc(sizeof(*page)); + if (!page) + return NULL; + page->vaddr = (void*)KernelAlloc(pool->allocation); + + dbgprintf("%s 0x%0x ",__FUNCTION__, page->vaddr); + + if (page->vaddr) + { + page->dma = GetPgAddr(page->vaddr); + + dbgprintf("dma 0x%0x\n", page->dma); + + pool_initialise_page(pool, page); + list_add(&page->page_list, &pool->page_list); + page->in_use = 0; + page->offset = 0; + } else { + free(page); + page = NULL; + } + return page; +} + +static inline int is_page_busy(struct dma_page *page) +{ + return page->in_use != 0; +} + + +static void pool_free_page(struct dma_pool *pool, struct dma_page *page) +{ + dma_addr_t dma = page->dma; + + KernelFree(page->vaddr); + list_del(&page->page_list); + free(page); +} + + +/** + * dma_pool_destroy - destroys a pool of dma memory blocks. + * @pool: dma pool that will be destroyed + * Context: !in_interrupt() + * + * Caller guarantees that no more memory from the pool is in use, + * and that nothing will try to use the pool after this call. + */ +void dma_pool_destroy(struct dma_pool *pool) +{ + mutex_lock(&pools_lock); + list_del(&pool->pools); + mutex_unlock(&pools_lock); + + while (!list_empty(&pool->page_list)) { + struct dma_page *page; + page = list_entry(pool->page_list.next, + struct dma_page, page_list); + if (is_page_busy(page)) + { + printk(KERN_ERR "dma_pool_destroy %p busy\n", + page->vaddr); + /* leak the still-in-use consistent memory */ + list_del(&page->page_list); + kfree(page); + } else + pool_free_page(pool, page); + } + + kfree(pool); +} + + +/** + * dma_pool_alloc - get a block of consistent memory + * @pool: dma pool that will produce the block + * @mem_flags: GFP_* bitmask + * @handle: pointer to dma address of block + * + * This returns the kernel virtual address of a currently unused block, + * and reports its dma address through the handle. + * If such a memory block can't be allocated, %NULL is returned. + */ +void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, + dma_addr_t *handle) +{ + u32_t efl; + struct dma_page *page; + size_t offset; + void *retval; + + efl = safe_cli(); + restart: + list_for_each_entry(page, &pool->page_list, page_list) { + if (page->offset < pool->allocation) + goto ready; + } + page = pool_alloc_page(pool); + if (!page) + { + retval = NULL; + goto done; + } + + ready: + page->in_use++; + offset = page->offset; + page->offset = *(int *)(page->vaddr + offset); + retval = offset + page->vaddr; + *handle = offset + page->dma; + done: + safe_sti(efl); + return retval; +} + + + +static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) +{ + struct dma_page *page; + u32_t efl; + + efl = safe_cli(); + + list_for_each_entry(page, &pool->page_list, page_list) { + if (dma < page->dma) + continue; + if (dma < (page->dma + pool->allocation)) + goto done; + } + page = NULL; + done: + safe_sti(efl); + + return page; +} + +/** + * dma_pool_free - put block back into dma pool + * @pool: the dma pool holding the block + * @vaddr: virtual address of block + * @dma: dma address of block + * + * Caller promises neither device nor driver will again touch this block + * unless it is first re-allocated. + */ +void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) +{ + struct dma_page *page; + unsigned long flags; + unsigned int offset; + + u32_t efl; + + page = pool_find_page(pool, dma); + if (!page) { + printk(KERN_ERR "dma_pool_free %p/%lx (bad dma)\n", + vaddr, (unsigned long)dma); + return; + } + + offset = vaddr - page->vaddr; + + efl = safe_cli(); + { + page->in_use--; + *(int *)vaddr = page->offset; + page->offset = offset; + /* + * Resist a temptation to do + * if (!is_page_busy(page)) pool_free_page(pool, page); + * Better have a few empty pages hang around. + */ + }safe_sti(efl); +} + diff --git a/drivers/ddk/malloc/malloc.c b/drivers/ddk/malloc/malloc.c index c594dbd9b4..2427fcd3ae 100644 --- a/drivers/ddk/malloc/malloc.c +++ b/drivers/ddk/malloc/malloc.c @@ -1,3992 +1,1826 @@ -/* - This is a version (aka dlmalloc) of malloc/free/realloc written by - Doug Lea and released to the public domain, as explained at - http://creativecommons.org/licenses/publicdomain. Send questions, - comments, complaints, performance data, etc to dl@cs.oswego.edu - -* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee) - - Note: There may be an updated version of this malloc obtainable at - ftp://gee.cs.oswego.edu/pub/misc/malloc.c - Check before installing! - -* Quickstart - - This library is all in one file to simplify the most common usage: - ftp it, compile it (-O3), and link it into another program. All of - the compile-time options default to reasonable values for use on - most platforms. You might later want to step through various - compile-time and dynamic tuning options. - - For convenience, an include file for code using this malloc is at: - ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h - You don't really need this .h file unless you call functions not - defined in your system include files. The .h file contains only the - excerpts from this file needed for using this malloc on ANSI C/C++ - systems, so long as you haven't changed compile-time options about - naming and tuning parameters. If you do, then you can create your - own malloc.h that does include all settings by cutting at the point - indicated below. Note that you may already by default be using a C - library containing a malloc that is based on some version of this - malloc (for example in linux). You might still want to use the one - in this file to customize settings or to avoid overheads associated - with library versions. - -* Vital statistics: - - Supported pointer/size_t representation: 4 or 8 bytes - size_t MUST be an unsigned type of the same width as - pointers. (If you are using an ancient system that declares - size_t as a signed type, or need it to be a different width - than pointers, you can use a previous release of this malloc - (e.g. 2.7.2) supporting these.) - - Alignment: 8 bytes (default) - This suffices for nearly all current machines and C compilers. - However, you can define MALLOC_ALIGNMENT to be wider than this - if necessary (up to 128bytes), at the expense of using more space. - - Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) - 8 or 16 bytes (if 8byte sizes) - Each malloced chunk has a hidden word of overhead holding size - and status information, and additional cross-check word - if FOOTERS is defined. - - Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) - 8-byte ptrs: 32 bytes (including overhead) - - Even a request for zero bytes (i.e., malloc(0)) returns a - pointer to something of the minimum allocatable size. - The maximum overhead wastage (i.e., number of extra bytes - allocated than were requested in malloc) is less than or equal - to the minimum size, except for requests >= mmap_threshold that - are serviced via mmap(), where the worst case wastage is about - 32 bytes plus the remainder from a system page (the minimal - mmap unit); typically 4096 or 8192 bytes. - - Security: static-safe; optionally more or less - The "security" of malloc refers to the ability of malicious - code to accentuate the effects of errors (for example, freeing - space that is not currently malloc'ed or overwriting past the - ends of chunks) in code that calls malloc. This malloc - guarantees not to modify any memory locations below the base of - heap, i.e., static variables, even in the presence of usage - errors. The routines additionally detect most improper frees - and reallocs. All this holds as long as the static bookkeeping - for malloc itself is not corrupted by some other means. This - is only one aspect of security -- these checks do not, and - cannot, detect all possible programming errors. - - If FOOTERS is defined nonzero, then each allocated chunk - carries an additional check word to verify that it was malloced - from its space. These check words are the same within each - execution of a program using malloc, but differ across - executions, so externally crafted fake chunks cannot be - freed. This improves security by rejecting frees/reallocs that - could corrupt heap memory, in addition to the checks preventing - writes to statics that are always on. This may further improve - security at the expense of time and space overhead. (Note that - FOOTERS may also be worth using with MSPACES.) - - By default detected errors cause the program to abort (calling - "abort()"). You can override this to instead proceed past - errors by defining PROCEED_ON_ERROR. In this case, a bad free - has no effect, and a malloc that encounters a bad address - caused by user overwrites will ignore the bad address by - dropping pointers and indices to all known memory. This may - be appropriate for programs that should continue if at all - possible in the face of programming errors, although they may - run out of memory because dropped memory is never reclaimed. - - If you don't like either of these options, you can define - CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything - else. And if if you are sure that your program using malloc has - no errors or vulnerabilities, you can define INSECURE to 1, - which might (or might not) provide a small performance improvement. - - Thread-safety: NOT thread-safe unless USE_LOCKS defined - When USE_LOCKS is defined, each public call to malloc, free, - etc is surrounded with either a pthread mutex or a win32 - spinlock (depending on WIN32). This is not especially fast, and - can be a major bottleneck. It is designed only to provide - minimal protection in concurrent environments, and to provide a - basis for extensions. If you are using malloc in a concurrent - program, consider instead using ptmalloc, which is derived from - a version of this malloc. (See http://www.malloc.de). - - System requirements: Any combination of MORECORE and/or MMAP/MUNMAP - This malloc can use unix sbrk or any emulation (invoked using - the CALL_MORECORE macro) and/or mmap/munmap or any emulation - (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system - memory. On most unix systems, it tends to work best if both - MORECORE and MMAP are enabled. On Win32, it uses emulations - based on VirtualAlloc. It also uses common C library functions - like memset. - - Compliance: I believe it is compliant with the Single Unix Specification - (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably - others as well. - -* Overview of algorithms - - This is not the fastest, most space-conserving, most portable, or - most tunable malloc ever written. However it is among the fastest - while also being among the most space-conserving, portable and - tunable. Consistent balance across these factors results in a good - general-purpose allocator for malloc-intensive programs. - - In most ways, this malloc is a best-fit allocator. Generally, it - chooses the best-fitting existing chunk for a request, with ties - broken in approximately least-recently-used order. (This strategy - normally maintains low fragmentation.) However, for requests less - than 256bytes, it deviates from best-fit when there is not an - exactly fitting available chunk by preferring to use space adjacent - to that used for the previous small request, as well as by breaking - ties in approximately most-recently-used order. (These enhance - locality of series of small allocations.) And for very large requests - (>= 256Kb by default), it relies on system memory mapping - facilities, if supported. (This helps avoid carrying around and - possibly fragmenting memory used only for large chunks.) - - All operations (except malloc_stats and mallinfo) have execution - times that are bounded by a constant factor of the number of bits in - a size_t, not counting any clearing in calloc or copying in realloc, - or actions surrounding MORECORE and MMAP that have times - proportional to the number of non-contiguous regions returned by - system allocation routines, which is often just 1. - - The implementation is not very modular and seriously overuses - macros. Perhaps someday all C compilers will do as good a job - inlining modular code as can now be done by brute-force expansion, - but now, enough of them seem not to. - - Some compilers issue a lot of warnings about code that is - dead/unreachable only on some platforms, and also about intentional - uses of negation on unsigned types. All known cases of each can be - ignored. - - For a longer but out of date high-level description, see - http://gee.cs.oswego.edu/dl/html/malloc.html - -* MSPACES - If MSPACES is defined, then in addition to malloc, free, etc., - this file also defines mspace_malloc, mspace_free, etc. These - are versions of malloc routines that take an "mspace" argument - obtained using create_mspace, to control all internal bookkeeping. - If ONLY_MSPACES is defined, only these versions are compiled. - So if you would like to use this allocator for only some allocations, - and your system malloc for others, you can compile with - ONLY_MSPACES and then do something like... - static mspace mymspace = create_mspace(0,0); // for example - #define mymalloc(bytes) mspace_malloc(mymspace, bytes) - - (Note: If you only need one instance of an mspace, you can instead - use "USE_DL_PREFIX" to relabel the global malloc.) - - You can similarly create thread-local allocators by storing - mspaces as thread-locals. For example: - static __thread mspace tlms = 0; - void* tlmalloc(size_t bytes) { - if (tlms == 0) tlms = create_mspace(0, 0); - return mspace_malloc(tlms, bytes); - } - void tlfree(void* mem) { mspace_free(tlms, mem); } - - Unless FOOTERS is defined, each mspace is completely independent. - You cannot allocate from one and free to another (although - conformance is only weakly checked, so usage errors are not always - caught). If FOOTERS is defined, then each chunk carries around a tag - indicating its originating mspace, and frees are directed to their - originating spaces. - - ------------------------- Compile-time options --------------------------- - -Be careful in setting #define values for numerical constants of type -size_t. On some systems, literal values are not automatically extended -to size_t precision unless they are explicitly casted. - -WIN32 default: defined if _WIN32 defined - Defining WIN32 sets up defaults for MS environment and compilers. - Otherwise defaults are for unix. - -MALLOC_ALIGNMENT default: (size_t)8 - Controls the minimum alignment for malloc'ed chunks. It must be a - power of two and at least 8, even on machines for which smaller - alignments would suffice. It may be defined as larger than this - though. Note however that code and data structures are optimized for - the case of 8-byte alignment. - -MSPACES default: 0 (false) - If true, compile in support for independent allocation spaces. - This is only supported if HAVE_MMAP is true. - -ONLY_MSPACES default: 0 (false) - If true, only compile in mspace versions, not regular versions. - -USE_LOCKS default: 0 (false) - Causes each call to each public routine to be surrounded with - pthread or WIN32 mutex lock/unlock. (If set true, this can be - overridden on a per-mspace basis for mspace versions.) - -FOOTERS default: 0 - If true, provide extra checking and dispatching by placing - information in the footers of allocated chunks. This adds - space and time overhead. - -INSECURE default: 0 - If true, omit checks for usage errors and heap space overwrites. - -USE_DL_PREFIX default: NOT defined - Causes compiler to prefix all public routines with the string 'dl'. - This can be useful when you only want to use this malloc in one part - of a program, using your regular system malloc elsewhere. - -ABORT default: defined as abort() - Defines how to abort on failed checks. On most systems, a failed - check cannot die with an "assert" or even print an informative - message, because the underlying print routines in turn call malloc, - which will fail again. Generally, the best policy is to simply call - abort(). It's not very useful to do more than this because many - errors due to overwriting will show up as address faults (null, odd - addresses etc) rather than malloc-triggered checks, so will also - abort. Also, most compilers know that abort() does not return, so - can better optimize code conditionally calling it. - -PROCEED_ON_ERROR default: defined as 0 (false) - Controls whether detected bad addresses cause them to bypassed - rather than aborting. If set, detected bad arguments to free and - realloc are ignored. And all bookkeeping information is zeroed out - upon a detected overwrite of freed heap space, thus losing the - ability to ever return it from malloc again, but enabling the - application to proceed. If PROCEED_ON_ERROR is defined, the - static variable malloc_corruption_error_count is compiled in - and can be examined to see if errors have occurred. This option - generates slower code than the default abort policy. - -DEBUG default: NOT defined - The DEBUG setting is mainly intended for people trying to modify - this code or diagnose problems when porting to new platforms. - However, it may also be able to better isolate user errors than just - using runtime checks. The assertions in the check routines spell - out in more detail the assumptions and invariants underlying the - algorithms. The checking is fairly extensive, and will slow down - execution noticeably. Calling malloc_stats or mallinfo with DEBUG - set will attempt to check every non-mmapped allocated and free chunk - in the course of computing the summaries. - -ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) - Debugging assertion failures can be nearly impossible if your - version of the assert macro causes malloc to be called, which will - lead to a cascade of further failures, blowing the runtime stack. - ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), - which will usually make debugging easier. - -MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 - The action to take before "return 0" when malloc fails to be able to - return memory because there is none available. - -HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES - True if this system supports sbrk or an emulation of it. - -MORECORE default: sbrk - The name of the sbrk-style system routine to call to obtain more - memory. See below for guidance on writing custom MORECORE - functions. The type of the argument to sbrk/MORECORE varies across - systems. It cannot be size_t, because it supports negative - arguments, so it is normally the signed type of the same width as - size_t (sometimes declared as "intptr_t"). It doesn't much matter - though. Internally, we only call it with arguments less than half - the max value of a size_t, which should work across all reasonable - possibilities, although sometimes generating compiler warnings. See - near the end of this file for guidelines for creating a custom - version of MORECORE. - -MORECORE_CONTIGUOUS default: 1 (true) - If true, take advantage of fact that consecutive calls to MORECORE - with positive arguments always return contiguous increasing - addresses. This is true of unix sbrk. It does not hurt too much to - set it true anyway, since malloc copes with non-contiguities. - Setting it false when definitely non-contiguous saves time - and possibly wasted space it would take to discover this though. - -MORECORE_CANNOT_TRIM default: NOT defined - True if MORECORE cannot release space back to the system when given - negative arguments. This is generally necessary only if you are - using a hand-crafted MORECORE function that cannot handle negative - arguments. - -HAVE_MMAP default: 1 (true) - True if this system supports mmap or an emulation of it. If so, and - HAVE_MORECORE is not true, MMAP is used for all system - allocation. If set and HAVE_MORECORE is true as well, MMAP is - primarily used to directly allocate very large blocks. It is also - used as a backup strategy in cases where MORECORE fails to provide - space from system. Note: A single call to MUNMAP is assumed to be - able to unmap memory that may have be allocated using multiple calls - to MMAP, so long as they are adjacent. - -HAVE_MREMAP default: 1 on linux, else 0 - If true realloc() uses mremap() to re-allocate large blocks and - extend or shrink allocation spaces. - -MMAP_CLEARS default: 1 on unix - True if mmap clears memory so calloc doesn't need to. This is true - for standard unix mmap using /dev/zero. - -USE_BUILTIN_FFS default: 0 (i.e., not used) - Causes malloc to use the builtin ffs() function to compute indices. - Some compilers may recognize and intrinsify ffs to be faster than the - supplied C version. Also, the case of x86 using gcc is special-cased - to an asm instruction, so is already as fast as it can be, and so - this setting has no effect. (On most x86s, the asm version is only - slightly faster than the C version.) - -malloc_getpagesize default: derive from system includes, or 4096. - The system page size. To the extent possible, this malloc manages - memory from the system in page-size units. This may be (and - usually is) a function rather than a constant. This is ignored - if WIN32, where page size is determined using getSystemInfo during - initialization. - -USE_DEV_RANDOM default: 0 (i.e., not used) - Causes malloc to use /dev/random to initialize secure magic seed for - stamping footers. Otherwise, the current time is used. - -NO_MALLINFO default: 0 - If defined, don't compile "mallinfo". This can be a simple way - of dealing with mismatches between system declarations and - those in this file. - -MALLINFO_FIELD_TYPE default: size_t - The type of the fields in the mallinfo struct. This was originally - defined as "int" in SVID etc, but is more usefully defined as - size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set - -REALLOC_ZERO_BYTES_FREES default: not defined - This should be set if a call to realloc with zero bytes should - be the same as a call to free. Some people think it should. Otherwise, - since this malloc returns a unique pointer for malloc(0), so does - realloc(p, 0). - -LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H -LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H -LACKS_STDLIB_H default: NOT defined unless on WIN32 - Define these if your system does not have these header files. - You might need to manually insert some of the declarations they provide. - -DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, - system_info.dwAllocationGranularity in WIN32, - otherwise 64K. - Also settable using mallopt(M_GRANULARITY, x) - The unit for allocating and deallocating memory from the system. On - most systems with contiguous MORECORE, there is no reason to - make this more than a page. However, systems with MMAP tend to - either require or encourage larger granularities. You can increase - this value to prevent system allocation functions to be called so - often, especially if they are slow. The value must be at least one - page and must be a power of two. Setting to 0 causes initialization - to either page size or win32 region size. (Note: In previous - versions of malloc, the equivalent of this option was called - "TOP_PAD") - -DEFAULT_TRIM_THRESHOLD default: 2MB - Also settable using mallopt(M_TRIM_THRESHOLD, x) - The maximum amount of unused top-most memory to keep before - releasing via malloc_trim in free(). Automatic trimming is mainly - useful in long-lived programs using contiguous MORECORE. Because - trimming via sbrk can be slow on some systems, and can sometimes be - wasteful (in cases where programs immediately afterward allocate - more large chunks) the value should be high enough so that your - overall system performance would improve by releasing this much - memory. As a rough guide, you might set to a value close to the - average size of a process (program) running on your system. - Releasing this much memory would allow such a process to run in - memory. Generally, it is worth tuning trim thresholds when a - program undergoes phases where several large chunks are allocated - and released in ways that can reuse each other's storage, perhaps - mixed with phases where there are no such chunks at all. The trim - value must be greater than page size to have any useful effect. To - disable trimming completely, you can set to MAX_SIZE_T. Note that the trick - some people use of mallocing a huge space and then freeing it at - program startup, in an attempt to reserve system memory, doesn't - have the intended effect under automatic trimming, since that memory - will immediately be returned to the system. - -DEFAULT_MMAP_THRESHOLD default: 256K - Also settable using mallopt(M_MMAP_THRESHOLD, x) - The request size threshold for using MMAP to directly service a - request. Requests of at least this size that cannot be allocated - using already-existing space will be serviced via mmap. (If enough - normal freed space already exists it is used instead.) Using mmap - segregates relatively large chunks of memory so that they can be - individually obtained and released from the host system. A request - serviced through mmap is never reused by any other request (at least - not directly; the system may just so happen to remap successive - requests to the same locations). Segregating space in this way has - the benefits that: Mmapped space can always be individually released - back to the system, which helps keep the system level memory demands - of a long-lived program low. Also, mapped memory doesn't become - `locked' between other chunks, as can happen with normally allocated - chunks, which means that even trimming via malloc_trim would not - release them. However, it has the disadvantage that the space - cannot be reclaimed, consolidated, and then used to service later - requests, as happens with normal chunks. The advantages of mmap - nearly always outweigh disadvantages for "large" chunks, but the - value of "large" may vary across systems. The default is an - empirically derived value that works well in most systems. You can - disable mmap by setting to MAX_SIZE_T. - -*/ - -#ifdef KOLIBRI - -#define IMPORT __attribute__ ((stdcall)) __attribute__ ((dllimport)) - -void* IMPORT KernelAlloc(unsigned size)__asm__("KernelAlloc"); -void IMPORT KernelFree(void *mem)__asm__("KernelFree"); - -#else - -#define IMPORT __attribute__ ((dllimport)) - -void* __fastcall IMPORT mem_alloc(unsigned size, unsigned flags)__asm__("MemAlloc"); -void __fastcall IMPORT mem_free(void *mem)__asm__("MemFree"); - -#endif - -#define MALLOC_ALIGNMENT ((size_t)8U) -#define DEFAULT_MMAP_THRESHOLD ((size_t)32U * (size_t)1024U) -#define NO_MALLINFO 1 -#define MORECORE_CANNOT_TRIM -#define FOOTERS 0 -#define ABORT - -#undef WIN32 -#undef _WIN32 - -typedef unsigned int size_t; - -#define HAVE_MMAP 1 -#define HAVE_MORECORE 0 -#define LACKS_UNISTD_H -#define LACKS_SYS_PARAM_H -#define LACKS_SYS_MMAN_H -#define LACKS_STRING_H -#define LACKS_STRINGS_H -#define LACKS_SYS_TYPES_H -#define LACKS_ERRNO_H -#define MALLOC_FAILURE_ACTION -#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */ - -#if defined(DARWIN) || defined(_DARWIN) -/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ -#ifndef HAVE_MORECORE -#define HAVE_MORECORE 0 -#define HAVE_MMAP 1 -#endif /* HAVE_MORECORE */ -#endif /* DARWIN */ - -#ifndef LACKS_SYS_TYPES_H -#include /* For size_t */ -#endif /* LACKS_SYS_TYPES_H */ - -/* The maximum possible size_t value has all bits set */ -#define MAX_SIZE_T (~(size_t)0) - -#ifndef ONLY_MSPACES -#define ONLY_MSPACES 0 -#endif /* ONLY_MSPACES */ -#ifndef MSPACES -#if ONLY_MSPACES -#define MSPACES 1 -#else /* ONLY_MSPACES */ -#define MSPACES 0 -#endif /* ONLY_MSPACES */ -#endif /* MSPACES */ -#ifndef MALLOC_ALIGNMENT -#define MALLOC_ALIGNMENT ((size_t)8U) -#endif /* MALLOC_ALIGNMENT */ -#ifndef FOOTERS -#define FOOTERS 0 -#endif /* FOOTERS */ -#ifndef ABORT -#define ABORT abort() -#endif /* ABORT */ -#ifndef ABORT_ON_ASSERT_FAILURE -#define ABORT_ON_ASSERT_FAILURE 1 -#endif /* ABORT_ON_ASSERT_FAILURE */ -#ifndef PROCEED_ON_ERROR -#define PROCEED_ON_ERROR 0 -#endif /* PROCEED_ON_ERROR */ -#ifndef USE_LOCKS -#define USE_LOCKS 0 -#endif /* USE_LOCKS */ -#ifndef INSECURE -#define INSECURE 0 -#endif /* INSECURE */ -#ifndef HAVE_MMAP -#define HAVE_MMAP 1 -#endif /* HAVE_MMAP */ -#ifndef MMAP_CLEARS -#define MMAP_CLEARS 1 -#endif /* MMAP_CLEARS */ -#ifndef HAVE_MREMAP -#ifdef linux -#define HAVE_MREMAP 1 -#else /* linux */ -#define HAVE_MREMAP 0 -#endif /* linux */ -#endif /* HAVE_MREMAP */ -#ifndef MALLOC_FAILURE_ACTION -#define MALLOC_FAILURE_ACTION errno = ENOMEM; -#endif /* MALLOC_FAILURE_ACTION */ -#ifndef HAVE_MORECORE -#if ONLY_MSPACES -#define HAVE_MORECORE 0 -#else /* ONLY_MSPACES */ -#define HAVE_MORECORE 1 -#endif /* ONLY_MSPACES */ -#endif /* HAVE_MORECORE */ -#if !HAVE_MORECORE -#define MORECORE_CONTIGUOUS 0 -#else /* !HAVE_MORECORE */ -#ifndef MORECORE -#define MORECORE sbrk -#endif /* MORECORE */ -#ifndef MORECORE_CONTIGUOUS -#define MORECORE_CONTIGUOUS 1 -#endif /* MORECORE_CONTIGUOUS */ -#endif /* HAVE_MORECORE */ -#ifndef DEFAULT_GRANULARITY -#if MORECORE_CONTIGUOUS -#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ -#else /* MORECORE_CONTIGUOUS */ -#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) -#endif /* MORECORE_CONTIGUOUS */ -#endif /* DEFAULT_GRANULARITY */ -#ifndef DEFAULT_TRIM_THRESHOLD -#ifndef MORECORE_CANNOT_TRIM -#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) -#else /* MORECORE_CANNOT_TRIM */ -#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T -#endif /* MORECORE_CANNOT_TRIM */ -#endif /* DEFAULT_TRIM_THRESHOLD */ -#ifndef DEFAULT_MMAP_THRESHOLD -#if HAVE_MMAP -#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) -#else /* HAVE_MMAP */ -#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T -#endif /* HAVE_MMAP */ -#endif /* DEFAULT_MMAP_THRESHOLD */ -#ifndef USE_BUILTIN_FFS -#define USE_BUILTIN_FFS 0 -#endif /* USE_BUILTIN_FFS */ -#ifndef USE_DEV_RANDOM -#define USE_DEV_RANDOM 0 -#endif /* USE_DEV_RANDOM */ -#ifndef NO_MALLINFO -#define NO_MALLINFO 0 -#endif /* NO_MALLINFO */ -#ifndef MALLINFO_FIELD_TYPE -#define MALLINFO_FIELD_TYPE size_t -#endif /* MALLINFO_FIELD_TYPE */ - - -/* - mallopt tuning options. SVID/XPG defines four standard parameter - numbers for mallopt, normally defined in malloc.h. None of these - are used in this malloc, so setting them has no effect. But this - malloc does support the following options. -*/ - -#define M_TRIM_THRESHOLD (-1) -#define M_GRANULARITY (-2) -#define M_MMAP_THRESHOLD (-3) - -/* ------------------------ Mallinfo declarations ------------------------ */ - -#if !NO_MALLINFO -#endif /* NO_MALLINFO */ - -#ifdef __cplusplus -extern "C" { -#endif /* __cplusplus */ - -#if !ONLY_MSPACES - -/* ------------------- Declarations of public routines ------------------- */ - -#ifndef USE_DL_PREFIX -#define dlcalloc calloc -#define dlfree free -#define dlmalloc malloc -#define dlmemalign memalign -#define dlrealloc realloc -#define dlvalloc valloc -#define dlpvalloc pvalloc -#define dlmallinfo mallinfo -#define dlmallopt mallopt -#define dlmalloc_trim malloc_trim -#define dlmalloc_stats malloc_stats -#define dlmalloc_usable_size malloc_usable_size -#define dlmalloc_footprint malloc_footprint -#define dlmalloc_max_footprint malloc_max_footprint -#define dlindependent_calloc independent_calloc -#define dlindependent_comalloc independent_comalloc -#endif /* USE_DL_PREFIX */ - - -/* - malloc(size_t n) - Returns a pointer to a newly allocated chunk of at least n bytes, or - null if no space is available, in which case errno is set to ENOMEM - on ANSI C systems. - - If n is zero, malloc returns a minimum-sized chunk. (The minimum - size is 16 bytes on most 32bit systems, and 32 bytes on 64bit - systems.) Note that size_t is an unsigned type, so calls with - arguments that would be negative if signed are interpreted as - requests for huge amounts of space, which will often fail. The - maximum supported value of n differs across systems, but is in all - cases less than the maximum representable value of a size_t. -*/ -void* dlmalloc(size_t); - -/* - free(void* p) - Releases the chunk of memory pointed to by p, that had been previously - allocated using malloc or a related routine such as realloc. - It has no effect if p is null. If p was not malloced or already - freed, free(p) will by default cause the current program to abort. -*/ -void dlfree(void*); - -/* - calloc(size_t n_elements, size_t element_size); - Returns a pointer to n_elements * element_size bytes, with all locations - set to zero. -*/ -void* dlcalloc(size_t, size_t); - -/* - realloc(void* p, size_t n) - Returns a pointer to a chunk of size n that contains the same data - as does chunk p up to the minimum of (n, p's size) bytes, or null - if no space is available. - - The returned pointer may or may not be the same as p. The algorithm - prefers extending p in most cases when possible, otherwise it - employs the equivalent of a malloc-copy-free sequence. - - If p is null, realloc is equivalent to malloc. - - If space is not available, realloc returns null, errno is set (if on - ANSI) and p is NOT freed. - - if n is for fewer bytes than already held by p, the newly unused - space is lopped off and freed if possible. realloc with a size - argument of zero (re)allocates a minimum-sized chunk. - - The old unix realloc convention of allowing the last-free'd chunk - to be used as an argument to realloc is not supported. -*/ - -void* dlrealloc(void*, size_t); - -/* - memalign(size_t alignment, size_t n); - Returns a pointer to a newly allocated chunk of n bytes, aligned - in accord with the alignment argument. - - The alignment argument should be a power of two. If the argument is - not a power of two, the nearest greater power is used. - 8-byte alignment is guaranteed by normal malloc calls, so don't - bother calling memalign with an argument of 8 or less. - - Overreliance on memalign is a sure way to fragment space. -*/ -void* dlmemalign(size_t, size_t); - -/* - valloc(size_t n); - Equivalent to memalign(pagesize, n), where pagesize is the page - size of the system. If the pagesize is unknown, 4096 is used. -*/ -void* dlvalloc(size_t); - -/* - mallopt(int parameter_number, int parameter_value) - Sets tunable parameters The format is to provide a - (parameter-number, parameter-value) pair. mallopt then sets the - corresponding parameter to the argument value if it can (i.e., so - long as the value is meaningful), and returns 1 if successful else - 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, - normally defined in malloc.h. None of these are use in this malloc, - so setting them has no effect. But this malloc also supports other - options in mallopt. See below for details. Briefly, supported - parameters are as follows (listed defaults are for "typical" - configurations). - - Symbol param # default allowed param values - M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables) - M_GRANULARITY -2 page size any power of 2 >= page size - M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) -*/ -int dlmallopt(int, int); - -/* - malloc_footprint(); - Returns the number of bytes obtained from the system. The total - number of bytes allocated by malloc, realloc etc., is less than this - value. Unlike mallinfo, this function returns only a precomputed - result, so can be called frequently to monitor memory consumption. - Even if locks are otherwise defined, this function does not use them, - so results might not be up to date. -*/ -size_t dlmalloc_footprint(void); - -/* - malloc_max_footprint(); - Returns the maximum number of bytes obtained from the system. This - value will be greater than current footprint if deallocated space - has been reclaimed by the system. The peak number of bytes allocated - by malloc, realloc etc., is less than this value. Unlike mallinfo, - this function returns only a precomputed result, so can be called - frequently to monitor memory consumption. Even if locks are - otherwise defined, this function does not use them, so results might - not be up to date. -*/ -size_t dlmalloc_max_footprint(void); - -#if !NO_MALLINFO -#endif /* NO_MALLINFO */ - -/* - independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); - - independent_calloc is similar to calloc, but instead of returning a - single cleared space, it returns an array of pointers to n_elements - independent elements that can hold contents of size elem_size, each - of which starts out cleared, and can be independently freed, - realloc'ed etc. The elements are guaranteed to be adjacently - allocated (this is not guaranteed to occur with multiple callocs or - mallocs), which may also improve cache locality in some - applications. - - The "chunks" argument is optional (i.e., may be null, which is - probably the most typical usage). If it is null, the returned array - is itself dynamically allocated and should also be freed when it is - no longer needed. Otherwise, the chunks array must be of at least - n_elements in length. It is filled in with the pointers to the - chunks. - - In either case, independent_calloc returns this pointer array, or - null if the allocation failed. If n_elements is zero and "chunks" - is null, it returns a chunk representing an array with zero elements - (which should be freed if not wanted). - - Each element must be individually freed when it is no longer - needed. If you'd like to instead be able to free all at once, you - should instead use regular calloc and assign pointers into this - space to represent elements. (In this case though, you cannot - independently free elements.) - - independent_calloc simplifies and speeds up implementations of many - kinds of pools. It may also be useful when constructing large data - structures that initially have a fixed number of fixed-sized nodes, - but the number is not known at compile time, and some of the nodes - may later need to be freed. For example: - - struct Node { int item; struct Node* next; }; - - struct Node* build_list() { - struct Node** pool; - int n = read_number_of_nodes_needed(); - if (n <= 0) return 0; - pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); - if (pool == 0) die(); - // organize into a linked list... - struct Node* first = pool[0]; - for (i = 0; i < n-1; ++i) - pool[i]->next = pool[i+1]; - free(pool); // Can now free the array (or not, if it is needed later) - return first; - } -*/ -void** dlindependent_calloc(size_t, size_t, void**); - -/* - independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); - - independent_comalloc allocates, all at once, a set of n_elements - chunks with sizes indicated in the "sizes" array. It returns - an array of pointers to these elements, each of which can be - independently freed, realloc'ed etc. The elements are guaranteed to - be adjacently allocated (this is not guaranteed to occur with - multiple callocs or mallocs), which may also improve cache locality - in some applications. - - The "chunks" argument is optional (i.e., may be null). If it is null - the returned array is itself dynamically allocated and should also - be freed when it is no longer needed. Otherwise, the chunks array - must be of at least n_elements in length. It is filled in with the - pointers to the chunks. - - In either case, independent_comalloc returns this pointer array, or - null if the allocation failed. If n_elements is zero and chunks is - null, it returns a chunk representing an array with zero elements - (which should be freed if not wanted). - - Each element must be individually freed when it is no longer - needed. If you'd like to instead be able to free all at once, you - should instead use a single regular malloc, and assign pointers at - particular offsets in the aggregate space. (In this case though, you - cannot independently free elements.) - - independent_comallac differs from independent_calloc in that each - element may have a different size, and also that it does not - automatically clear elements. - - independent_comalloc can be used to speed up allocation in cases - where several structs or objects must always be allocated at the - same time. For example: - - struct Head { ... } - struct Foot { ... } - - void send_message(char* msg) { - int msglen = strlen(msg); - size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; - void* chunks[3]; - if (independent_comalloc(3, sizes, chunks) == 0) - die(); - struct Head* head = (struct Head*)(chunks[0]); - char* body = (char*)(chunks[1]); - struct Foot* foot = (struct Foot*)(chunks[2]); - // ... - } - - In general though, independent_comalloc is worth using only for - larger values of n_elements. For small values, you probably won't - detect enough difference from series of malloc calls to bother. - - Overuse of independent_comalloc can increase overall memory usage, - since it cannot reuse existing noncontiguous small chunks that - might be available for some of the elements. -*/ -void** dlindependent_comalloc(size_t, size_t*, void**); - - -/* - pvalloc(size_t n); - Equivalent to valloc(minimum-page-that-holds(n)), that is, - round up n to nearest pagesize. - */ -void* dlpvalloc(size_t); - -/* - malloc_trim(size_t pad); - - If possible, gives memory back to the system (via negative arguments - to sbrk) if there is unused memory at the `high' end of the malloc - pool or in unused MMAP segments. You can call this after freeing - large blocks of memory to potentially reduce the system-level memory - requirements of a program. However, it cannot guarantee to reduce - memory. Under some allocation patterns, some large free blocks of - memory will be locked between two used chunks, so they cannot be - given back to the system. - - The `pad' argument to malloc_trim represents the amount of free - trailing space to leave untrimmed. If this argument is zero, only - the minimum amount of memory to maintain internal data structures - will be left. Non-zero arguments can be supplied to maintain enough - trailing space to service future expected allocations without having - to re-obtain memory from the system. - - Malloc_trim returns 1 if it actually released any memory, else 0. -*/ -int dlmalloc_trim(size_t); - -/* - malloc_usable_size(void* p); - - Returns the number of bytes you can actually use in - an allocated chunk, which may be more than you requested (although - often not) due to alignment and minimum size constraints. - You can use this many bytes without worrying about - overwriting other allocated objects. This is not a particularly great - programming practice. malloc_usable_size can be more useful in - debugging and assertions, for example: - - p = malloc(n); - assert(malloc_usable_size(p) >= 256); -*/ -size_t dlmalloc_usable_size(void*); - -/* - malloc_stats(); - Prints on stderr the amount of space obtained from the system (both - via sbrk and mmap), the maximum amount (which may be more than - current if malloc_trim and/or munmap got called), and the current - number of bytes allocated via malloc (or realloc, etc) but not yet - freed. Note that this is the number of bytes allocated, not the - number requested. It will be larger than the number requested - because of alignment and bookkeeping overhead. Because it includes - alignment wastage as being in use, this figure may be greater than - zero even when no user-level chunks are allocated. - - The reported current and maximum system memory can be inaccurate if - a program makes other calls to system memory allocation functions - (normally sbrk) outside of malloc. - - malloc_stats prints only the most commonly interesting statistics. - More information can be obtained by calling mallinfo. -*/ -void dlmalloc_stats(void); - -#endif /* ONLY_MSPACES */ - -#if MSPACES -#endif /* MSPACES */ - -#ifdef __cplusplus -}; /* end of extern "C" */ -#endif /* __cplusplus */ - -/* - ======================================================================== - To make a fully customizable malloc.h header file, cut everything - above this line, put into file malloc.h, edit to suit, and #include it - on the next line, as well as in programs that use this malloc. - ======================================================================== -*/ - -/* #include "malloc.h" */ - -/*------------------------------ internal #includes ---------------------- */ - -#ifdef WIN32 -#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ -#endif /* WIN32 */ - -//#include /* for printing in malloc_stats */ - -#if 0 - -#ifndef LACKS_ERRNO_H -#include /* for MALLOC_FAILURE_ACTION */ -#endif /* LACKS_ERRNO_H */ -#if FOOTERS -#include /* for magic initialization */ -#endif /* FOOTERS */ -#ifndef LACKS_STDLIB_H -#include /* for abort() */ -#endif /* LACKS_STDLIB_H */ -#ifdef DEBUG -#if ABORT_ON_ASSERT_FAILURE -#define assert(x) if(!(x)) ABORT -#else /* ABORT_ON_ASSERT_FAILURE */ -#include -#endif /* ABORT_ON_ASSERT_FAILURE */ -#else /* DEBUG */ -#define assert(x) -#endif /* DEBUG */ -#ifndef LACKS_STRING_H -#include /* for memset etc */ -#endif /* LACKS_STRING_H */ -#if USE_BUILTIN_FFS -#ifndef LACKS_STRINGS_H -#include /* for ffs */ -#endif /* LACKS_STRINGS_H */ -#endif /* USE_BUILTIN_FFS */ -#if HAVE_MMAP -#ifndef LACKS_SYS_MMAN_H -#include /* for mmap */ -#endif /* LACKS_SYS_MMAN_H */ -#ifndef LACKS_FCNTL_H -#include -#endif /* LACKS_FCNTL_H */ -#endif /* HAVE_MMAP */ -#if HAVE_MORECORE -#endif /* HAVE_MMAP */ - -#endif - -#define assert(x) - -#ifndef WIN32 -#endif - -/* ------------------- size_t and alignment properties -------------------- */ - -/* The byte and bit size of a size_t */ -#define SIZE_T_SIZE (sizeof(size_t)) -#define SIZE_T_BITSIZE (sizeof(size_t) << 3) - -/* Some constants coerced to size_t */ -/* Annoying but necessary to avoid errors on some plaftorms */ -#define SIZE_T_ZERO ((size_t)0) -#define SIZE_T_ONE ((size_t)1) -#define SIZE_T_TWO ((size_t)2) -#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) -#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) -#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) -#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) - -/* The bit mask value corresponding to MALLOC_ALIGNMENT */ -#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) - -/* True if address a has acceptable alignment */ -#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) - -/* the number of bytes to offset an address to align it */ -#define align_offset(A)\ - ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ - ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) - -/* -------------------------- MMAP preliminaries ------------------------- */ - -/* - If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and - checks to fail so compiler optimizer can delete code rather than - using so many "#if"s. -*/ - - -/* MORECORE and MMAP must return MFAIL on failure */ -#define MFAIL ((void*)(MAX_SIZE_T)) -#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ - -#if !HAVE_MMAP -#else /* HAVE_MMAP */ -#define IS_MMAPPED_BIT (SIZE_T_ONE) -#define USE_MMAP_BIT (SIZE_T_ONE) - - - -#ifdef KOLIBRI - -/* Win32 MMAP via VirtualAlloc */ -static void* win32mmap(size_t size) { - void* ptr = KernelAlloc(size); - return (ptr != 0)? ptr: MFAIL; -} - -/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ -static void* win32direct_mmap(size_t size) { - void* ptr = KernelAlloc(size); - return (ptr != 0)? ptr: MFAIL; -} - -/* This function supports releasing coalesed segments */ -static int win32munmap(void* ptr, size_t size) { - KernelFree(ptr); - return 0; -} - -#else - -static void* win32mmap(size_t size) { - void* ptr = mem_alloc(size, 3); - return (ptr != 0)? ptr: MFAIL; -} - -/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ -static void* win32direct_mmap(size_t size) { - void* ptr = mem_alloc(size, 3); - return (ptr != 0)? ptr: MFAIL; -} - -/* This function supports releasing coalesed segments */ -static int win32munmap(void* ptr, size_t size) { - mem_free(ptr); - return 0; -} - - -#endif - -#define CALL_MMAP(s) win32mmap(s) -#define CALL_MUNMAP(a, s) win32munmap((a), (s)) -#define DIRECT_MMAP(s) win32direct_mmap(s) -#endif /* HAVE_MMAP */ - -#if HAVE_MMAP && HAVE_MREMAP -#else /* HAVE_MMAP && HAVE_MREMAP */ -#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL -#endif /* HAVE_MMAP && HAVE_MREMAP */ - -#if HAVE_MORECORE -#else /* HAVE_MORECORE */ -#define CALL_MORECORE(S) MFAIL -#endif /* HAVE_MORECORE */ - -/* mstate bit set if continguous morecore disabled or failed */ -#define USE_NONCONTIGUOUS_BIT (4U) - -/* segment bit set in create_mspace_with_base */ -#define EXTERN_BIT (8U) - - -/* --------------------------- Lock preliminaries ------------------------ */ - -#if USE_LOCKS -#else /* USE_LOCKS */ -#define USE_LOCK_BIT (0U) -#define INITIAL_LOCK(l) -#endif /* USE_LOCKS */ - -#if USE_LOCKS && HAVE_MORECORE -#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex); -#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex); -#else /* USE_LOCKS && HAVE_MORECORE */ -#define ACQUIRE_MORECORE_LOCK() -#define RELEASE_MORECORE_LOCK() -#endif /* USE_LOCKS && HAVE_MORECORE */ - -#if USE_LOCKS -#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex); -#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex); -#else /* USE_LOCKS */ -#define ACQUIRE_MAGIC_INIT_LOCK() -#define RELEASE_MAGIC_INIT_LOCK() -#endif /* USE_LOCKS */ - - -/* ----------------------- Chunk representations ------------------------ */ - -/* - (The following includes lightly edited explanations by Colin Plumb.) - - The malloc_chunk declaration below is misleading (but accurate and - necessary). It declares a "view" into memory allowing access to - necessary fields at known offsets from a given base. - - Chunks of memory are maintained using a `boundary tag' method as - originally described by Knuth. (See the paper by Paul Wilson - ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such - techniques.) Sizes of free chunks are stored both in the front of - each chunk and at the end. This makes consolidating fragmented - chunks into bigger chunks fast. The head fields also hold bits - representing whether chunks are free or in use. - - Here are some pictures to make it clearer. They are "exploded" to - show that the state of a chunk can be thought of as extending from - the high 31 bits of the head field of its header through the - prev_foot and PINUSE_BIT bit of the following chunk header. - - A chunk that's in use looks like: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk (if P = 1) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| - | Size of this chunk 1| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | | - +- -+ - | | - +- -+ - | : - +- size - sizeof(size_t) available payload bytes -+ - : | - chunk-> +- -+ - | | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| - | Size of next chunk (may or may not be in use) | +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - And if it's free, it looks like this: - - chunk-> +- -+ - | User payload (must be in use, or we would have merged!) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| - | Size of this chunk 0| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Next pointer | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Prev pointer | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | : - +- size - sizeof(struct chunk) unused bytes -+ - : | - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of this chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| - | Size of next chunk (must be in use, or we would have merged)| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | : - +- User payload -+ - : | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - |0| - +-+ - Note that since we always merge adjacent free chunks, the chunks - adjacent to a free chunk must be in use. - - Given a pointer to a chunk (which can be derived trivially from the - payload pointer) we can, in O(1) time, find out whether the adjacent - chunks are free, and if so, unlink them from the lists that they - are on and merge them with the current chunk. - - Chunks always begin on even word boundaries, so the mem portion - (which is returned to the user) is also on an even word boundary, and - thus at least double-word aligned. - - The P (PINUSE_BIT) bit, stored in the unused low-order bit of the - chunk size (which is always a multiple of two words), is an in-use - bit for the *previous* chunk. If that bit is *clear*, then the - word before the current chunk size contains the previous chunk - size, and can be used to find the front of the previous chunk. - The very first chunk allocated always has this bit set, preventing - access to non-existent (or non-owned) memory. If pinuse is set for - any given chunk, then you CANNOT determine the size of the - previous chunk, and might even get a memory addressing fault when - trying to do so. - - The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of - the chunk size redundantly records whether the current chunk is - inuse. This redundancy enables usage checks within free and realloc, - and reduces indirection when freeing and consolidating chunks. - - Each freshly allocated chunk must have both cinuse and pinuse set. - That is, each allocated chunk borders either a previously allocated - and still in-use chunk, or the base of its memory arena. This is - ensured by making all allocations from the the `lowest' part of any - found chunk. Further, no free chunk physically borders another one, - so each free chunk is known to be preceded and followed by either - inuse chunks or the ends of memory. - - Note that the `foot' of the current chunk is actually represented - as the prev_foot of the NEXT chunk. This makes it easier to - deal with alignments etc but can be very confusing when trying - to extend or adapt this code. - - The exceptions to all this are - - 1. The special chunk `top' is the top-most available chunk (i.e., - the one bordering the end of available memory). It is treated - specially. Top is never included in any bin, is used only if - no other chunk is available, and is released back to the - system if it is very large (see M_TRIM_THRESHOLD). In effect, - the top chunk is treated as larger (and thus less well - fitting) than any other available chunk. The top chunk - doesn't update its trailing size field since there is no next - contiguous chunk that would have to index off it. However, - space is still allocated for it (TOP_FOOT_SIZE) to enable - separation or merging when space is extended. - - 3. Chunks allocated via mmap, which have the lowest-order bit - (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set - PINUSE_BIT in their head fields. Because they are allocated - one-by-one, each must carry its own prev_foot field, which is - also used to hold the offset this chunk has within its mmapped - region, which is needed to preserve alignment. Each mmapped - chunk is trailed by the first two fields of a fake next-chunk - for sake of usage checks. - -*/ - -struct malloc_chunk { - size_t prev_foot; /* Size of previous chunk (if free). */ - size_t head; /* Size and inuse bits. */ - struct malloc_chunk* fd; /* double links -- used only if free. */ - struct malloc_chunk* bk; -}; - -typedef struct malloc_chunk mchunk; -typedef struct malloc_chunk* mchunkptr; -typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ -typedef unsigned int bindex_t; /* Described below */ -typedef unsigned int binmap_t; /* Described below */ -typedef unsigned int flag_t; /* The type of various bit flag sets */ - -/* ------------------- Chunks sizes and alignments ----------------------- */ - -#define MCHUNK_SIZE (sizeof(mchunk)) - -#if FOOTERS -#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) -#else /* FOOTERS */ -#define CHUNK_OVERHEAD (SIZE_T_SIZE) -#endif /* FOOTERS */ - -/* MMapped chunks need a second word of overhead ... */ -#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) -/* ... and additional padding for fake next-chunk at foot */ -#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) - -/* The smallest size we can malloc is an aligned minimal chunk */ -#define MIN_CHUNK_SIZE\ - ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) - -/* conversion from malloc headers to user pointers, and back */ -#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) -#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) -/* chunk associated with aligned address A */ -#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) - -/* Bounds on request (not chunk) sizes. */ -#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) -#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) - -/* pad request bytes into a usable size */ -#define pad_request(req) \ - (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) - -/* pad request, checking for minimum (but not maximum) */ -#define request2size(req) \ - (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) - - -/* ------------------ Operations on head and foot fields ----------------- */ - -/* - The head field of a chunk is or'ed with PINUSE_BIT when previous - adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in - use. If the chunk was obtained with mmap, the prev_foot field has - IS_MMAPPED_BIT set, otherwise holding the offset of the base of the - mmapped region to the base of the chunk. -*/ - -#define PINUSE_BIT (SIZE_T_ONE) -#define CINUSE_BIT (SIZE_T_TWO) -#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) - -/* Head value for fenceposts */ -#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) - -/* extraction of fields from head words */ -#define cinuse(p) ((p)->head & CINUSE_BIT) -#define pinuse(p) ((p)->head & PINUSE_BIT) -#define chunksize(p) ((p)->head & ~(INUSE_BITS)) - -#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) -#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) - -/* Treat space at ptr +/- offset as a chunk */ -#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) -#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) - -/* Ptr to next or previous physical malloc_chunk. */ -#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS))) -#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) - -/* extract next chunk's pinuse bit */ -#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) - -/* Get/set size at footer */ -#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) -#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) - -/* Set size, pinuse bit, and foot */ -#define set_size_and_pinuse_of_free_chunk(p, s)\ - ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) - -/* Set size, pinuse bit, foot, and clear next pinuse */ -#define set_free_with_pinuse(p, s, n)\ - (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) - -#define is_mmapped(p)\ - (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) - -/* Get the internal overhead associated with chunk p */ -#define overhead_for(p)\ - (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) - -/* Return true if malloced space is not necessarily cleared */ -#if MMAP_CLEARS -#define calloc_must_clear(p) (!is_mmapped(p)) -#else /* MMAP_CLEARS */ -#define calloc_must_clear(p) (1) -#endif /* MMAP_CLEARS */ - -/* ---------------------- Overlaid data structures ----------------------- */ - -/* - When chunks are not in use, they are treated as nodes of either - lists or trees. - - "Small" chunks are stored in circular doubly-linked lists, and look - like this: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `head:' | Size of chunk, in bytes |P| - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Forward pointer to next chunk in list | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Back pointer to previous chunk in list | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Unused space (may be 0 bytes long) . - . . - . | -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `foot:' | Size of chunk, in bytes | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - Larger chunks are kept in a form of bitwise digital trees (aka - tries) keyed on chunksizes. Because malloc_tree_chunks are only for - free chunks greater than 256 bytes, their size doesn't impose any - constraints on user chunk sizes. Each node looks like: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `head:' | Size of chunk, in bytes |P| - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Forward pointer to next chunk of same size | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Back pointer to previous chunk of same size | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to left child (child[0]) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to right child (child[1]) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to parent | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | bin index of this chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Unused space . - . | -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `foot:' | Size of chunk, in bytes | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - Each tree holding treenodes is a tree of unique chunk sizes. Chunks - of the same size are arranged in a circularly-linked list, with only - the oldest chunk (the next to be used, in our FIFO ordering) - actually in the tree. (Tree members are distinguished by a non-null - parent pointer.) If a chunk with the same size an an existing node - is inserted, it is linked off the existing node using pointers that - work in the same way as fd/bk pointers of small chunks. - - Each tree contains a power of 2 sized range of chunk sizes (the - smallest is 0x100 <= x < 0x180), which is is divided in half at each - tree level, with the chunks in the smaller half of the range (0x100 - <= x < 0x140 for the top nose) in the left subtree and the larger - half (0x140 <= x < 0x180) in the right subtree. This is, of course, - done by inspecting individual bits. - - Using these rules, each node's left subtree contains all smaller - sizes than its right subtree. However, the node at the root of each - subtree has no particular ordering relationship to either. (The - dividing line between the subtree sizes is based on trie relation.) - If we remove the last chunk of a given size from the interior of the - tree, we need to replace it with a leaf node. The tree ordering - rules permit a node to be replaced by any leaf below it. - - The smallest chunk in a tree (a common operation in a best-fit - allocator) can be found by walking a path to the leftmost leaf in - the tree. Unlike a usual binary tree, where we follow left child - pointers until we reach a null, here we follow the right child - pointer any time the left one is null, until we reach a leaf with - both child pointers null. The smallest chunk in the tree will be - somewhere along that path. - - The worst case number of steps to add, find, or remove a node is - bounded by the number of bits differentiating chunks within - bins. Under current bin calculations, this ranges from 6 up to 21 - (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case - is of course much better. -*/ - -struct malloc_tree_chunk { - /* The first four fields must be compatible with malloc_chunk */ - size_t prev_foot; - size_t head; - struct malloc_tree_chunk* fd; - struct malloc_tree_chunk* bk; - - struct malloc_tree_chunk* child[2]; - struct malloc_tree_chunk* parent; - bindex_t index; -}; - -typedef struct malloc_tree_chunk tchunk; -typedef struct malloc_tree_chunk* tchunkptr; -typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ - -/* A little helper macro for trees */ -#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) - -/* ----------------------------- Segments -------------------------------- */ - -/* - Each malloc space may include non-contiguous segments, held in a - list headed by an embedded malloc_segment record representing the - top-most space. Segments also include flags holding properties of - the space. Large chunks that are directly allocated by mmap are not - included in this list. They are instead independently created and - destroyed without otherwise keeping track of them. - - Segment management mainly comes into play for spaces allocated by - MMAP. Any call to MMAP might or might not return memory that is - adjacent to an existing segment. MORECORE normally contiguously - extends the current space, so this space is almost always adjacent, - which is simpler and faster to deal with. (This is why MORECORE is - used preferentially to MMAP when both are available -- see - sys_alloc.) When allocating using MMAP, we don't use any of the - hinting mechanisms (inconsistently) supported in various - implementations of unix mmap, or distinguish reserving from - committing memory. Instead, we just ask for space, and exploit - contiguity when we get it. It is probably possible to do - better than this on some systems, but no general scheme seems - to be significantly better. - - Management entails a simpler variant of the consolidation scheme - used for chunks to reduce fragmentation -- new adjacent memory is - normally prepended or appended to an existing segment. However, - there are limitations compared to chunk consolidation that mostly - reflect the fact that segment processing is relatively infrequent - (occurring only when getting memory from system) and that we - don't expect to have huge numbers of segments: - - * Segments are not indexed, so traversal requires linear scans. (It - would be possible to index these, but is not worth the extra - overhead and complexity for most programs on most platforms.) - * New segments are only appended to old ones when holding top-most - memory; if they cannot be prepended to others, they are held in - different segments. - - Except for the top-most segment of an mstate, each segment record - is kept at the tail of its segment. Segments are added by pushing - segment records onto the list headed by &mstate.seg for the - containing mstate. - - Segment flags control allocation/merge/deallocation policies: - * If EXTERN_BIT set, then we did not allocate this segment, - and so should not try to deallocate or merge with others. - (This currently holds only for the initial segment passed - into create_mspace_with_base.) - * If IS_MMAPPED_BIT set, the segment may be merged with - other surrounding mmapped segments and trimmed/de-allocated - using munmap. - * If neither bit is set, then the segment was obtained using - MORECORE so can be merged with surrounding MORECORE'd segments - and deallocated/trimmed using MORECORE with negative arguments. -*/ - -struct malloc_segment { - char* base; /* base address */ - size_t size; /* allocated size */ - struct malloc_segment* next; /* ptr to next segment */ - flag_t sflags; /* mmap and extern flag */ -}; - -#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT) -#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) - -typedef struct malloc_segment msegment; -typedef struct malloc_segment* msegmentptr; - -/* ---------------------------- malloc_state ----------------------------- */ - -/* - A malloc_state holds all of the bookkeeping for a space. - The main fields are: - - Top - The topmost chunk of the currently active segment. Its size is - cached in topsize. The actual size of topmost space is - topsize+TOP_FOOT_SIZE, which includes space reserved for adding - fenceposts and segment records if necessary when getting more - space from the system. The size at which to autotrim top is - cached from mparams in trim_check, except that it is disabled if - an autotrim fails. - - Designated victim (dv) - This is the preferred chunk for servicing small requests that - don't have exact fits. It is normally the chunk split off most - recently to service another small request. Its size is cached in - dvsize. The link fields of this chunk are not maintained since it - is not kept in a bin. - - SmallBins - An array of bin headers for free chunks. These bins hold chunks - with sizes less than MIN_LARGE_SIZE bytes. Each bin contains - chunks of all the same size, spaced 8 bytes apart. To simplify - use in double-linked lists, each bin header acts as a malloc_chunk - pointing to the real first node, if it exists (else pointing to - itself). This avoids special-casing for headers. But to avoid - waste, we allocate only the fd/bk pointers of bins, and then use - repositioning tricks to treat these as the fields of a chunk. - - TreeBins - Treebins are pointers to the roots of trees holding a range of - sizes. There are 2 equally spaced treebins for each power of two - from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything - larger. - - Bin maps - There is one bit map for small bins ("smallmap") and one for - treebins ("treemap). Each bin sets its bit when non-empty, and - clears the bit when empty. Bit operations are then used to avoid - bin-by-bin searching -- nearly all "search" is done without ever - looking at bins that won't be selected. The bit maps - conservatively use 32 bits per map word, even if on 64bit system. - For a good description of some of the bit-based techniques used - here, see Henry S. Warren Jr's book "Hacker's Delight" (and - supplement at http://hackersdelight.org/). Many of these are - intended to reduce the branchiness of paths through malloc etc, as - well as to reduce the number of memory locations read or written. - - Segments - A list of segments headed by an embedded malloc_segment record - representing the initial space. - - Address check support - The least_addr field is the least address ever obtained from - MORECORE or MMAP. Attempted frees and reallocs of any address less - than this are trapped (unless INSECURE is defined). - - Magic tag - A cross-check field that should always hold same value as mparams.magic. - - Flags - Bits recording whether to use MMAP, locks, or contiguous MORECORE - - Statistics - Each space keeps track of current and maximum system memory - obtained via MORECORE or MMAP. - - Locking - If USE_LOCKS is defined, the "mutex" lock is acquired and released - around every public call using this mspace. -*/ - -/* Bin types, widths and sizes */ -#define NSMALLBINS (32U) -#define NTREEBINS (32U) -#define SMALLBIN_SHIFT (3U) -#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) -#define TREEBIN_SHIFT (8U) -#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) -#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) -#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) - -struct malloc_state { - binmap_t smallmap; - binmap_t treemap; - size_t dvsize; - size_t topsize; - char* least_addr; - mchunkptr dv; - mchunkptr top; - size_t trim_check; - size_t magic; - mchunkptr smallbins[(NSMALLBINS+1)*2]; - tbinptr treebins[NTREEBINS]; - size_t footprint; - size_t max_footprint; - flag_t mflags; -#if USE_LOCKS - MLOCK_T mutex; /* locate lock among fields that rarely change */ -#endif /* USE_LOCKS */ - msegment seg; -}; - -typedef struct malloc_state* mstate; - -/* ------------- Global malloc_state and malloc_params ------------------- */ - -/* - malloc_params holds global properties, including those that can be - dynamically set using mallopt. There is a single instance, mparams, - initialized in init_mparams. -*/ - -struct malloc_params { - size_t magic; - size_t page_size; - size_t granularity; - size_t mmap_threshold; - size_t trim_threshold; - flag_t default_mflags; -}; - -static struct malloc_params mparams; - -/* The global malloc_state used for all non-"mspace" calls */ -static struct malloc_state _gm_; -#define gm (&_gm_) -#define is_global(M) ((M) == &_gm_) -#define is_initialized(M) ((M)->top != 0) - -/* -------------------------- system alloc setup ------------------------- */ - -/* Operations on mflags */ - -#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) -#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) -#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) - -#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) -#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) -#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) - -#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) -#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) - -#define set_lock(M,L)\ - ((M)->mflags = (L)?\ - ((M)->mflags | USE_LOCK_BIT) :\ - ((M)->mflags & ~USE_LOCK_BIT)) - -/* page-align a size */ -#define page_align(S)\ - (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE)) - -/* granularity-align a size */ -#define granularity_align(S)\ - (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE)) - -#define is_page_aligned(S)\ - (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) -#define is_granularity_aligned(S)\ - (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) - -/* True if segment S holds address A */ -#define segment_holds(S, A)\ - ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) - -/* Return segment holding given address */ -static msegmentptr segment_holding(mstate m, char* addr) { - msegmentptr sp = &m->seg; - for (;;) { - if (addr >= sp->base && addr < sp->base + sp->size) - return sp; - if ((sp = sp->next) == 0) - return 0; - } -} - -/* Return true if segment contains a segment link */ -static int has_segment_link(mstate m, msegmentptr ss) { - msegmentptr sp = &m->seg; - for (;;) { - if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) - return 1; - if ((sp = sp->next) == 0) - return 0; - } -} - -#ifndef MORECORE_CANNOT_TRIM -#define should_trim(M,s) ((s) > (M)->trim_check) -#else /* MORECORE_CANNOT_TRIM */ -#define should_trim(M,s) (0) -#endif /* MORECORE_CANNOT_TRIM */ - -/* - TOP_FOOT_SIZE is padding at the end of a segment, including space - that may be needed to place segment records and fenceposts when new - noncontiguous segments are added. -*/ -#define TOP_FOOT_SIZE\ - (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) - - -/* ------------------------------- Hooks -------------------------------- */ - -/* - PREACTION should be defined to return 0 on success, and nonzero on - failure. If you are not using locking, you can redefine these to do - anything you like. -*/ - -#if USE_LOCKS - -/* Ensure locks are initialized */ -#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams()) - -#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) -#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } -#else /* USE_LOCKS */ - -#ifndef PREACTION -#define PREACTION(M) (0) -#endif /* PREACTION */ - -#ifndef POSTACTION -#define POSTACTION(M) -#endif /* POSTACTION */ - -#endif /* USE_LOCKS */ - -/* - CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. - USAGE_ERROR_ACTION is triggered on detected bad frees and - reallocs. The argument p is an address that might have triggered the - fault. It is ignored by the two predefined actions, but might be - useful in custom actions that try to help diagnose errors. -*/ - -#if PROCEED_ON_ERROR - -/* A count of the number of corruption errors causing resets */ -int malloc_corruption_error_count; - -/* default corruption action */ -static void reset_on_error(mstate m); - -#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) -#define USAGE_ERROR_ACTION(m, p) - -#else /* PROCEED_ON_ERROR */ - -#ifndef CORRUPTION_ERROR_ACTION -#define CORRUPTION_ERROR_ACTION(m) ABORT -#endif /* CORRUPTION_ERROR_ACTION */ - -#ifndef USAGE_ERROR_ACTION -#define USAGE_ERROR_ACTION(m,p) ABORT -#endif /* USAGE_ERROR_ACTION */ - -#endif /* PROCEED_ON_ERROR */ - -/* -------------------------- Debugging setup ---------------------------- */ - -#if ! DEBUG - -#define check_free_chunk(M,P) -#define check_inuse_chunk(M,P) -#define check_malloced_chunk(M,P,N) -#define check_mmapped_chunk(M,P) -#define check_malloc_state(M) -#define check_top_chunk(M,P) - -#else /* DEBUG */ -#define check_free_chunk(M,P) do_check_free_chunk(M,P) -#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) -#define check_top_chunk(M,P) do_check_top_chunk(M,P) -#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) -#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) -#define check_malloc_state(M) do_check_malloc_state(M) - -static void do_check_any_chunk(mstate m, mchunkptr p); -static void do_check_top_chunk(mstate m, mchunkptr p); -static void do_check_mmapped_chunk(mstate m, mchunkptr p); -static void do_check_inuse_chunk(mstate m, mchunkptr p); -static void do_check_free_chunk(mstate m, mchunkptr p); -static void do_check_malloced_chunk(mstate m, void* mem, size_t s); -static void do_check_tree(mstate m, tchunkptr t); -static void do_check_treebin(mstate m, bindex_t i); -static void do_check_smallbin(mstate m, bindex_t i); -static void do_check_malloc_state(mstate m); -static int bin_find(mstate m, mchunkptr x); -static size_t traverse_and_check(mstate m); -#endif /* DEBUG */ - -/* ---------------------------- Indexing Bins ---------------------------- */ - -#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) -#define small_index(s) ((s) >> SMALLBIN_SHIFT) -#define small_index2size(i) ((i) << SMALLBIN_SHIFT) -#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) - -/* addressing by index. See above about smallbin repositioning */ -#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) -#define treebin_at(M,i) (&((M)->treebins[i])) - -/* assign tree index for size S to variable I */ -#if defined(__GNUC__) && defined(i386) -#define compute_tree_index(S, I)\ -{\ - size_t X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int K;\ - __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\ - I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ - }\ -} -#else /* GNUC */ -#define compute_tree_index(S, I)\ -{\ - size_t X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int Y = (unsigned int)X;\ - unsigned int N = ((Y - 0x100) >> 16) & 8;\ - unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ - N += K;\ - N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ - K = 14 - N + ((Y <<= K) >> 15);\ - I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ - }\ -} -#endif /* GNUC */ - -/* Bit representing maximum resolved size in a treebin at i */ -#define bit_for_tree_index(i) \ - (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) - -/* Shift placing maximum resolved bit in a treebin at i as sign bit */ -#define leftshift_for_tree_index(i) \ - ((i == NTREEBINS-1)? 0 : \ - ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) - -/* The size of the smallest chunk held in bin with index i */ -#define minsize_for_tree_index(i) \ - ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ - (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) - - -/* ------------------------ Operations on bin maps ----------------------- */ - -/* bit corresponding to given index */ -#define idx2bit(i) ((binmap_t)(1) << (i)) - -/* Mark/Clear bits with given index */ -#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) -#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) -#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) - -#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) -#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) -#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) - -/* index corresponding to given bit */ - -#if defined(__GNUC__) && defined(i386) -#define compute_bit2idx(X, I)\ -{\ - unsigned int J;\ - __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\ - I = (bindex_t)J;\ -} - -#else /* GNUC */ -#if USE_BUILTIN_FFS -#define compute_bit2idx(X, I) I = ffs(X)-1 - -#else /* USE_BUILTIN_FFS */ -#define compute_bit2idx(X, I)\ -{\ - unsigned int Y = X - 1;\ - unsigned int K = Y >> (16-4) & 16;\ - unsigned int N = K; Y >>= K;\ - N += K = Y >> (8-3) & 8; Y >>= K;\ - N += K = Y >> (4-2) & 4; Y >>= K;\ - N += K = Y >> (2-1) & 2; Y >>= K;\ - N += K = Y >> (1-0) & 1; Y >>= K;\ - I = (bindex_t)(N + Y);\ -} -#endif /* USE_BUILTIN_FFS */ -#endif /* GNUC */ - -/* isolate the least set bit of a bitmap */ -#define least_bit(x) ((x) & -(x)) - -/* mask with all bits to left of least bit of x on */ -#define left_bits(x) ((x<<1) | -(x<<1)) - -/* mask with all bits to left of or equal to least bit of x on */ -#define same_or_left_bits(x) ((x) | -(x)) - - -/* ----------------------- Runtime Check Support ------------------------- */ - -/* - For security, the main invariant is that malloc/free/etc never - writes to a static address other than malloc_state, unless static - malloc_state itself has been corrupted, which cannot occur via - malloc (because of these checks). In essence this means that we - believe all pointers, sizes, maps etc held in malloc_state, but - check all of those linked or offsetted from other embedded data - structures. These checks are interspersed with main code in a way - that tends to minimize their run-time cost. - - When FOOTERS is defined, in addition to range checking, we also - verify footer fields of inuse chunks, which can be used guarantee - that the mstate controlling malloc/free is intact. This is a - streamlined version of the approach described by William Robertson - et al in "Run-time Detection of Heap-based Overflows" LISA'03 - http://www.usenix.org/events/lisa03/tech/robertson.html The footer - of an inuse chunk holds the xor of its mstate and a random seed, - that is checked upon calls to free() and realloc(). This is - (probablistically) unguessable from outside the program, but can be - computed by any code successfully malloc'ing any chunk, so does not - itself provide protection against code that has already broken - security through some other means. Unlike Robertson et al, we - always dynamically check addresses of all offset chunks (previous, - next, etc). This turns out to be cheaper than relying on hashes. -*/ - -#if !INSECURE -/* Check if address a is at least as high as any from MORECORE or MMAP */ -#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) -/* Check if address of next chunk n is higher than base chunk p */ -#define ok_next(p, n) ((char*)(p) < (char*)(n)) -/* Check if p has its cinuse bit on */ -#define ok_cinuse(p) cinuse(p) -/* Check if p has its pinuse bit on */ -#define ok_pinuse(p) pinuse(p) - -#else /* !INSECURE */ -#define ok_address(M, a) (1) -#define ok_next(b, n) (1) -#define ok_cinuse(p) (1) -#define ok_pinuse(p) (1) -#endif /* !INSECURE */ - -#if (FOOTERS && !INSECURE) -/* Check if (alleged) mstate m has expected magic field */ -#define ok_magic(M) ((M)->magic == mparams.magic) -#else /* (FOOTERS && !INSECURE) */ -#define ok_magic(M) (1) -#endif /* (FOOTERS && !INSECURE) */ - - -/* In gcc, use __builtin_expect to minimize impact of checks */ -#if !INSECURE -#if defined(__GNUC__) && __GNUC__ >= 3 -#define RTCHECK(e) __builtin_expect(e, 1) -#else /* GNUC */ -#define RTCHECK(e) (e) -#endif /* GNUC */ -#else /* !INSECURE */ -#define RTCHECK(e) (1) -#endif /* !INSECURE */ - -/* macros to set up inuse chunks with or without footers */ - -#if !FOOTERS - -#define mark_inuse_foot(M,p,s) - -/* Set cinuse bit and pinuse bit of next chunk */ -#define set_inuse(M,p,s)\ - ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ - ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) - -/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ -#define set_inuse_and_pinuse(M,p,s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) - -/* Set size, cinuse and pinuse bit of this chunk */ -#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) - -#else /* FOOTERS */ - -/* Set foot of inuse chunk to be xor of mstate and seed */ -#define mark_inuse_foot(M,p,s)\ - (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) - -#define get_mstate_for(p)\ - ((mstate)(((mchunkptr)((char*)(p) +\ - (chunksize(p))))->prev_foot ^ mparams.magic)) - -#define set_inuse(M,p,s)\ - ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ - (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ - mark_inuse_foot(M,p,s)) - -#define set_inuse_and_pinuse(M,p,s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ - mark_inuse_foot(M,p,s)) - -#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - mark_inuse_foot(M, p, s)) - -#endif /* !FOOTERS */ - -/* ---------------------------- setting mparams -------------------------- */ - -/* Initialize mparams */ -static int init_mparams(void) { - if (mparams.page_size == 0) { - size_t s; - - mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; - mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; -#if MORECORE_CONTIGUOUS - mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; -#else /* MORECORE_CONTIGUOUS */ - mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; -#endif /* MORECORE_CONTIGUOUS */ - -#if (FOOTERS && !INSECURE) - { -#if USE_DEV_RANDOM - int fd; - unsigned char buf[sizeof(size_t)]; - /* Try to use /dev/urandom, else fall back on using time */ - if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && - read(fd, buf, sizeof(buf)) == sizeof(buf)) { - s = *((size_t *) buf); - close(fd); - } - else -#endif /* USE_DEV_RANDOM */ - s = (size_t)(time(0) ^ (size_t)0x55555555U); - - s |= (size_t)8U; /* ensure nonzero */ - s &= ~(size_t)7U; /* improve chances of fault for bad values */ - - } -#else /* (FOOTERS && !INSECURE) */ - s = (size_t)0x58585858U; -#endif /* (FOOTERS && !INSECURE) */ - ACQUIRE_MAGIC_INIT_LOCK(); - if (mparams.magic == 0) { - mparams.magic = s; - /* Set up lock for main malloc area */ - INITIAL_LOCK(&gm->mutex); - gm->mflags = mparams.default_mflags; - } - RELEASE_MAGIC_INIT_LOCK(); - - mparams.page_size = 4096; - mparams.granularity = 16384; - - /* Sanity-check configuration: - size_t must be unsigned and as wide as pointer type. - ints must be at least 4 bytes. - alignment must be at least 8. - Alignment, min chunk size, and page size must all be powers of 2. - */ - if ((sizeof(size_t) != sizeof(char*)) || - (MAX_SIZE_T < MIN_CHUNK_SIZE) || - (sizeof(int) < 4) || - (MALLOC_ALIGNMENT < (size_t)8U) || - ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || - ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || - ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) || - ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0)) - ABORT; - } - return 0; -} - -/* support for mallopt */ -static int change_mparam(int param_number, int value) { - size_t val = (size_t)value; - init_mparams(); - switch(param_number) { - case M_TRIM_THRESHOLD: - mparams.trim_threshold = val; - return 1; - case M_GRANULARITY: - if (val >= mparams.page_size && ((val & (val-1)) == 0)) { - mparams.granularity = val; - return 1; - } - else - return 0; - case M_MMAP_THRESHOLD: - mparams.mmap_threshold = val; - return 1; - default: - return 0; - } -} - -#if DEBUG -#endif /* DEBUG */ - -/* ----------------------------- statistics ------------------------------ */ - -#if !NO_MALLINFO -#endif /* !NO_MALLINFO */ - -/* ----------------------- Operations on smallbins ----------------------- */ - -/* - Various forms of linking and unlinking are defined as macros. Even - the ones for trees, which are very long but have very short typical - paths. This is ugly but reduces reliance on inlining support of - compilers. -*/ - -/* Link a free chunk into a smallbin */ -#define insert_small_chunk(M, P, S) {\ - bindex_t I = small_index(S);\ - mchunkptr B = smallbin_at(M, I);\ - mchunkptr F = B;\ - assert(S >= MIN_CHUNK_SIZE);\ - if (!smallmap_is_marked(M, I))\ - mark_smallmap(M, I);\ - else if (RTCHECK(ok_address(M, B->fd)))\ - F = B->fd;\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - B->fd = P;\ - F->bk = P;\ - P->fd = F;\ - P->bk = B;\ -} - -/* Unlink a chunk from a smallbin */ -#define unlink_small_chunk(M, P, S) {\ - mchunkptr F = P->fd;\ - mchunkptr B = P->bk;\ - bindex_t I = small_index(S);\ - assert(P != B);\ - assert(P != F);\ - assert(chunksize(P) == small_index2size(I));\ - if (F == B)\ - clear_smallmap(M, I);\ - else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ - (B == smallbin_at(M,I) || ok_address(M, B)))) {\ - F->bk = B;\ - B->fd = F;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ -} - -/* Unlink the first chunk from a smallbin */ -#define unlink_first_small_chunk(M, B, P, I) {\ - mchunkptr F = P->fd;\ - assert(P != B);\ - assert(P != F);\ - assert(chunksize(P) == small_index2size(I));\ - if (B == F)\ - clear_smallmap(M, I);\ - else if (RTCHECK(ok_address(M, F))) {\ - B->fd = F;\ - F->bk = B;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ -} - -/* Replace dv node, binning the old one */ -/* Used only when dvsize known to be small */ -#define replace_dv(M, P, S) {\ - size_t DVS = M->dvsize;\ - if (DVS != 0) {\ - mchunkptr DV = M->dv;\ - assert(is_small(DVS));\ - insert_small_chunk(M, DV, DVS);\ - }\ - M->dvsize = S;\ - M->dv = P;\ -} - -/* ------------------------- Operations on trees ------------------------- */ - -/* Insert chunk into tree */ -#define insert_large_chunk(M, X, S) {\ - tbinptr* H;\ - bindex_t I;\ - compute_tree_index(S, I);\ - H = treebin_at(M, I);\ - X->index = I;\ - X->child[0] = X->child[1] = 0;\ - if (!treemap_is_marked(M, I)) {\ - mark_treemap(M, I);\ - *H = X;\ - X->parent = (tchunkptr)H;\ - X->fd = X->bk = X;\ - }\ - else {\ - tchunkptr T = *H;\ - size_t K = S << leftshift_for_tree_index(I);\ - for (;;) {\ - if (chunksize(T) != S) {\ - tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ - K <<= 1;\ - if (*C != 0)\ - T = *C;\ - else if (RTCHECK(ok_address(M, C))) {\ - *C = X;\ - X->parent = T;\ - X->fd = X->bk = X;\ - break;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - break;\ - }\ - }\ - else {\ - tchunkptr F = T->fd;\ - if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ - T->fd = F->bk = X;\ - X->fd = F;\ - X->bk = T;\ - X->parent = 0;\ - break;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - break;\ - }\ - }\ - }\ - }\ -} - -/* - Unlink steps: - - 1. If x is a chained node, unlink it from its same-sized fd/bk links - and choose its bk node as its replacement. - 2. If x was the last node of its size, but not a leaf node, it must - be replaced with a leaf node (not merely one with an open left or - right), to make sure that lefts and rights of descendents - correspond properly to bit masks. We use the rightmost descendent - of x. We could use any other leaf, but this is easy to locate and - tends to counteract removal of leftmosts elsewhere, and so keeps - paths shorter than minimally guaranteed. This doesn't loop much - because on average a node in a tree is near the bottom. - 3. If x is the base of a chain (i.e., has parent links) relink - x's parent and children to x's replacement (or null if none). -*/ - -#define unlink_large_chunk(M, X) {\ - tchunkptr XP = X->parent;\ - tchunkptr R;\ - if (X->bk != X) {\ - tchunkptr F = X->fd;\ - R = X->bk;\ - if (RTCHECK(ok_address(M, F))) {\ - F->bk = R;\ - R->fd = F;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - else {\ - tchunkptr* RP;\ - if (((R = *(RP = &(X->child[1]))) != 0) ||\ - ((R = *(RP = &(X->child[0]))) != 0)) {\ - tchunkptr* CP;\ - while ((*(CP = &(R->child[1])) != 0) ||\ - (*(CP = &(R->child[0])) != 0)) {\ - R = *(RP = CP);\ - }\ - if (RTCHECK(ok_address(M, RP)))\ - *RP = 0;\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - }\ - if (XP != 0) {\ - tbinptr* H = treebin_at(M, X->index);\ - if (X == *H) {\ - if ((*H = R) == 0) \ - clear_treemap(M, X->index);\ - }\ - else if (RTCHECK(ok_address(M, XP))) {\ - if (XP->child[0] == X) \ - XP->child[0] = R;\ - else \ - XP->child[1] = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - if (R != 0) {\ - if (RTCHECK(ok_address(M, R))) {\ - tchunkptr C0, C1;\ - R->parent = XP;\ - if ((C0 = X->child[0]) != 0) {\ - if (RTCHECK(ok_address(M, C0))) {\ - R->child[0] = C0;\ - C0->parent = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - if ((C1 = X->child[1]) != 0) {\ - if (RTCHECK(ok_address(M, C1))) {\ - R->child[1] = C1;\ - C1->parent = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ -} - -/* Relays to large vs small bin operations */ - -#define insert_chunk(M, P, S)\ - if (is_small(S)) insert_small_chunk(M, P, S)\ - else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } - -#define unlink_chunk(M, P, S)\ - if (is_small(S)) unlink_small_chunk(M, P, S)\ - else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } - - -/* Relays to internal calls to malloc/free from realloc, memalign etc */ - -#if ONLY_MSPACES -#define internal_malloc(m, b) mspace_malloc(m, b) -#define internal_free(m, mem) mspace_free(m,mem); -#else /* ONLY_MSPACES */ -#if MSPACES -#define internal_malloc(m, b)\ - (m == gm)? dlmalloc(b) : mspace_malloc(m, b) -#define internal_free(m, mem)\ - if (m == gm) dlfree(mem); else mspace_free(m,mem); -#else /* MSPACES */ -#define internal_malloc(m, b) dlmalloc(b) -#define internal_free(m, mem) dlfree(mem) -#endif /* MSPACES */ -#endif /* ONLY_MSPACES */ - -/* ----------------------- Direct-mmapping chunks ----------------------- */ - -/* - Directly mmapped chunks are set up with an offset to the start of - the mmapped region stored in the prev_foot field of the chunk. This - allows reconstruction of the required argument to MUNMAP when freed, - and also allows adjustment of the returned chunk to meet alignment - requirements (especially in memalign). There is also enough space - allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain - the PINUSE bit so frees can be checked. -*/ - -/* Malloc using mmap */ -static void* mmap_alloc(mstate m, size_t nb) { - size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - if (mmsize > nb) { /* Check for wrap around 0 */ - char* mm = (char*)(DIRECT_MMAP(mmsize)); - if (mm != CMFAIL) { - size_t offset = align_offset(chunk2mem(mm)); - size_t psize = mmsize - offset - MMAP_FOOT_PAD; - mchunkptr p = (mchunkptr)(mm + offset); - p->prev_foot = offset | IS_MMAPPED_BIT; - (p)->head = (psize|CINUSE_BIT); - mark_inuse_foot(m, p, psize); - chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; - chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; - - if (mm < m->least_addr) - m->least_addr = mm; - if ((m->footprint += mmsize) > m->max_footprint) - m->max_footprint = m->footprint; - assert(is_aligned(chunk2mem(p))); - check_mmapped_chunk(m, p); - return chunk2mem(p); - } - } - return 0; -} - -/* Realloc using mmap */ -static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { - size_t oldsize = chunksize(oldp); - if (is_small(nb)) /* Can't shrink mmap regions below small size */ - return 0; - /* Keep old chunk if big enough but not too big */ - if (oldsize >= nb + SIZE_T_SIZE && - (oldsize - nb) <= (mparams.granularity << 1)) - return oldp; - else { - size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT; - size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; - size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES + - CHUNK_ALIGN_MASK); - char* cp = (char*)CALL_MREMAP((char*)oldp - offset, - oldmmsize, newmmsize, 1); - if (cp != CMFAIL) { - mchunkptr newp = (mchunkptr)(cp + offset); - size_t psize = newmmsize - offset - MMAP_FOOT_PAD; - newp->head = (psize|CINUSE_BIT); - mark_inuse_foot(m, newp, psize); - chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; - chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; - - if (cp < m->least_addr) - m->least_addr = cp; - if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) - m->max_footprint = m->footprint; - check_mmapped_chunk(m, newp); - return newp; - } - } - return 0; -} - -/* -------------------------- mspace management -------------------------- */ - -/* Initialize top chunk and its size */ -static void init_top(mstate m, mchunkptr p, size_t psize) { - /* Ensure alignment */ - size_t offset = align_offset(chunk2mem(p)); - p = (mchunkptr)((char*)p + offset); - psize -= offset; - - m->top = p; - m->topsize = psize; - p->head = psize | PINUSE_BIT; - /* set size of fake trailing chunk holding overhead space only once */ - chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; - m->trim_check = mparams.trim_threshold; /* reset on each update */ -} - -/* Initialize bins for a new mstate that is otherwise zeroed out */ -static void init_bins(mstate m) { - /* Establish circular links for smallbins */ - bindex_t i; - for (i = 0; i < NSMALLBINS; ++i) { - sbinptr bin = smallbin_at(m,i); - bin->fd = bin->bk = bin; - } -} - -#if PROCEED_ON_ERROR - -/* default corruption action */ -static void reset_on_error(mstate m) { - int i; - ++malloc_corruption_error_count; - /* Reinitialize fields to forget about all memory */ - m->smallbins = m->treebins = 0; - m->dvsize = m->topsize = 0; - m->seg.base = 0; - m->seg.size = 0; - m->seg.next = 0; - m->top = m->dv = 0; - for (i = 0; i < NTREEBINS; ++i) - *treebin_at(m, i) = 0; - init_bins(m); -} -#endif /* PROCEED_ON_ERROR */ - -/* Allocate chunk and prepend remainder with chunk in successor base. */ -static void* prepend_alloc(mstate m, char* newbase, char* oldbase, - size_t nb) { - mchunkptr p = align_as_chunk(newbase); - mchunkptr oldfirst = align_as_chunk(oldbase); - size_t psize = (char*)oldfirst - (char*)p; - mchunkptr q = chunk_plus_offset(p, nb); - size_t qsize = psize - nb; - set_size_and_pinuse_of_inuse_chunk(m, p, nb); - - assert((char*)oldfirst > (char*)q); - assert(pinuse(oldfirst)); - assert(qsize >= MIN_CHUNK_SIZE); - - /* consolidate remainder with first chunk of old base */ - if (oldfirst == m->top) { - size_t tsize = m->topsize += qsize; - m->top = q; - q->head = tsize | PINUSE_BIT; - check_top_chunk(m, q); - } - else if (oldfirst == m->dv) { - size_t dsize = m->dvsize += qsize; - m->dv = q; - set_size_and_pinuse_of_free_chunk(q, dsize); - } - else { - if (!cinuse(oldfirst)) { - size_t nsize = chunksize(oldfirst); - unlink_chunk(m, oldfirst, nsize); - oldfirst = chunk_plus_offset(oldfirst, nsize); - qsize += nsize; - } - set_free_with_pinuse(q, qsize, oldfirst); - insert_chunk(m, q, qsize); - check_free_chunk(m, q); - } - - check_malloced_chunk(m, chunk2mem(p), nb); - return chunk2mem(p); -} - - -/* Add a segment to hold a new noncontiguous region */ -static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { - /* Determine locations and sizes of segment, fenceposts, old top */ - char* old_top = (char*)m->top; - msegmentptr oldsp = segment_holding(m, old_top); - char* old_end = oldsp->base + oldsp->size; - size_t ssize = pad_request(sizeof(struct malloc_segment)); - char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - size_t offset = align_offset(chunk2mem(rawsp)); - char* asp = rawsp + offset; - char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; - mchunkptr sp = (mchunkptr)csp; - msegmentptr ss = (msegmentptr)(chunk2mem(sp)); - mchunkptr tnext = chunk_plus_offset(sp, ssize); - mchunkptr p = tnext; - int nfences = 0; - - /* reset top to new space */ - init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); - - /* Set up segment record */ - assert(is_aligned(ss)); - set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); - *ss = m->seg; /* Push current record */ - m->seg.base = tbase; - m->seg.size = tsize; - m->seg.sflags = mmapped; - m->seg.next = ss; - - /* Insert trailing fenceposts */ - for (;;) { - mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); - p->head = FENCEPOST_HEAD; - ++nfences; - if ((char*)(&(nextp->head)) < old_end) - p = nextp; - else - break; - } - assert(nfences >= 2); - - /* Insert the rest of old top into a bin as an ordinary free chunk */ - if (csp != old_top) { - mchunkptr q = (mchunkptr)old_top; - size_t psize = csp - old_top; - mchunkptr tn = chunk_plus_offset(q, psize); - set_free_with_pinuse(q, psize, tn); - insert_chunk(m, q, psize); - } - - check_top_chunk(m, m->top); -} - -/* -------------------------- System allocation -------------------------- */ - -/* Get memory from system using MORECORE or MMAP */ -static void* sys_alloc(mstate m, size_t nb) { - char* tbase = CMFAIL; - size_t tsize = 0; - flag_t mmap_flag = 0; - - init_mparams(); - - /* Directly map large chunks */ - if (use_mmap(m) && nb >= mparams.mmap_threshold) { - void* mem = mmap_alloc(m, nb); - if (mem != 0) - return mem; - } - - /* - Try getting memory in any of three ways (in most-preferred to - least-preferred order): - 1. A call to MORECORE that can normally contiguously extend memory. - (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or - or main space is mmapped or a previous contiguous call failed) - 2. A call to MMAP new space (disabled if not HAVE_MMAP). - Note that under the default settings, if MORECORE is unable to - fulfill a request, and HAVE_MMAP is true, then mmap is - used as a noncontiguous system allocator. This is a useful backup - strategy for systems with holes in address spaces -- in this case - sbrk cannot contiguously expand the heap, but mmap may be able to - find space. - 3. A call to MORECORE that cannot usually contiguously extend memory. - (disabled if not HAVE_MORECORE) - */ - - if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { - char* br = CMFAIL; - msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); - size_t asize = 0; - ACQUIRE_MORECORE_LOCK(); - - if (ss == 0) { /* First time through or recovery */ - char* base = (char*)CALL_MORECORE(0); - if (base != CMFAIL) { - asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); - /* Adjust to end on a page boundary */ - if (!is_page_aligned(base)) - asize += (page_align((size_t)base) - (size_t)base); - /* Can't call MORECORE if size is negative when treated as signed */ - if (asize < HALF_MAX_SIZE_T && - (br = (char*)(CALL_MORECORE(asize))) == base) { - tbase = base; - tsize = asize; - } - } - } - else { - /* Subtract out existing available top space from MORECORE request. */ - asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE); - /* Use mem here only if it did continuously extend old space */ - if (asize < HALF_MAX_SIZE_T && - (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { - tbase = br; - tsize = asize; - } - } - - if (tbase == CMFAIL) { /* Cope with partial failure */ - if (br != CMFAIL) { /* Try to use/extend the space we did get */ - if (asize < HALF_MAX_SIZE_T && - asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) { - size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize); - if (esize < HALF_MAX_SIZE_T) { - char* end = (char*)CALL_MORECORE(esize); - if (end != CMFAIL) - asize += esize; - else { /* Can't use; try to release */ - CALL_MORECORE(-asize); - br = CMFAIL; - } - } - } - } - if (br != CMFAIL) { /* Use the space we did get */ - tbase = br; - tsize = asize; - } - else - disable_contiguous(m); /* Don't try contiguous path in the future */ - } - - RELEASE_MORECORE_LOCK(); - } - - if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ - size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE; - size_t rsize = granularity_align(req); - if (rsize > nb) { /* Fail if wraps around zero */ - char* mp = (char*)(CALL_MMAP(rsize)); - if (mp != CMFAIL) { - tbase = mp; - tsize = rsize; - mmap_flag = IS_MMAPPED_BIT; - } - } - } - - if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ - size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); - if (asize < HALF_MAX_SIZE_T) { - char* br = CMFAIL; - char* end = CMFAIL; - ACQUIRE_MORECORE_LOCK(); - br = (char*)(CALL_MORECORE(asize)); - end = (char*)(CALL_MORECORE(0)); - RELEASE_MORECORE_LOCK(); - if (br != CMFAIL && end != CMFAIL && br < end) { - size_t ssize = end - br; - if (ssize > nb + TOP_FOOT_SIZE) { - tbase = br; - tsize = ssize; - } - } - } - } - - if (tbase != CMFAIL) { - - if ((m->footprint += tsize) > m->max_footprint) - m->max_footprint = m->footprint; - - if (!is_initialized(m)) { /* first-time initialization */ - m->seg.base = m->least_addr = tbase; - m->seg.size = tsize; - m->seg.sflags = mmap_flag; - m->magic = mparams.magic; - init_bins(m); - if (is_global(m)) - init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); - else { - /* Offset top by embedded malloc_state */ - mchunkptr mn = next_chunk(mem2chunk(m)); - init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); - } - } - - else { - /* Try to merge with an existing segment */ - msegmentptr sp = &m->seg; - while (sp != 0 && tbase != sp->base + sp->size) - sp = sp->next; - if (sp != 0 && - !is_extern_segment(sp) && - (sp->sflags & IS_MMAPPED_BIT) == mmap_flag && - segment_holds(sp, m->top)) { /* append */ - sp->size += tsize; - init_top(m, m->top, m->topsize + tsize); - } - else { - if (tbase < m->least_addr) - m->least_addr = tbase; - sp = &m->seg; - while (sp != 0 && sp->base != tbase + tsize) - sp = sp->next; - if (sp != 0 && - !is_extern_segment(sp) && - (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) { - char* oldbase = sp->base; - sp->base = tbase; - sp->size += tsize; - return prepend_alloc(m, tbase, oldbase, nb); - } - else - add_segment(m, tbase, tsize, mmap_flag); - } - } - - if (nb < m->topsize) { /* Allocate from new or extended top space */ - size_t rsize = m->topsize -= nb; - mchunkptr p = m->top; - mchunkptr r = m->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(m, p, nb); - check_top_chunk(m, m->top); - check_malloced_chunk(m, chunk2mem(p), nb); - return chunk2mem(p); - } - } - - MALLOC_FAILURE_ACTION; - return 0; -} - -/* ----------------------- system deallocation -------------------------- */ - -/* Unmap and unlink any mmapped segments that don't contain used chunks */ -static size_t release_unused_segments(mstate m) { - size_t released = 0; - msegmentptr pred = &m->seg; - msegmentptr sp = pred->next; - while (sp != 0) { - char* base = sp->base; - size_t size = sp->size; - msegmentptr next = sp->next; - if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { - mchunkptr p = align_as_chunk(base); - size_t psize = chunksize(p); - /* Can unmap if first chunk holds entire segment and not pinned */ - if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { - tchunkptr tp = (tchunkptr)p; - assert(segment_holds(sp, (char*)sp)); - if (p == m->dv) { - m->dv = 0; - m->dvsize = 0; - } - else { - unlink_large_chunk(m, tp); - } - if (CALL_MUNMAP(base, size) == 0) { - released += size; - m->footprint -= size; - /* unlink obsoleted record */ - sp = pred; - sp->next = next; - } - else { /* back out if cannot unmap */ - insert_large_chunk(m, tp, psize); - } - } - } - pred = sp; - sp = next; - } - return released; -} - -static int sys_trim(mstate m, size_t pad) { - size_t released = 0; - if (pad < MAX_REQUEST && is_initialized(m)) { - pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ - - if (m->topsize > pad) { - /* Shrink top space in granularity-size units, keeping at least one */ - size_t unit = mparams.granularity; - size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - - SIZE_T_ONE) * unit; - msegmentptr sp = segment_holding(m, (char*)m->top); - - if (!is_extern_segment(sp)) { - if (is_mmapped_segment(sp)) { - if (HAVE_MMAP && - sp->size >= extra && - !has_segment_link(m, sp)) { /* can't shrink if pinned */ - size_t newsize = sp->size - extra; - /* Prefer mremap, fall back to munmap */ - if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || - (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { - released = extra; - } - } - } - else if (HAVE_MORECORE) { - if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ - extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; - ACQUIRE_MORECORE_LOCK(); - { - /* Make sure end of memory is where we last set it. */ - char* old_br = (char*)(CALL_MORECORE(0)); - if (old_br == sp->base + sp->size) { - char* rel_br = (char*)(CALL_MORECORE(-extra)); - char* new_br = (char*)(CALL_MORECORE(0)); - if (rel_br != CMFAIL && new_br < old_br) - released = old_br - new_br; - } - } - RELEASE_MORECORE_LOCK(); - } - } - - if (released != 0) { - sp->size -= released; - m->footprint -= released; - init_top(m, m->top, m->topsize - released); - check_top_chunk(m, m->top); - } - } - - /* Unmap any unused mmapped segments */ - if (HAVE_MMAP) - released += release_unused_segments(m); - - /* On failure, disable autotrim to avoid repeated failed future calls */ - if (released == 0) - m->trim_check = MAX_SIZE_T; - } - - return (released != 0)? 1 : 0; -} - -/* ---------------------------- malloc support --------------------------- */ - -/* allocate a large request from the best fitting chunk in a treebin */ -static void* tmalloc_large(mstate m, size_t nb) { - tchunkptr v = 0; - size_t rsize = -nb; /* Unsigned negation */ - tchunkptr t; - bindex_t idx; - compute_tree_index(nb, idx); - - if ((t = *treebin_at(m, idx)) != 0) { - /* Traverse tree for this bin looking for node with size == nb */ - size_t sizebits = nb << leftshift_for_tree_index(idx); - tchunkptr rst = 0; /* The deepest untaken right subtree */ - for (;;) { - tchunkptr rt; - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - v = t; - if ((rsize = trem) == 0) - break; - } - rt = t->child[1]; - t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; - if (rt != 0 && rt != t) - rst = rt; - if (t == 0) { - t = rst; /* set t to least subtree holding sizes > nb */ - break; - } - sizebits <<= 1; - } - } - - if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ - binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; - if (leftbits != 0) { - bindex_t i; - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - t = *treebin_at(m, i); - } - } - - while (t != 0) { /* find smallest of tree or subtree */ - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - rsize = trem; - v = t; - } - t = leftmost_child(t); - } - - /* If dv is a better fit, return 0 so malloc will use it */ - if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { - if (RTCHECK(ok_address(m, v))) { /* split */ - mchunkptr r = chunk_plus_offset(v, nb); - assert(chunksize(v) == rsize + nb); - if (RTCHECK(ok_next(v, r))) { - unlink_large_chunk(m, v); - if (rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(m, v, (rsize + nb)); - else { - set_size_and_pinuse_of_inuse_chunk(m, v, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - insert_chunk(m, r, rsize); - } - return chunk2mem(v); - } - } - CORRUPTION_ERROR_ACTION(m); - } - return 0; -} - -/* allocate a small request from the best fitting chunk in a treebin */ -static void* tmalloc_small(mstate m, size_t nb) { - tchunkptr t, v; - size_t rsize; - bindex_t i; - binmap_t leastbit = least_bit(m->treemap); - compute_bit2idx(leastbit, i); - - v = t = *treebin_at(m, i); - rsize = chunksize(t) - nb; - - while ((t = leftmost_child(t)) != 0) { - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - rsize = trem; - v = t; - } - } - - if (RTCHECK(ok_address(m, v))) { - mchunkptr r = chunk_plus_offset(v, nb); - assert(chunksize(v) == rsize + nb); - if (RTCHECK(ok_next(v, r))) { - unlink_large_chunk(m, v); - if (rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(m, v, (rsize + nb)); - else { - set_size_and_pinuse_of_inuse_chunk(m, v, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(m, r, rsize); - } - return chunk2mem(v); - } - } - - CORRUPTION_ERROR_ACTION(m); - return 0; -} - -/* --------------------------- realloc support --------------------------- */ - -static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { - if (bytes >= MAX_REQUEST) { - MALLOC_FAILURE_ACTION; - return 0; - } - if (!PREACTION(m)) { - mchunkptr oldp = mem2chunk(oldmem); - size_t oldsize = chunksize(oldp); - mchunkptr next = chunk_plus_offset(oldp, oldsize); - mchunkptr newp = 0; - void* extra = 0; - - /* Try to either shrink or extend into top. Else malloc-copy-free */ - - if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) && - ok_next(oldp, next) && ok_pinuse(next))) { - size_t nb = request2size(bytes); - if (is_mmapped(oldp)) - newp = mmap_resize(m, oldp, nb); - else if (oldsize >= nb) { /* already big enough */ - size_t rsize = oldsize - nb; - newp = oldp; - if (rsize >= MIN_CHUNK_SIZE) { - mchunkptr remainder = chunk_plus_offset(newp, nb); - set_inuse(m, newp, nb); - set_inuse(m, remainder, rsize); - extra = chunk2mem(remainder); - } - } - else if (next == m->top && oldsize + m->topsize > nb) { - /* Expand into top */ - size_t newsize = oldsize + m->topsize; - size_t newtopsize = newsize - nb; - mchunkptr newtop = chunk_plus_offset(oldp, nb); - set_inuse(m, oldp, nb); - newtop->head = newtopsize |PINUSE_BIT; - m->top = newtop; - m->topsize = newtopsize; - newp = oldp; - } - } - else { - USAGE_ERROR_ACTION(m, oldmem); - POSTACTION(m); - return 0; - } - - POSTACTION(m); - - if (newp != 0) { - if (extra != 0) { - internal_free(m, extra); - } - check_inuse_chunk(m, newp); - return chunk2mem(newp); - } - else { - void* newmem = internal_malloc(m, bytes); - if (newmem != 0) { - size_t oc = oldsize - overhead_for(oldp); - memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); - internal_free(m, oldmem); - } - return newmem; - } - } - return 0; -} - -/* --------------------------- memalign support -------------------------- */ - -static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { - if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ - return internal_malloc(m, bytes); - if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ - alignment = MIN_CHUNK_SIZE; - if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ - size_t a = MALLOC_ALIGNMENT << 1; - while (a < alignment) a <<= 1; - alignment = a; - } - - if (bytes >= MAX_REQUEST - alignment) { - if (m != 0) { /* Test isn't needed but avoids compiler warning */ - MALLOC_FAILURE_ACTION; - } - } - else { - size_t nb = request2size(bytes); - size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; - char* mem = (char*)internal_malloc(m, req); - if (mem != 0) { - void* leader = 0; - void* trailer = 0; - mchunkptr p = mem2chunk(mem); - - if (PREACTION(m)) return 0; - if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ - /* - Find an aligned spot inside chunk. Since we need to give - back leading space in a chunk of at least MIN_CHUNK_SIZE, if - the first calculation places us at a spot with less than - MIN_CHUNK_SIZE leader, we can move to the next aligned spot. - We've allocated enough total room so that this is always - possible. - */ - char* br = (char*)mem2chunk((size_t)(((size_t)(mem + - alignment - - SIZE_T_ONE)) & - -alignment)); - char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? - br : br+alignment; - mchunkptr newp = (mchunkptr)pos; - size_t leadsize = pos - (char*)(p); - size_t newsize = chunksize(p) - leadsize; - - if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ - newp->prev_foot = p->prev_foot + leadsize; - newp->head = (newsize|CINUSE_BIT); - } - else { /* Otherwise, give back leader, use the rest */ - set_inuse(m, newp, newsize); - set_inuse(m, p, leadsize); - leader = chunk2mem(p); - } - p = newp; - } - - /* Give back spare room at the end */ - if (!is_mmapped(p)) { - size_t size = chunksize(p); - if (size > nb + MIN_CHUNK_SIZE) { - size_t remainder_size = size - nb; - mchunkptr remainder = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - set_inuse(m, remainder, remainder_size); - trailer = chunk2mem(remainder); - } - } - - assert (chunksize(p) >= nb); - assert((((size_t)(chunk2mem(p))) % alignment) == 0); - check_inuse_chunk(m, p); - POSTACTION(m); - if (leader != 0) { - internal_free(m, leader); - } - if (trailer != 0) { - internal_free(m, trailer); - } - return chunk2mem(p); - } - } - return 0; -} - -/* ------------------------ comalloc/coalloc support --------------------- */ - -static void** ialloc(mstate m, - size_t n_elements, - size_t* sizes, - int opts, - void* chunks[]) { - /* - This provides common support for independent_X routines, handling - all of the combinations that can result. - - The opts arg has: - bit 0 set if all elements are same size (using sizes[0]) - bit 1 set if elements should be zeroed - */ - - size_t element_size; /* chunksize of each element, if all same */ - size_t contents_size; /* total size of elements */ - size_t array_size; /* request size of pointer array */ - void* mem; /* malloced aggregate space */ - mchunkptr p; /* corresponding chunk */ - size_t remainder_size; /* remaining bytes while splitting */ - void** marray; /* either "chunks" or malloced ptr array */ - mchunkptr array_chunk; /* chunk for malloced ptr array */ - flag_t was_enabled; /* to disable mmap */ - size_t size; - size_t i; - - /* compute array length, if needed */ - if (chunks != 0) { - if (n_elements == 0) - return chunks; /* nothing to do */ - marray = chunks; - array_size = 0; - } - else { - /* if empty req, must still return chunk representing empty array */ - if (n_elements == 0) - return (void**)internal_malloc(m, 0); - marray = 0; - array_size = request2size(n_elements * (sizeof(void*))); - } - - /* compute total element size */ - if (opts & 0x1) { /* all-same-size */ - element_size = request2size(*sizes); - contents_size = n_elements * element_size; - } - else { /* add up all the sizes */ - element_size = 0; - contents_size = 0; - for (i = 0; i != n_elements; ++i) - contents_size += request2size(sizes[i]); - } - - size = contents_size + array_size; - - /* - Allocate the aggregate chunk. First disable direct-mmapping so - malloc won't use it, since we would not be able to later - free/realloc space internal to a segregated mmap region. - */ - was_enabled = use_mmap(m); - disable_mmap(m); - mem = internal_malloc(m, size - CHUNK_OVERHEAD); - if (was_enabled) - enable_mmap(m); - if (mem == 0) - return 0; - - if (PREACTION(m)) return 0; - p = mem2chunk(mem); - remainder_size = chunksize(p); - - assert(!is_mmapped(p)); - - if (opts & 0x2) { /* optionally clear the elements */ - memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); - } - - /* If not provided, allocate the pointer array as final part of chunk */ - if (marray == 0) { - size_t array_chunk_size; - array_chunk = chunk_plus_offset(p, contents_size); - array_chunk_size = remainder_size - contents_size; - marray = (void**) (chunk2mem(array_chunk)); - set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); - remainder_size = contents_size; - } - - /* split out elements */ - for (i = 0; ; ++i) { - marray[i] = chunk2mem(p); - if (i != n_elements-1) { - if (element_size != 0) - size = element_size; - else - size = request2size(sizes[i]); - remainder_size -= size; - set_size_and_pinuse_of_inuse_chunk(m, p, size); - p = chunk_plus_offset(p, size); - } - else { /* the final element absorbs any overallocation slop */ - set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); - break; - } - } - -#if DEBUG - if (marray != chunks) { - /* final element must have exactly exhausted chunk */ - if (element_size != 0) { - assert(remainder_size == element_size); - } - else { - assert(remainder_size == request2size(sizes[i])); - } - check_inuse_chunk(m, mem2chunk(marray)); - } - for (i = 0; i != n_elements; ++i) - check_inuse_chunk(m, mem2chunk(marray[i])); - -#endif /* DEBUG */ - - POSTACTION(m); - return marray; -} - - -/* -------------------------- public routines ---------------------------- */ - -#if !ONLY_MSPACES - -void* dlmalloc(size_t bytes) { - /* - Basic algorithm: - If a small request (< 256 bytes minus per-chunk overhead): - 1. If one exists, use a remainderless chunk in associated smallbin. - (Remainderless means that there are too few excess bytes to - represent as a chunk.) - 2. If it is big enough, use the dv chunk, which is normally the - chunk adjacent to the one used for the most recent small request. - 3. If one exists, split the smallest available chunk in a bin, - saving remainder in dv. - 4. If it is big enough, use the top chunk. - 5. If available, get memory from system and use it - Otherwise, for a large request: - 1. Find the smallest available binned chunk that fits, and use it - if it is better fitting than dv chunk, splitting if necessary. - 2. If better fitting than any binned chunk, use the dv chunk. - 3. If it is big enough, use the top chunk. - 4. If request size >= mmap threshold, try to directly mmap this chunk. - 5. If available, get memory from system and use it - - The ugly goto's here ensure that postaction occurs along all paths. - */ - - if (!PREACTION(gm)) { - void* mem; - size_t nb; - if (bytes <= MAX_SMALL_REQUEST) { - bindex_t idx; - binmap_t smallbits; - nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); - idx = small_index(nb); - smallbits = gm->smallmap >> idx; - - if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ - mchunkptr b, p; - idx += ~smallbits & 1; /* Uses next bin if idx empty */ - b = smallbin_at(gm, idx); - p = b->fd; - assert(chunksize(p) == small_index2size(idx)); - unlink_first_small_chunk(gm, b, p, idx); - set_inuse_and_pinuse(gm, p, small_index2size(idx)); - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (nb > gm->dvsize) { - if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ - mchunkptr b, p, r; - size_t rsize; - bindex_t i; - binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - b = smallbin_at(gm, i); - p = b->fd; - assert(chunksize(p) == small_index2size(i)); - unlink_first_small_chunk(gm, b, p, i); - rsize = small_index2size(i) - nb; - /* Fit here cannot be remainderless if 4byte sizes */ - if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(gm, p, small_index2size(i)); - else { - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - r = chunk_plus_offset(p, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(gm, r, rsize); - } - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - } - } - else if (bytes >= MAX_REQUEST) - nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ - else { - nb = pad_request(bytes); - if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - } - - if (nb <= gm->dvsize) { - size_t rsize = gm->dvsize - nb; - mchunkptr p = gm->dv; - if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ - mchunkptr r = gm->dv = chunk_plus_offset(p, nb); - gm->dvsize = rsize; - set_size_and_pinuse_of_free_chunk(r, rsize); - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - } - else { /* exhaust dv */ - size_t dvs = gm->dvsize; - gm->dvsize = 0; - gm->dv = 0; - set_inuse_and_pinuse(gm, p, dvs); - } - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (nb < gm->topsize) { /* Split top */ - size_t rsize = gm->topsize -= nb; - mchunkptr p = gm->top; - mchunkptr r = gm->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - mem = chunk2mem(p); - check_top_chunk(gm, gm->top); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - mem = sys_alloc(gm, nb); - - postaction: - POSTACTION(gm); - return mem; - } - - return 0; -} - -void dlfree(void* mem) { - /* - Consolidate freed chunks with preceeding or succeeding bordering - free chunks, if they exist, and then place in a bin. Intermixed - with special cases for top, dv, mmapped chunks, and usage errors. - */ - - if (mem != 0) { - mchunkptr p = mem2chunk(mem); -#if FOOTERS - mstate fm = get_mstate_for(p); - if (!ok_magic(fm)) { - USAGE_ERROR_ACTION(fm, p); - return; - } -#else /* FOOTERS */ -#define fm gm -#endif /* FOOTERS */ - if (!PREACTION(fm)) { - check_inuse_chunk(fm, p); - if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { - size_t psize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, psize); - if (!pinuse(p)) { - size_t prevsize = p->prev_foot; - if ((prevsize & IS_MMAPPED_BIT) != 0) { - prevsize &= ~IS_MMAPPED_BIT; - psize += prevsize + MMAP_FOOT_PAD; - if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) - fm->footprint -= psize; - goto postaction; - } - else { - mchunkptr prev = chunk_minus_offset(p, prevsize); - psize += prevsize; - p = prev; - if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ - if (p != fm->dv) { - unlink_chunk(fm, p, prevsize); - } - else if ((next->head & INUSE_BITS) == INUSE_BITS) { - fm->dvsize = psize; - set_free_with_pinuse(p, psize, next); - goto postaction; - } - } - else - goto erroraction; - } - } - - if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { - if (!cinuse(next)) { /* consolidate forward */ - if (next == fm->top) { - size_t tsize = fm->topsize += psize; - fm->top = p; - p->head = tsize | PINUSE_BIT; - if (p == fm->dv) { - fm->dv = 0; - fm->dvsize = 0; - } - if (should_trim(fm, tsize)) - sys_trim(fm, 0); - goto postaction; - } - else if (next == fm->dv) { - size_t dsize = fm->dvsize += psize; - fm->dv = p; - set_size_and_pinuse_of_free_chunk(p, dsize); - goto postaction; - } - else { - size_t nsize = chunksize(next); - psize += nsize; - unlink_chunk(fm, next, nsize); - set_size_and_pinuse_of_free_chunk(p, psize); - if (p == fm->dv) { - fm->dvsize = psize; - goto postaction; - } - } - } - else - set_free_with_pinuse(p, psize, next); - insert_chunk(fm, p, psize); - check_free_chunk(fm, p); - goto postaction; - } - } - erroraction: - USAGE_ERROR_ACTION(fm, p); - postaction: - POSTACTION(fm); - } - } -#if !FOOTERS -#undef fm -#endif /* FOOTERS */ -} - -void* dlcalloc(size_t n_elements, size_t elem_size) { - void* mem; - size_t req = 0; - if (n_elements != 0) { - req = n_elements * elem_size; - if (((n_elements | elem_size) & ~(size_t)0xffff) && - (req / n_elements != elem_size)) - req = MAX_SIZE_T; /* force downstream failure on overflow */ - } - mem = dlmalloc(req); - if (mem != 0 && calloc_must_clear(mem2chunk(mem))) - memset(mem, 0, req); - return mem; -} - -void* dlrealloc(void* oldmem, size_t bytes) { - if (oldmem == 0) - return dlmalloc(bytes); -#ifdef REALLOC_ZERO_BYTES_FREES - if (bytes == 0) { - dlfree(oldmem); - return 0; - } -#endif /* REALLOC_ZERO_BYTES_FREES */ - else { -#if ! FOOTERS - mstate m = gm; -#else /* FOOTERS */ - mstate m = get_mstate_for(mem2chunk(oldmem)); - if (!ok_magic(m)) { - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } -#endif /* FOOTERS */ - return internal_realloc(m, oldmem, bytes); - } -} - -void* dlmemalign(size_t alignment, size_t bytes) { - return internal_memalign(gm, alignment, bytes); -} - -void** dlindependent_calloc(size_t n_elements, size_t elem_size, - void* chunks[]) { - size_t sz = elem_size; /* serves as 1-element array */ - return ialloc(gm, n_elements, &sz, 3, chunks); -} - -void** dlindependent_comalloc(size_t n_elements, size_t sizes[], - void* chunks[]) { - return ialloc(gm, n_elements, sizes, 0, chunks); -} - -void* dlvalloc(size_t bytes) { - size_t pagesz; - init_mparams(); - pagesz = mparams.page_size; - return dlmemalign(pagesz, bytes); -} - -void* dlpvalloc(size_t bytes) { - size_t pagesz; - init_mparams(); - pagesz = mparams.page_size; - return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); -} - -int dlmalloc_trim(size_t pad) { - int result = 0; - if (!PREACTION(gm)) { - result = sys_trim(gm, pad); - POSTACTION(gm); - } - return result; -} - -size_t dlmalloc_footprint(void) { - return gm->footprint; -} - -size_t dlmalloc_max_footprint(void) { - return gm->max_footprint; -} - -#if !NO_MALLINFO -struct mallinfo dlmallinfo(void) { - return internal_mallinfo(gm); -} -#endif /* NO_MALLINFO */ - -//void dlmalloc_stats() { -// internal_malloc_stats(gm); -//} - -size_t dlmalloc_usable_size(void* mem) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - if (cinuse(p)) - return chunksize(p) - overhead_for(p); - } - return 0; -} - -int dlmallopt(int param_number, int value) { - return change_mparam(param_number, value); -} - -#endif /* !ONLY_MSPACES */ - -/* ----------------------------- user mspaces ---------------------------- */ - -#if MSPACES -#endif /* MSPACES */ - -/* -------------------- Alternative MORECORE functions ------------------- */ - -/* - Guidelines for creating a custom version of MORECORE: - - * For best performance, MORECORE should allocate in multiples of pagesize. - * MORECORE may allocate more memory than requested. (Or even less, - but this will usually result in a malloc failure.) - * MORECORE must not allocate memory when given argument zero, but - instead return one past the end address of memory from previous - nonzero call. - * For best performance, consecutive calls to MORECORE with positive - arguments should return increasing addresses, indicating that - space has been contiguously extended. - * Even though consecutive calls to MORECORE need not return contiguous - addresses, it must be OK for malloc'ed chunks to span multiple - regions in those cases where they do happen to be contiguous. - * MORECORE need not handle negative arguments -- it may instead - just return MFAIL when given negative arguments. - Negative arguments are always multiples of pagesize. MORECORE - must not misinterpret negative args as large positive unsigned - args. You can suppress all such calls from even occurring by defining - MORECORE_CANNOT_TRIM, - - As an example alternative MORECORE, here is a custom allocator - kindly contributed for pre-OSX macOS. It uses virtually but not - necessarily physically contiguous non-paged memory (locked in, - present and won't get swapped out). You can use it by uncommenting - this section, adding some #includes, and setting up the appropriate - defines above: - - #define MORECORE osMoreCore - - There is also a shutdown routine that should somehow be called for - cleanup upon program exit. - - #define MAX_POOL_ENTRIES 100 - #define MINIMUM_MORECORE_SIZE (64 * 1024U) - static int next_os_pool; - void *our_os_pools[MAX_POOL_ENTRIES]; - - void *osMoreCore(int size) - { - void *ptr = 0; - static void *sbrk_top = 0; - - if (size > 0) - { - if (size < MINIMUM_MORECORE_SIZE) - size = MINIMUM_MORECORE_SIZE; - if (CurrentExecutionLevel() == kTaskLevel) - ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); - if (ptr == 0) - { - return (void *) MFAIL; - } - // save ptrs so they can be freed during cleanup - our_os_pools[next_os_pool] = ptr; - next_os_pool++; - ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); - sbrk_top = (char *) ptr + size; - return ptr; - } - else if (size < 0) - { - // we don't currently support shrink behavior - return (void *) MFAIL; - } - else - { - return sbrk_top; - } - } - - // cleanup any allocated memory pools - // called as last thing before shutting down driver - - void osCleanupMem(void) - { - void **ptr; - - for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) - if (*ptr) - { - PoolDeallocate(*ptr); - *ptr = 0; - } - } - -*/ - - -/* ----------------------------------------------------------------------- -History: - V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) - * Add max_footprint functions - * Ensure all appropriate literals are size_t - * Fix conditional compilation problem for some #define settings - * Avoid concatenating segments with the one provided - in create_mspace_with_base - * Rename some variables to avoid compiler shadowing warnings - * Use explicit lock initialization. - * Better handling of sbrk interference. - * Simplify and fix segment insertion, trimming and mspace_destroy - * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x - * Thanks especially to Dennis Flanagan for help on these. - - V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) - * Fix memalign brace error. - - V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) - * Fix improper #endif nesting in C++ - * Add explicit casts needed for C++ - - V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) - * Use trees for large bins - * Support mspaces - * Use segments to unify sbrk-based and mmap-based system allocation, - removing need for emulation on most platforms without sbrk. - * Default safety checks - * Optional footer checks. Thanks to William Robertson for the idea. - * Internal code refactoring - * Incorporate suggestions and platform-specific changes. - Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, - Aaron Bachmann, Emery Berger, and others. - * Speed up non-fastbin processing enough to remove fastbins. - * Remove useless cfree() to avoid conflicts with other apps. - * Remove internal memcpy, memset. Compilers handle builtins better. - * Remove some options that no one ever used and rename others. - - V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) - * Fix malloc_state bitmap array misdeclaration - - V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) - * Allow tuning of FIRST_SORTED_BIN_SIZE - * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. - * Better detection and support for non-contiguousness of MORECORE. - Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger - * Bypass most of malloc if no frees. Thanks To Emery Berger. - * Fix freeing of old top non-contiguous chunk im sysmalloc. - * Raised default trim and map thresholds to 256K. - * Fix mmap-related #defines. Thanks to Lubos Lunak. - * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. - * Branch-free bin calculation - * Default trim and mmap thresholds now 256K. - - V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) - * Introduce independent_comalloc and independent_calloc. - Thanks to Michael Pachos for motivation and help. - * Make optional .h file available - * Allow > 2GB requests on 32bit systems. - * new WIN32 sbrk, mmap, munmap, lock code from . - Thanks also to Andreas Mueller , - and Anonymous. - * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for - helping test this.) - * memalign: check alignment arg - * realloc: don't try to shift chunks backwards, since this - leads to more fragmentation in some programs and doesn't - seem to help in any others. - * Collect all cases in malloc requiring system memory into sysmalloc - * Use mmap as backup to sbrk - * Place all internal state in malloc_state - * Introduce fastbins (although similar to 2.5.1) - * Many minor tunings and cosmetic improvements - * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK - * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS - Thanks to Tony E. Bennett and others. - * Include errno.h to support default failure action. - - V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) - * return null for negative arguments - * Added Several WIN32 cleanups from Martin C. Fong - * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' - (e.g. WIN32 platforms) - * Cleanup header file inclusion for WIN32 platforms - * Cleanup code to avoid Microsoft Visual C++ compiler complaints - * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing - memory allocation routines - * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) - * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to - usage of 'assert' in non-WIN32 code - * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to - avoid infinite loop - * Always call 'fREe()' rather than 'free()' - - V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) - * Fixed ordering problem with boundary-stamping - - V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) - * Added pvalloc, as recommended by H.J. Liu - * Added 64bit pointer support mainly from Wolfram Gloger - * Added anonymously donated WIN32 sbrk emulation - * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen - * malloc_extend_top: fix mask error that caused wastage after - foreign sbrks - * Add linux mremap support code from HJ Liu - - V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) - * Integrated most documentation with the code. - * Add support for mmap, with help from - Wolfram Gloger (Gloger@lrz.uni-muenchen.de). - * Use last_remainder in more cases. - * Pack bins using idea from colin@nyx10.cs.du.edu - * Use ordered bins instead of best-fit threshhold - * Eliminate block-local decls to simplify tracing and debugging. - * Support another case of realloc via move into top - * Fix error occuring when initial sbrk_base not word-aligned. - * Rely on page size for units instead of SBRK_UNIT to - avoid surprises about sbrk alignment conventions. - * Add mallinfo, mallopt. Thanks to Raymond Nijssen - (raymond@es.ele.tue.nl) for the suggestion. - * Add `pad' argument to malloc_trim and top_pad mallopt parameter. - * More precautions for cases where other routines call sbrk, - courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). - * Added macros etc., allowing use in linux libc from - H.J. Lu (hjl@gnu.ai.mit.edu) - * Inverted this history list - - V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) - * Re-tuned and fixed to behave more nicely with V2.6.0 changes. - * Removed all preallocation code since under current scheme - the work required to undo bad preallocations exceeds - the work saved in good cases for most test programs. - * No longer use return list or unconsolidated bins since - no scheme using them consistently outperforms those that don't - given above changes. - * Use best fit for very large chunks to prevent some worst-cases. - * Added some support for debugging - - V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) - * Removed footers when chunks are in use. Thanks to - Paul Wilson (wilson@cs.texas.edu) for the suggestion. - - V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) - * Added malloc_trim, with help from Wolfram Gloger - (wmglo@Dent.MED.Uni-Muenchen.DE). - - V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) - - V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) - * realloc: try to expand in both directions - * malloc: swap order of clean-bin strategy; - * realloc: only conditionally expand backwards - * Try not to scavenge used bins - * Use bin counts as a guide to preallocation - * Occasionally bin return list chunks in first scan - * Add a few optimizations from colin@nyx10.cs.du.edu - - V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) - * faster bin computation & slightly different binning - * merged all consolidations to one part of malloc proper - (eliminating old malloc_find_space & malloc_clean_bin) - * Scan 2 returns chunks (not just 1) - * Propagate failure in realloc if malloc returns 0 - * Add stuff to allow compilation on non-ANSI compilers - from kpv@research.att.com - - V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) - * removed potential for odd address access in prev_chunk - * removed dependency on getpagesize.h - * misc cosmetics and a bit more internal documentation - * anticosmetics: mangled names in macros to evade debugger strangeness - * tested on sparc, hp-700, dec-mips, rs6000 - with gcc & native cc (hp, dec only) allowing - Detlefs & Zorn comparison study (in SIGPLAN Notices.) - - Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) - * Based loosely on libg++-1.2X malloc. (It retains some of the overall - structure of old version, but most details differ.) - -*/ +/* + This is a version (aka dlmalloc) of malloc/free/realloc written by + Doug Lea and released to the public domain, as explained at + http://creativecommons.org/licenses/publicdomain. Send questions, + comments, complaints, performance data, etc to dl@cs.oswego.edu + +* Version 2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) + + Note: There may be an updated version of this malloc obtainable at + ftp://gee.cs.oswego.edu/pub/misc/malloc.c + Check before installing! + +* Quickstart + + This library is all in one file to simplify the most common usage: + ftp it, compile it (-O3), and link it into another program. All of + the compile-time options default to reasonable values for use on + most platforms. You might later want to step through various + compile-time and dynamic tuning options. + + For convenience, an include file for code using this malloc is at: + ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h + You don't really need this .h file unless you call functions not + defined in your system include files. The .h file contains only the + excerpts from this file needed for using this malloc on ANSI C/C++ + systems, so long as you haven't changed compile-time options about + naming and tuning parameters. If you do, then you can create your + own malloc.h that does include all settings by cutting at the point + indicated below. Note that you may already by default be using a C + library containing a malloc that is based on some version of this + malloc (for example in linux). You might still want to use the one + in this file to customize settings or to avoid overheads associated + with library versions. + +*/ + +#include +#include +#include + +struct malloc_chunk { + size_t prev_foot; /* Size of previous chunk (if free). */ + size_t head; /* Size and inuse bits. */ + struct malloc_chunk* fd; /* double links -- used only if free. */ + struct malloc_chunk* bk; +}; + +typedef struct malloc_chunk mchunk; +typedef struct malloc_chunk* mchunkptr; +typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ +typedef unsigned int bindex_t; /* Described below */ +typedef unsigned int binmap_t; /* Described below */ +typedef unsigned int flag_t; /* The type of various bit flag sets */ + + + +/* ------------------- size_t and alignment properties -------------------- */ + +/* The maximum possible size_t value has all bits set */ +#define MAX_SIZE_T (~(size_t)0) + +/* The byte and bit size of a size_t */ +#define SIZE_T_SIZE (sizeof(size_t)) +#define SIZE_T_BITSIZE (sizeof(size_t) << 3) + +/* Some constants coerced to size_t */ +/* Annoying but necessary to avoid errors on some platforms */ +#define SIZE_T_ZERO ((size_t)0) +#define SIZE_T_ONE ((size_t)1) +#define SIZE_T_TWO ((size_t)2) +#define SIZE_T_FOUR ((size_t)4) +#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) +#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) +#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) +#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) + +#define USE_LOCK_BIT (2U) +#define USE_MMAP_BIT (SIZE_T_ONE) +#define USE_NONCONTIGUOUS_BIT (4U) + +/* segment bit set in create_mspace_with_base */ +#define EXTERN_BIT (8U) + +#define HAVE_MMAP 1 +#define CALL_MMAP(s) MMAP_DEFAULT(s) +#define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) +#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL +#define MAX_RELEASE_CHECK_RATE 4095 +#define NO_SEGMENT_TRAVERSAL 1 +#define MALLOC_ALIGNMENT ((size_t)8U) +#define CHUNK_OVERHEAD (SIZE_T_SIZE) +#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) +#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) +#define DEFAULT_TRIM_THRESHOLD ((size_t)512U * (size_t)1024U) + +/* The bit mask value corresponding to MALLOC_ALIGNMENT */ +#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) + +/* True if address a has acceptable alignment */ +#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) + +/* the number of bytes to offset an address to align it */ +#define align_offset(A)\ + ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ + ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) + + +#define MFAIL ((void*)(MAX_SIZE_T)) +#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ + +/* For sys_alloc, enough padding to ensure can malloc request on success */ +#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) + +/* + TOP_FOOT_SIZE is padding at the end of a segment, including space + that may be needed to place segment records and fenceposts when new + noncontiguous segments are added. +*/ +#define TOP_FOOT_SIZE\ + (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) + +/* ------------------- Chunks sizes and alignments ----------------------- */ + +#define MCHUNK_SIZE (sizeof(mchunk)) + +/* MMapped chunks need a second word of overhead ... */ +#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +/* ... and additional padding for fake next-chunk at foot */ +#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) + +/* The smallest size we can malloc is an aligned minimal chunk */ +#define MIN_CHUNK_SIZE\ + ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* conversion from malloc headers to user pointers, and back */ +#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) +#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) +/* chunk associated with aligned address A */ +#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) + +/* Bounds on request (not chunk) sizes. */ +#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) +#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) + +/* pad request bytes into a usable size */ +#define pad_request(req) \ + (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* pad request, checking for minimum (but not maximum) */ +#define request2size(req) \ + (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) + +/* ------------------ Operations on head and foot fields ----------------- */ + +/* + The head field of a chunk is or'ed with PINUSE_BIT when previous + adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in + use, unless mmapped, in which case both bits are cleared. + + FLAG4_BIT is not used by this malloc, but might be useful in extensions. +*/ + +#define PINUSE_BIT (SIZE_T_ONE) +#define CINUSE_BIT (SIZE_T_TWO) +#define FLAG4_BIT (SIZE_T_FOUR) +#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) +#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) + +/* Head value for fenceposts */ +#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) + +/* extraction of fields from head words */ +#define cinuse(p) ((p)->head & CINUSE_BIT) +#define pinuse(p) ((p)->head & PINUSE_BIT) +#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) +#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) + +#define chunksize(p) ((p)->head & ~(FLAG_BITS)) + +#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) + +/* Treat space at ptr +/- offset as a chunk */ +#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) +#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) + +/* Ptr to next or previous physical malloc_chunk. */ +#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) +#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) + +/* extract next chunk's pinuse bit */ +#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) + +/* Set size, pinuse bit, and foot */ +#define set_size_and_pinuse_of_free_chunk(p, s)\ + ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) + +/* Set size, pinuse bit, foot, and clear next pinuse */ +#define set_free_with_pinuse(p, s, n)\ + (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) + +/* Get the internal overhead associated with chunk p */ +#define overhead_for(p)\ + (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) + + +struct malloc_tree_chunk { + /* The first four fields must be compatible with malloc_chunk */ + size_t prev_foot; + size_t head; + struct malloc_tree_chunk* fd; + struct malloc_tree_chunk* bk; + + struct malloc_tree_chunk* child[2]; + struct malloc_tree_chunk* parent; + bindex_t index; +}; + +typedef struct malloc_tree_chunk tchunk; +typedef struct malloc_tree_chunk* tchunkptr; +typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ + +/* A little helper macro for trees */ +#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) + + +struct malloc_segment { + char* base; /* base address */ + size_t size; /* allocated size */ + struct malloc_segment* next; /* ptr to next segment */ + flag_t sflags; /* mmap and extern flag */ +}; + +#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT) +#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) + +typedef struct malloc_segment msegment; +typedef struct malloc_segment* msegmentptr; + +/* ---------------------------- malloc_state ----------------------------- */ + +/* + A malloc_state holds all of the bookkeeping for a space. + The main fields are: + + Top + The topmost chunk of the currently active segment. Its size is + cached in topsize. The actual size of topmost space is + topsize+TOP_FOOT_SIZE, which includes space reserved for adding + fenceposts and segment records if necessary when getting more + space from the system. The size at which to autotrim top is + cached from mparams in trim_check, except that it is disabled if + an autotrim fails. + + Designated victim (dv) + This is the preferred chunk for servicing small requests that + don't have exact fits. It is normally the chunk split off most + recently to service another small request. Its size is cached in + dvsize. The link fields of this chunk are not maintained since it + is not kept in a bin. + + SmallBins + An array of bin headers for free chunks. These bins hold chunks + with sizes less than MIN_LARGE_SIZE bytes. Each bin contains + chunks of all the same size, spaced 8 bytes apart. To simplify + use in double-linked lists, each bin header acts as a malloc_chunk + pointing to the real first node, if it exists (else pointing to + itself). This avoids special-casing for headers. But to avoid + waste, we allocate only the fd/bk pointers of bins, and then use + repositioning tricks to treat these as the fields of a chunk. + + TreeBins + Treebins are pointers to the roots of trees holding a range of + sizes. There are 2 equally spaced treebins for each power of two + from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything + larger. + + Bin maps + There is one bit map for small bins ("smallmap") and one for + treebins ("treemap). Each bin sets its bit when non-empty, and + clears the bit when empty. Bit operations are then used to avoid + bin-by-bin searching -- nearly all "search" is done without ever + looking at bins that won't be selected. The bit maps + conservatively use 32 bits per map word, even if on 64bit system. + For a good description of some of the bit-based techniques used + here, see Henry S. Warren Jr's book "Hacker's Delight" (and + supplement at http://hackersdelight.org/). Many of these are + intended to reduce the branchiness of paths through malloc etc, as + well as to reduce the number of memory locations read or written. + + Segments + A list of segments headed by an embedded malloc_segment record + representing the initial space. + + Address check support + The least_addr field is the least address ever obtained from + MORECORE or MMAP. Attempted frees and reallocs of any address less + than this are trapped (unless INSECURE is defined). + + Magic tag + A cross-check field that should always hold same value as mparams.magic. + + Flags + Bits recording whether to use MMAP, locks, or contiguous MORECORE + + Statistics + Each space keeps track of current and maximum system memory + obtained via MORECORE or MMAP. + + Trim support + Fields holding the amount of unused topmost memory that should trigger + timming, and a counter to force periodic scanning to release unused + non-topmost segments. + + Locking + If USE_LOCKS is defined, the "mutex" lock is acquired and released + around every public call using this mspace. + + Extension support + A void* pointer and a size_t field that can be used to help implement + extensions to this malloc. +*/ + +/* Bin types, widths and sizes */ +#define NSMALLBINS (32U) +#define NTREEBINS (32U) +#define SMALLBIN_SHIFT (3U) +#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) +#define TREEBIN_SHIFT (8U) +#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) +#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) +#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) + +struct malloc_state { + binmap_t smallmap; + binmap_t treemap; + size_t dvsize; + size_t topsize; + char* least_addr; + mchunkptr dv; + mchunkptr top; + size_t trim_check; + size_t release_checks; + size_t magic; + mchunkptr smallbins[(NSMALLBINS+1)*2]; + tbinptr treebins[NTREEBINS]; + size_t footprint; + size_t max_footprint; + flag_t mflags; + struct mutex lock; /* locate lock among fields that rarely change */ + msegment seg; + void* extp; /* Unused but available for extensions */ + size_t exts; +}; + +typedef struct malloc_state* mstate; + +/* ------------- Global malloc_state and malloc_params ------------------- */ + +/* + malloc_params holds global properties, including those that can be + dynamically set using mallopt. There is a single instance, mparams, + initialized in init_mparams. Note that the non-zeroness of "magic" + also serves as an initialization flag. +*/ + +struct malloc_params +{ + volatile size_t magic; + size_t page_size; + size_t granularity; + size_t mmap_threshold; + size_t trim_threshold; + flag_t default_mflags; +}; + +static struct malloc_params mparams; + +#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) + +static struct malloc_state _gm_; +#define gm (&_gm_) +#define is_global(M) ((M) == &_gm_) + +#define is_initialized(M) ((M)->top != 0) + + +//struct mutex malloc_global_mutex; + +static DEFINE_MUTEX(malloc_global_mutex); + +#define ACQUIRE_MALLOC_GLOBAL_LOCK() MutexLock(&malloc_global_mutex); +#define RELEASE_MALLOC_GLOBAL_LOCK() MutexUnlock(&malloc_global_mutex); + +#define PREACTION(M) ( MutexLock(&(M)->lock)) +#define POSTACTION(M) { MutexUnlock(&(M)->lock); } + + +/* ---------------------------- Indexing Bins ---------------------------- */ + +#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) +#define small_index(s) ((s) >> SMALLBIN_SHIFT) +#define small_index2size(i) ((i) << SMALLBIN_SHIFT) +#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) + +/* addressing by index. See above about smallbin repositioning */ +#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) +#define treebin_at(M,i) (&((M)->treebins[i])) + + +#define compute_tree_index(S, I)\ +{\ + unsigned int X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +/* Bit representing maximum resolved size in a treebin at i */ +#define bit_for_tree_index(i) \ + (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) + +/* Shift placing maximum resolved bit in a treebin at i as sign bit */ +#define leftshift_for_tree_index(i) \ + ((i == NTREEBINS-1)? 0 : \ + ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) + +/* The size of the smallest chunk held in bin with index i */ +#define minsize_for_tree_index(i) \ + ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ + (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) + + +/* ------------------------ Operations on bin maps ----------------------- */ + +/* bit corresponding to given index */ +#define idx2bit(i) ((binmap_t)(1) << (i)) + +/* Mark/Clear bits with given index */ +#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) +#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) +#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) + +#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) +#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) +#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) + +/* isolate the least set bit of a bitmap */ +#define least_bit(x) ((x) & -(x)) + +/* mask with all bits to left of least bit of x on */ +#define left_bits(x) ((x<<1) | -(x<<1)) + +/* mask with all bits to left of or equal to least bit of x on */ +#define same_or_left_bits(x) ((x) | -(x)) + + +/* index corresponding to given bit. Use x86 asm if possible */ + +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\ + I = (bindex_t)J;\ +} + + +#define mark_inuse_foot(M,p,s) + +/* Get/set size at footer */ +#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) +#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) + +/* Macros for setting head/foot of non-mmapped chunks */ + +/* Set cinuse bit and pinuse bit of next chunk */ +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set size, cinuse and pinuse bit of this chunk */ +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) + + +#define assert(x) +#define RTCHECK(e) __builtin_expect(e, 1) + +#define check_free_chunk(M,P) +#define check_inuse_chunk(M,P) +#define check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) +#define check_malloc_state(M) +#define check_top_chunk(M,P) + +/* Check if address a is at least as high as any from MORECORE or MMAP */ +#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) +/* Check if address of next chunk n is higher than base chunk p */ +#define ok_next(p, n) ((char*)(p) < (char*)(n)) +/* Check if p has inuse status */ +#define ok_inuse(p) is_inuse(p) +/* Check if p has its pinuse bit on */ +#define ok_pinuse(p) pinuse(p) + +#define CORRUPTION_ERROR_ACTION(m) \ + do { \ + printf("%s malloc heap corrupted\n",__FUNCTION__); \ + while(1) \ + { \ + delay(100); \ + } \ + }while(0) \ + + +#define USAGE_ERROR_ACTION(m, p) \ + do { \ + printf("%s malloc heap corrupted\n",__FUNCTION__); \ + while(1) \ + { \ + delay(100); \ + } \ + }while(0) \ + +/* ----------------------- Operations on smallbins ----------------------- */ + +/* + Various forms of linking and unlinking are defined as macros. Even + the ones for trees, which are very long but have very short typical + paths. This is ugly but reduces reliance on inlining support of + compilers. +*/ + +/* Link a free chunk into a smallbin */ +#define insert_small_chunk(M, P, S) {\ + bindex_t I = small_index(S);\ + mchunkptr B = smallbin_at(M, I);\ + mchunkptr F = B;\ + assert(S >= MIN_CHUNK_SIZE);\ + if (!smallmap_is_marked(M, I))\ + mark_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, B->fd)))\ + F = B->fd;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + B->fd = P;\ + F->bk = P;\ + P->fd = F;\ + P->bk = B;\ +} + +/* Unlink a chunk from a smallbin */ +#define unlink_small_chunk(M, P, S) {\ + mchunkptr F = P->fd;\ + mchunkptr B = P->bk;\ + bindex_t I = small_index(S);\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (F == B)\ + clear_smallmap(M, I);\ + else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ + (B == smallbin_at(M,I) || ok_address(M, B)))) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Unlink the first chunk from a smallbin */ +#define unlink_first_small_chunk(M, B, P, I) {\ + mchunkptr F = P->fd;\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (B == F)\ + clear_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, F))) {\ + B->fd = F;\ + F->bk = B;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Replace dv node, binning the old one */ +/* Used only when dvsize known to be small */ +#define replace_dv(M, P, S) {\ + size_t DVS = M->dvsize;\ + if (DVS != 0) {\ + mchunkptr DV = M->dv;\ + assert(is_small(DVS));\ + insert_small_chunk(M, DV, DVS);\ + }\ + M->dvsize = S;\ + M->dv = P;\ +} + + +/* ------------------------- Operations on trees ------------------------- */ + +/* Insert chunk into tree */ +#define insert_large_chunk(M, X, S) {\ + tbinptr* H;\ + bindex_t I;\ + compute_tree_index(S, I);\ + H = treebin_at(M, I);\ + X->index = I;\ + X->child[0] = X->child[1] = 0;\ + if (!treemap_is_marked(M, I)) {\ + mark_treemap(M, I);\ + *H = X;\ + X->parent = (tchunkptr)H;\ + X->fd = X->bk = X;\ + }\ + else {\ + tchunkptr T = *H;\ + size_t K = S << leftshift_for_tree_index(I);\ + for (;;) {\ + if (chunksize(T) != S) {\ + tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ + K <<= 1;\ + if (*C != 0)\ + T = *C;\ + else if (RTCHECK(ok_address(M, C))) {\ + *C = X;\ + X->parent = T;\ + X->fd = X->bk = X;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + else {\ + tchunkptr F = T->fd;\ + if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ + T->fd = F->bk = X;\ + X->fd = F;\ + X->bk = T;\ + X->parent = 0;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + }\ + }\ +} + +/* + Unlink steps: + + 1. If x is a chained node, unlink it from its same-sized fd/bk links + and choose its bk node as its replacement. + 2. If x was the last node of its size, but not a leaf node, it must + be replaced with a leaf node (not merely one with an open left or + right), to make sure that lefts and rights of descendents + correspond properly to bit masks. We use the rightmost descendent + of x. We could use any other leaf, but this is easy to locate and + tends to counteract removal of leftmosts elsewhere, and so keeps + paths shorter than minimally guaranteed. This doesn't loop much + because on average a node in a tree is near the bottom. + 3. If x is the base of a chain (i.e., has parent links) relink + x's parent and children to x's replacement (or null if none). +*/ + +#define unlink_large_chunk(M, X) {\ + tchunkptr XP = X->parent;\ + tchunkptr R;\ + if (X->bk != X) {\ + tchunkptr F = X->fd;\ + R = X->bk;\ + if (RTCHECK(ok_address(M, F))) {\ + F->bk = R;\ + R->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + tchunkptr* RP;\ + if (((R = *(RP = &(X->child[1]))) != 0) ||\ + ((R = *(RP = &(X->child[0]))) != 0)) {\ + tchunkptr* CP;\ + while ((*(CP = &(R->child[1])) != 0) ||\ + (*(CP = &(R->child[0])) != 0)) {\ + R = *(RP = CP);\ + }\ + if (RTCHECK(ok_address(M, RP)))\ + *RP = 0;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + }\ + if (XP != 0) {\ + tbinptr* H = treebin_at(M, X->index);\ + if (X == *H) {\ + if ((*H = R) == 0) \ + clear_treemap(M, X->index);\ + }\ + else if (RTCHECK(ok_address(M, XP))) {\ + if (XP->child[0] == X) \ + XP->child[0] = R;\ + else \ + XP->child[1] = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + if (R != 0) {\ + if (RTCHECK(ok_address(M, R))) {\ + tchunkptr C0, C1;\ + R->parent = XP;\ + if ((C0 = X->child[0]) != 0) {\ + if (RTCHECK(ok_address(M, C0))) {\ + R->child[0] = C0;\ + C0->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + if ((C1 = X->child[1]) != 0) {\ + if (RTCHECK(ok_address(M, C1))) {\ + R->child[1] = C1;\ + C1->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ +} + +/* Relays to large vs small bin operations */ + +#define insert_chunk(M, P, S)\ + if (is_small(S)) insert_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } + +#define unlink_chunk(M, P, S)\ + if (is_small(S)) unlink_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } + + +/* -------------------------- system alloc setup ------------------------- */ + +/* Operations on mflags */ + +#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) +#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) +#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) + +#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) +#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) +#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) + +#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) +#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) + +#define set_lock(M,L)\ + ((M)->mflags = (L)?\ + ((M)->mflags | USE_LOCK_BIT) :\ + ((M)->mflags & ~USE_LOCK_BIT)) + +/* page-align a size */ +#define page_align(S)\ + (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) + +/* granularity-align a size */ +#define granularity_align(S)\ + (((S) + (mparams.granularity - SIZE_T_ONE))\ + & ~(mparams.granularity - SIZE_T_ONE)) + + +/* For mmap, use granularity alignment */ +#define mmap_align(S) granularity_align(S) + +/* For sys_alloc, enough padding to ensure can malloc request on success */ +#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) + +#define is_page_aligned(S)\ + (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) +#define is_granularity_aligned(S)\ + (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) + +/* True if segment S holds address A */ +#define segment_holds(S, A)\ + ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) + +/* Return segment holding given address */ +static msegmentptr segment_holding(mstate m, char* addr) +{ + msegmentptr sp = &m->seg; + for (;;) { + if (addr >= sp->base && addr < sp->base + sp->size) + return sp; + if ((sp = sp->next) == 0) + return 0; + } +} + +/* Return true if segment contains a segment link */ +static int has_segment_link(mstate m, msegmentptr ss) +{ + msegmentptr sp = &m->seg; + for (;;) { + if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) + return 1; + if ((sp = sp->next) == 0) + return 0; + } +} + +static inline void* os_mmap(size_t size) +{ + void* ptr = KernelAlloc(size); + return (ptr != 0)? ptr: MFAIL; +} + +static inline int os_munmap(void* ptr, size_t size) +{ + return (KernelFree(ptr) != 0) ? 0 : -1; +} + +#define should_trim(M,s) ((s) > (M)->trim_check) + + +#define MMAP_DEFAULT(s) os_mmap(s) +#define MUNMAP_DEFAULT(a, s) os_munmap((a), (s)) +#define DIRECT_MMAP_DEFAULT(s) os_mmap(s) + +#define internal_malloc(m, b) malloc(b) +#define internal_free(m, mem) free(mem) + +/* ----------------------- Direct-mmapping chunks ----------------------- */ + +/* + Directly mmapped chunks are set up with an offset to the start of + the mmapped region stored in the prev_foot field of the chunk. This + allows reconstruction of the required argument to MUNMAP when freed, + and also allows adjustment of the returned chunk to meet alignment + requirements (especially in memalign). +*/ + +/* Malloc using mmap */ +static void* mmap_alloc(mstate m, size_t nb) +{ + size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + if (mmsize > nb) /* Check for wrap around 0 */ + { + char* mm = (char*)(os_mmap(mmsize)); + if (mm != CMFAIL) + { + size_t offset = align_offset(chunk2mem(mm)); + size_t psize = mmsize - offset - MMAP_FOOT_PAD; + mchunkptr p = (mchunkptr)(mm + offset); + p->prev_foot = offset; + p->head = psize; + mark_inuse_foot(m, p, psize); + chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; + + if (m->least_addr == 0 || mm < m->least_addr) + m->least_addr = mm; + if ((m->footprint += mmsize) > m->max_footprint) + m->max_footprint = m->footprint; + assert(is_aligned(chunk2mem(p))); + check_mmapped_chunk(m, p); + return chunk2mem(p); + } + } + return 0; +} + +/* Realloc using mmap */ +static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) +{ + size_t oldsize = chunksize(oldp); + if (is_small(nb)) /* Can't shrink mmap regions below small size */ + return 0; + /* Keep old chunk if big enough but not too big */ + if (oldsize >= nb + SIZE_T_SIZE && + (oldsize - nb) <= (mparams.granularity << 1)) + return oldp; + else + { + size_t offset = oldp->prev_foot; + size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; + size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + char* cp = (char*)CALL_MREMAP((char*)oldp - offset, + oldmmsize, newmmsize, 1); + if (cp != CMFAIL) + { + mchunkptr newp = (mchunkptr)(cp + offset); + size_t psize = newmmsize - offset - MMAP_FOOT_PAD; + newp->head = psize; + mark_inuse_foot(m, newp, psize); + chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; + + if (cp < m->least_addr) + m->least_addr = cp; + if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) + m->max_footprint = m->footprint; + check_mmapped_chunk(m, newp); + return newp; + } + } + return 0; +} + +/* ---------------------------- setting mparams -------------------------- */ + +/* Initialize mparams */ +static int init_mparams(void) { + + ACQUIRE_MALLOC_GLOBAL_LOCK(); + + if (mparams.magic == 0) + { + size_t magic; + size_t psize; + size_t gsize; + + psize = 4096; + gsize = DEFAULT_GRANULARITY; + + /* Sanity-check configuration: + size_t must be unsigned and as wide as pointer type. + ints must be at least 4 bytes. + alignment must be at least 8. + Alignment, min chunk size, and page size must all be powers of 2. + */ + + mparams.granularity = gsize; + mparams.page_size = psize; + mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; + mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; + + /* Set up lock for main malloc area */ + gm->mflags = mparams.default_mflags; + MutexInit(&gm->lock); + + magic = (size_t)(GetTimerTicks() ^ (size_t)0x55555555U); + magic |= (size_t)8U; /* ensure nonzero */ + magic &= ~(size_t)7U; /* improve chances of fault for bad values */ + mparams.magic = magic; + } + + RELEASE_MALLOC_GLOBAL_LOCK(); + return 1; +} + +/* -------------------------- mspace management -------------------------- */ + +/* Initialize top chunk and its size */ +static void init_top(mstate m, mchunkptr p, size_t psize) +{ + /* Ensure alignment */ + size_t offset = align_offset(chunk2mem(p)); + p = (mchunkptr)((char*)p + offset); + psize -= offset; + + m->top = p; + m->topsize = psize; + p->head = psize | PINUSE_BIT; + /* set size of fake trailing chunk holding overhead space only once */ + chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; + m->trim_check = mparams.trim_threshold; /* reset on each update */ +} + +/* Initialize bins for a new mstate that is otherwise zeroed out */ +static void init_bins(mstate m) +{ + /* Establish circular links for smallbins */ + bindex_t i; + for (i = 0; i < NSMALLBINS; ++i) { + sbinptr bin = smallbin_at(m,i); + bin->fd = bin->bk = bin; + } +} + +/* Allocate chunk and prepend remainder with chunk in successor base. */ +static void* prepend_alloc(mstate m, char* newbase, char* oldbase, + size_t nb) +{ + mchunkptr p = align_as_chunk(newbase); + mchunkptr oldfirst = align_as_chunk(oldbase); + size_t psize = (char*)oldfirst - (char*)p; + mchunkptr q = chunk_plus_offset(p, nb); + size_t qsize = psize - nb; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + + assert((char*)oldfirst > (char*)q); + assert(pinuse(oldfirst)); + assert(qsize >= MIN_CHUNK_SIZE); + + /* consolidate remainder with first chunk of old base */ + if (oldfirst == m->top) { + size_t tsize = m->topsize += qsize; + m->top = q; + q->head = tsize | PINUSE_BIT; + check_top_chunk(m, q); + } + else if (oldfirst == m->dv) { + size_t dsize = m->dvsize += qsize; + m->dv = q; + set_size_and_pinuse_of_free_chunk(q, dsize); + } + else { + if (!is_inuse(oldfirst)) { + size_t nsize = chunksize(oldfirst); + unlink_chunk(m, oldfirst, nsize); + oldfirst = chunk_plus_offset(oldfirst, nsize); + qsize += nsize; + } + set_free_with_pinuse(q, qsize, oldfirst); + insert_chunk(m, q, qsize); + check_free_chunk(m, q); + } + + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); +} + +/* Add a segment to hold a new noncontiguous region */ +static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) +{ + /* Determine locations and sizes of segment, fenceposts, old top */ + char* old_top = (char*)m->top; + msegmentptr oldsp = segment_holding(m, old_top); + char* old_end = oldsp->base + oldsp->size; + size_t ssize = pad_request(sizeof(struct malloc_segment)); + char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + size_t offset = align_offset(chunk2mem(rawsp)); + char* asp = rawsp + offset; + char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; + mchunkptr sp = (mchunkptr)csp; + msegmentptr ss = (msegmentptr)(chunk2mem(sp)); + mchunkptr tnext = chunk_plus_offset(sp, ssize); + mchunkptr p = tnext; + int nfences = 0; + + /* reset top to new space */ + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + + /* Set up segment record */ + assert(is_aligned(ss)); + set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); + *ss = m->seg; /* Push current record */ + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmapped; + m->seg.next = ss; + + /* Insert trailing fenceposts */ + for (;;) { + mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); + p->head = FENCEPOST_HEAD; + ++nfences; + if ((char*)(&(nextp->head)) < old_end) + p = nextp; + else + break; + } + assert(nfences >= 2); + + /* Insert the rest of old top into a bin as an ordinary free chunk */ + if (csp != old_top) { + mchunkptr q = (mchunkptr)old_top; + size_t psize = csp - old_top; + mchunkptr tn = chunk_plus_offset(q, psize); + set_free_with_pinuse(q, psize, tn); + insert_chunk(m, q, psize); + } + + check_top_chunk(m, m->top); +} + +/* -------------------------- System allocation -------------------------- */ + +/* Get memory from system using MORECORE or MMAP */ +static void* sys_alloc(mstate m, size_t nb) +{ + char* tbase = CMFAIL; + size_t tsize = 0; + flag_t mmap_flag = 0; + + ensure_initialization(); + + /* Directly map large chunks, but only if already initialized */ + if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) + { + void* mem = mmap_alloc(m, nb); + if (mem != 0) + return mem; + } + + /* + Try getting memory in any of three ways (in most-preferred to + least-preferred order): + 1. A call to MORECORE that can normally contiguously extend memory. + (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or + or main space is mmapped or a previous contiguous call failed) + 2. A call to MMAP new space (disabled if not HAVE_MMAP). + Note that under the default settings, if MORECORE is unable to + fulfill a request, and HAVE_MMAP is true, then mmap is + used as a noncontiguous system allocator. This is a useful backup + strategy for systems with holes in address spaces -- in this case + sbrk cannot contiguously expand the heap, but mmap may be able to + find space. + 3. A call to MORECORE that cannot usually contiguously extend memory. + (disabled if not HAVE_MORECORE) + + In all cases, we need to request enough bytes from system to ensure + we can malloc nb bytes upon success, so pad with enough space for + top_foot, plus alignment-pad to make sure we don't lose bytes if + not on boundary, and round this up to a granularity unit. + */ + + if (HAVE_MMAP && tbase == CMFAIL) /* Try MMAP */ + { + size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING); + if (rsize > nb) /* Fail if wraps around zero */ + { + char* mp = (char*)(CALL_MMAP(rsize)); + if (mp != CMFAIL) + { + tbase = mp; + tsize = rsize; + mmap_flag = USE_MMAP_BIT; + } + } + } + + + if (tbase != CMFAIL) + { + + if ((m->footprint += tsize) > m->max_footprint) + m->max_footprint = m->footprint; + + if (!is_initialized(m)) /* first-time initialization */ + { + if (m->least_addr == 0 || tbase < m->least_addr) + m->least_addr = tbase; + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmap_flag; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + init_bins(m); + + if (is_global(m)) + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + else + { + /* Offset top by embedded malloc_state */ + mchunkptr mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); + } + } + else + { + /* Try to merge with an existing segment */ + msegmentptr sp = &m->seg; + /* Only consider most recent segment if traversal suppressed */ + while (sp != 0 && tbase != sp->base + sp->size) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag && + segment_holds(sp, m->top)) /* append */ + { + sp->size += tsize; + init_top(m, m->top, m->topsize + tsize); + } + else + { + if (tbase < m->least_addr) + m->least_addr = tbase; + sp = &m->seg; + while (sp != 0 && sp->base != tbase + tsize) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag) + { + char* oldbase = sp->base; + sp->base = tbase; + sp->size += tsize; + return prepend_alloc(m, tbase, oldbase, nb); + } + else + add_segment(m, tbase, tsize, mmap_flag); + } + } + + if (nb < m->topsize) /* Allocate from new or extended top space */ + { + size_t rsize = m->topsize -= nb; + mchunkptr p = m->top; + mchunkptr r = m->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + check_top_chunk(m, m->top); + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); + } + } + +// MALLOC_FAILURE_ACTION; + return 0; +} + + +/* ----------------------- system deallocation -------------------------- */ + +/* Unmap and unlink any mmapped segments that don't contain used chunks */ +static size_t release_unused_segments(mstate m) +{ + size_t released = 0; + int nsegs = 0; + msegmentptr pred = &m->seg; + msegmentptr sp = pred->next; + while (sp != 0) + { + char* base = sp->base; + size_t size = sp->size; + msegmentptr next = sp->next; + ++nsegs; + if (is_mmapped_segment(sp) && !is_extern_segment(sp)) + { + mchunkptr p = align_as_chunk(base); + size_t psize = chunksize(p); + /* Can unmap if first chunk holds entire segment and not pinned */ + if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) + { + tchunkptr tp = (tchunkptr)p; + assert(segment_holds(sp, (char*)sp)); + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + else { + unlink_large_chunk(m, tp); + } + if (CALL_MUNMAP(base, size) == 0) + { + released += size; + m->footprint -= size; + /* unlink obsoleted record */ + sp = pred; + sp->next = next; + } + else { /* back out if cannot unmap */ + insert_large_chunk(m, tp, psize); + } + } + } + if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ + break; + pred = sp; + sp = next; + } + /* Reset check counter */ + m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)? + nsegs : MAX_RELEASE_CHECK_RATE); + return released; +} + +static int sys_trim(mstate m, size_t pad) +{ + size_t released = 0; + ensure_initialization(); + if (pad < MAX_REQUEST && is_initialized(m)) + { + pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ + + if (m->topsize > pad) + { + /* Shrink top space in granularity-size units, keeping at least one */ + size_t unit = mparams.granularity; + size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - + SIZE_T_ONE) * unit; + msegmentptr sp = segment_holding(m, (char*)m->top); + + if (!is_extern_segment(sp)) + { + if (is_mmapped_segment(sp)) + { + if (HAVE_MMAP && + sp->size >= extra && + !has_segment_link(m, sp)) /* can't shrink if pinned */ + { + size_t newsize = sp->size - extra; + /* Prefer mremap, fall back to munmap */ + if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || + (CALL_MUNMAP(sp->base + newsize, extra) == 0)) + { + released = extra; + } + } + } + } + + if (released != 0) + { + sp->size -= released; + m->footprint -= released; + init_top(m, m->top, m->topsize - released); + check_top_chunk(m, m->top); + } + } + + /* Unmap any unused mmapped segments */ + if (HAVE_MMAP) + released += release_unused_segments(m); + + /* On failure, disable autotrim to avoid repeated failed future calls */ + if (released == 0 && m->topsize > m->trim_check) + m->trim_check = MAX_SIZE_T; + } + + return (released != 0)? 1 : 0; +} + + + +/* ---------------------------- malloc support --------------------------- */ + +/* allocate a large request from the best fitting chunk in a treebin */ +static void* tmalloc_large(mstate m, size_t nb) { + tchunkptr v = 0; + size_t rsize = -nb; /* Unsigned negation */ + tchunkptr t; + bindex_t idx; + compute_tree_index(nb, idx); + if ((t = *treebin_at(m, idx)) != 0) { + /* Traverse tree for this bin looking for node with size == nb */ + size_t sizebits = nb << leftshift_for_tree_index(idx); + tchunkptr rst = 0; /* The deepest untaken right subtree */ + for (;;) { + tchunkptr rt; + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + v = t; + if ((rsize = trem) == 0) + break; + } + rt = t->child[1]; + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + if (rt != 0 && rt != t) + rst = rt; + if (t == 0) { + t = rst; /* set t to least subtree holding sizes > nb */ + break; + } + sizebits <<= 1; + } + } + if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ + binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; + if (leftbits != 0) { + bindex_t i; + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + t = *treebin_at(m, i); + } + } + + while (t != 0) { /* find smallest of tree or subtree */ + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + t = leftmost_child(t); + } + + /* If dv is a better fit, return 0 so malloc will use it */ + if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { + if (RTCHECK(ok_address(m, v))) { /* split */ + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + insert_chunk(m, r, rsize); + } + return chunk2mem(v); + } + } + CORRUPTION_ERROR_ACTION(m); + } + return 0; +} + +/* allocate a small request from the best fitting chunk in a treebin */ +static void* tmalloc_small(mstate m, size_t nb) +{ + tchunkptr t, v; + size_t rsize; + bindex_t i; + binmap_t leastbit = least_bit(m->treemap); + compute_bit2idx(leastbit, i); + v = t = *treebin_at(m, i); + rsize = chunksize(t) - nb; + + while ((t = leftmost_child(t)) != 0) { + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + } + + if (RTCHECK(ok_address(m, v))) { + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(m, r, rsize); + } + return chunk2mem(v); + } + } + + CORRUPTION_ERROR_ACTION(m); + return 0; +} + +/* --------------------------- memalign support -------------------------- */ + +static void* internal_memalign(mstate m, size_t alignment, size_t bytes) +{ + if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ + return internal_malloc(m, bytes); + if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ + alignment = MIN_CHUNK_SIZE; + if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ + size_t a = MALLOC_ALIGNMENT << 1; + while (a < alignment) a <<= 1; + alignment = a; + } + + if (bytes >= MAX_REQUEST - alignment) { + if (m != 0) { /* Test isn't needed but avoids compiler warning */ +// MALLOC_FAILURE_ACTION; + } + } + else + { + size_t nb = request2size(bytes); + size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; + char* mem = (char*)internal_malloc(m, req); + if (mem != 0) + { + void* leader = 0; + void* trailer = 0; + mchunkptr p = mem2chunk(mem); + + PREACTION(m); + + if ((((size_t)(mem)) % alignment) != 0) /* misaligned */ + { + /* + Find an aligned spot inside chunk. Since we need to give + back leading space in a chunk of at least MIN_CHUNK_SIZE, if + the first calculation places us at a spot with less than + MIN_CHUNK_SIZE leader, we can move to the next aligned spot. + We've allocated enough total room so that this is always + possible. + */ + char* br = (char*)mem2chunk((size_t)(((size_t)(mem + + alignment - + SIZE_T_ONE)) & + -alignment)); + char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? + br : br+alignment; + mchunkptr newp = (mchunkptr)pos; + size_t leadsize = pos - (char*)(p); + size_t newsize = chunksize(p) - leadsize; + + if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ + newp->prev_foot = p->prev_foot + leadsize; + newp->head = newsize; + } + else { /* Otherwise, give back leader, use the rest */ + set_inuse(m, newp, newsize); + set_inuse(m, p, leadsize); + leader = chunk2mem(p); + } + p = newp; + } + + /* Give back spare room at the end */ + if (!is_mmapped(p)) + { + size_t size = chunksize(p); + if (size > nb + MIN_CHUNK_SIZE) + { + size_t remainder_size = size - nb; + mchunkptr remainder = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, remainder, remainder_size); + trailer = chunk2mem(remainder); + } + } + + assert (chunksize(p) >= nb); + assert((((size_t)(chunk2mem(p))) % alignment) == 0); + check_inuse_chunk(m, p); + POSTACTION(m); + if (leader != 0) { + internal_free(m, leader); + } + if (trailer != 0) { + internal_free(m, trailer); + } + return chunk2mem(p); + } + } + return 0; +} + +void* memalign(size_t alignment, size_t bytes) +{ + return internal_memalign(gm, alignment, bytes); +} + + +void* malloc(size_t bytes) +{ + /* + Basic algorithm: + If a small request (< 256 bytes minus per-chunk overhead): + 1. If one exists, use a remainderless chunk in associated smallbin. + (Remainderless means that there are too few excess bytes to + represent as a chunk.) + 2. If it is big enough, use the dv chunk, which is normally the + chunk adjacent to the one used for the most recent small request. + 3. If one exists, split the smallest available chunk in a bin, + saving remainder in dv. + 4. If it is big enough, use the top chunk. + 5. If available, get memory from system and use it + Otherwise, for a large request: + 1. Find the smallest available binned chunk that fits, and use it + if it is better fitting than dv chunk, splitting if necessary. + 2. If better fitting than any binned chunk, use the dv chunk. + 3. If it is big enough, use the top chunk. + 4. If request size >= mmap threshold, try to directly mmap this chunk. + 5. If available, get memory from system and use it + + The ugly goto's here ensure that postaction occurs along all paths. + */ + + ensure_initialization(); /* initialize in sys_alloc if not using locks */ + + PREACTION(gm); + { + void* mem; + size_t nb; + + if (bytes <= MAX_SMALL_REQUEST) + { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = gm->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) /* Remainderless fit to a smallbin. */ + { + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(gm, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(gm, b, p, idx); + set_inuse_and_pinuse(gm, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + else if (nb > gm->dvsize) + { + if (smallbits != 0) /* Use chunk in next nonempty smallbin */ + { + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(gm, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(gm, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(gm, p, small_index2size(i)); + else + { + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(gm, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) + { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else + { + nb = pad_request(bytes); + if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) + { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + + if (nb <= gm->dvsize) { + size_t rsize = gm->dvsize - nb; + mchunkptr p = gm->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = gm->dv = chunk_plus_offset(p, nb); + gm->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + } + else { /* exhaust dv */ + size_t dvs = gm->dvsize; + gm->dvsize = 0; + gm->dv = 0; + set_inuse_and_pinuse(gm, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + else if (nb < gm->topsize) { /* Split top */ + size_t rsize = gm->topsize -= nb; + mchunkptr p = gm->top; + mchunkptr r = gm->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + mem = chunk2mem(p); + check_top_chunk(gm, gm->top); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + mem = sys_alloc(gm, nb); + + postaction: + POSTACTION(gm); + return mem; + } + + return 0; +} + + +void free(void* mem) +{ + /* + Consolidate freed chunks with preceeding or succeeding bordering + free chunks, if they exist, and then place in a bin. Intermixed + with special cases for top, dv, mmapped chunks, and usage errors. + */ + + if (mem != 0) + { + mchunkptr p = mem2chunk(mem); + +#define fm gm + + PREACTION(fm); + { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) + { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) + { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) + { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else + { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) /* consolidate backward */ + { + if (p != fm->dv) + { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) + { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) + { + if (!cinuse(next)) /* consolidate forward */ + { + if (next == fm->top) + { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) + { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) + { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else + { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) + { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) + { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else + { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +#undef fm +} + + diff --git a/drivers/include/ddk.h b/drivers/include/ddk.h new file mode 100644 index 0000000000..1b331f010f --- /dev/null +++ b/drivers/include/ddk.h @@ -0,0 +1,56 @@ + +#ifndef __DDK_H__ +#define __DDK_H__ + +#include + +#define OS_BASE 0x80000000 + +#define PG_SW 0x003 +#define PG_NOCACHE 0x018 + +#define MANUAL_DESTROY 0x80000000 + +typedef struct +{ + u32_t code; + u32_t data[5]; +}kevent_t; + +typedef union +{ + struct + { + u32_t handle; + u32_t euid; + }; + u64_t raw; +}evhandle_t; + +typedef struct +{ + u32_t handle; + u32_t io_code; + void *input; + int inp_size; + void *output; + int out_size; +}ioctl_t; + +typedef int (__stdcall *srv_proc_t)(ioctl_t *); + +#define ERR_OK 0 +#define ERR_PARAM -1 + + +struct ddk_params; + +int ddk_init(struct ddk_params *params); + +u32_t drvEntry(int, char *)__asm__("_drvEntry"); + + + + + +#endif /* DDK_H */ diff --git a/drivers/include/linux/dmapool.h b/drivers/include/linux/dmapool.h new file mode 100644 index 0000000000..a0a9b43aaf --- /dev/null +++ b/drivers/include/linux/dmapool.h @@ -0,0 +1,26 @@ +/* + * include/linux/dmapool.h + * + * Allocation pools for DMAable (coherent) memory. + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#ifndef LINUX_DMAPOOL_H +#define LINUX_DMAPOOL_H + +struct dma_pool *dma_pool_create(const char *name, struct device *dev, + size_t size, size_t align, size_t allocation); + +void dma_pool_destroy(struct dma_pool *pool); + +void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, + dma_addr_t *handle); + +void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t addr); + + +#endif + diff --git a/drivers/include/linux/mutex.h b/drivers/include/linux/mutex.h new file mode 100644 index 0000000000..41f10ecbf5 --- /dev/null +++ b/drivers/include/linux/mutex.h @@ -0,0 +1,86 @@ +/* + * Mutexes: blocking mutual exclusion locks + * + * started by Ingo Molnar: + * + * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar + * + * This file contains the main data structure and API definitions. + */ +#ifndef __LINUX_MUTEX_H +#define __LINUX_MUTEX_H + +#include +#include +#include + +/* + * Simple, straightforward mutexes with strict semantics: + * + * - only one task can hold the mutex at a time + * - only the owner can unlock the mutex + * - multiple unlocks are not permitted + * - recursive locking is not permitted + * - a mutex object must be initialized via the API + * - a mutex object must not be initialized via memset or copying + * - task may not exit with mutex held + * - memory areas where held locks reside must not be freed + * - held mutexes must not be reinitialized + * - mutexes may not be used in hardware or software interrupt + * contexts such as tasklets and timers + * + * These semantics are fully enforced when DEBUG_MUTEXES is + * enabled. Furthermore, besides enforcing the above rules, the mutex + * debugging code also implements a number of additional features + * that make lock debugging easier and faster: + * + * - uses symbolic names of mutexes, whenever they are printed in debug output + * - point-of-acquire tracking, symbolic lookup of function names + * - list of all locks held in the system, printout of them + * - owner tracking + * - detects self-recursing locks and prints out all relevant info + * - detects multi-task circular deadlocks and prints out all affected + * locks and tasks (and only those tasks) + */ +struct mutex { + /* 1: unlocked, 0: locked, negative: locked, possible waiters */ + atomic_t count; + struct list_head wait_list; +}; + +/* + * This is the control structure for tasks blocked on mutex, + * which resides on the blocked task's kernel stack: + */ +struct mutex_waiter { + struct list_head list; + int *task; +}; + + +#define __MUTEX_INITIALIZER(lockname) \ + { .count = ATOMIC_INIT(1) \ + , .wait_list = LIST_HEAD_INIT(lockname.wait_list) } + +#define DEFINE_MUTEX(mutexname) \ + struct mutex mutexname = __MUTEX_INITIALIZER(mutexname) + +void __attribute__ ((fastcall)) __attribute__ ((dllimport)) + mutex_init(struct mutex*)__asm__("MutexInit"); +void __attribute__ ((fastcall)) __attribute__ ((dllimport)) + mutex_lock(struct mutex*)__asm__("MutexLock"); +void __attribute__ ((fastcall)) __attribute__ ((dllimport)) + mutex_unlock(struct mutex*)__asm__("MutexUnlock"); + +/** + * mutex_is_locked - is the mutex locked + * @lock: the mutex to be queried + * + * Returns 1 if the mutex is locked, 0 if unlocked. + */ +static inline int mutex_is_locked(struct mutex *lock) +{ + return atomic_read(&lock->count) != 1; +} + +#endif diff --git a/drivers/include/syscall.h b/drivers/include/syscall.h index d99bb71e1c..5c93ffb56b 100644 --- a/drivers/include/syscall.h +++ b/drivers/include/syscall.h @@ -2,33 +2,6 @@ #ifndef __SYSCALL_H__ #define __SYSCALL_H__ - -#define OS_BASE 0x80000000 - -typedef struct -{ - u32_t code; - u32_t data[5]; -}kevent_t; - -typedef struct -{ - u32_t handle; - u32_t io_code; - void *input; - int inp_size; - void *output; - int out_size; -}ioctl_t; - -typedef int (__stdcall *srv_proc_t)(ioctl_t *); - -#define ERR_OK 0 -#define ERR_PARAM -1 - - -u32_t drvEntry(int, char *)__asm__("_drvEntry"); - /////////////////////////////////////////////////////////////////////////////// #define STDCALL __attribute__ ((stdcall)) __attribute__ ((dllimport)) @@ -40,14 +13,11 @@ u32_t drvEntry(int, char *)__asm__("_drvEntry"); #define SysMsgBoardStr __SysMsgBoardStr #define PciApi __PciApi -//#define RegService __RegService #define CreateObject __CreateObject #define DestroyObject __DestroyObject /////////////////////////////////////////////////////////////////////////////// -#define PG_SW 0x003 -#define PG_NOCACHE 0x018 void* STDCALL AllocKernelSpace(size_t size)__asm__("AllocKernelSpace"); void STDCALL FreeKernelSpace(void *mem)__asm__("FreeKernelSpace"); @@ -59,6 +29,7 @@ int STDCALL UserFree(void *mem)__asm__("UserFree"); void* STDCALL GetDisplay(void)__asm__("GetDisplay"); +u32_t IMPORT GetTimerTicks(void)__asm__("GetTimerTicks"); addr_t STDCALL AllocPage(void)__asm__("AllocPage"); addr_t STDCALL AllocPages(count_t count)__asm__("AllocPages"); @@ -78,8 +49,6 @@ void FASTCALL MutexUnlock(struct mutex*)__asm__("MutexUnlock"); void STDCALL SetMouseData(int btn, int x, int y, int z, int h)__asm__("SetMouseData"); -static u32_t PciApi(int cmd); - u8_t STDCALL PciRead8 (u32_t bus, u32_t devfn, u32_t reg)__asm__("PciRead8"); u16_t STDCALL PciRead16(u32_t bus, u32_t devfn, u32_t reg)__asm__("PciRead16"); u32_t STDCALL PciRead32(u32_t bus, u32_t devfn, u32_t reg)__asm__("PciRead32"); @@ -114,23 +83,52 @@ int dbgprintf(const char* format, ...); /////////////////////////////////////////////////////////////////////////////// - -static inline u32_t CreateEvent(kevent_t *ev, u32_t flags, u32_t *uid) +static inline evhandle_t CreateEvent(kevent_t *ev, u32_t flags) { - u32_t handle; - u32_t euid; + evhandle_t evh; __asm__ __volatile__ ( "call *__imp__CreateEvent" - :"=a"(handle),"=d"(euid) - :"S" (ev), "c"(flags)); + :"=A"(evh.raw) + :"S" (ev), "c"(flags) + :"memory"); __asm__ __volatile__ ("":::"ebx","ecx", "esi", "edi"); - if(uid) *uid = euid; + return evh; +}; +static inline void RaiseEvent(evhandle_t evh, u32_t flags, kevent_t *ev) +{ + __asm__ __volatile__ ( + "call *__imp__RaiseEvent" + ::"a"(evh.handle),"b"(evh.euid),"d"(flags),"S" (ev) + :"memory"); + __asm__ __volatile__ ("":::"ebx","ecx", "esi", "edi"); + +}; + +static inline void WaitEvent(u32_t handle, u32_t euid) +{ + __asm__ __volatile__ ( + "call *__imp__WaitEvent" + ::"a"(handle),"b"(euid)); + __asm__ __volatile__ ("":::"ecx","edx", "esi"); +}; + +static inline u32_t GetEvent(kevent_t *ev) +{ + u32_t handle; + + __asm__ __volatile__ ( + "call *__imp__GetEvent" + :"=a"(handle) + :"D"(ev) + :"memory"); + __asm__ __volatile__ ("":::"ebx","ecx","edx", "esi","edi"); return handle; }; + static inline int GetScreenSize(void) { int retval; @@ -238,10 +236,11 @@ static inline u32_t __PciApi(int cmd) u32_t retval; __asm__ __volatile__ ( - "call *__imp__PciApi" + "call *__imp__PciApi \n\t" + "movzxb %%al, %%eax" :"=a" (retval) :"a" (cmd) - :"memory"); + :"ebx","ecx","edx"); return retval; }; @@ -294,13 +293,10 @@ static inline u32_t safe_cli(void) return ifl; } -static inline void safe_sti(u32_t ifl) +static inline void safe_sti(u32_t efl) { - __asm__ __volatile__ ( - "pushl %0\n\t" - "popf\n" - : : "r" (ifl) - ); + if (efl & (1<<9)) + __asm__ __volatile__ ("sti"); } static inline u32_t get_eflags(void) @@ -317,7 +313,6 @@ static inline void __clear (void * dst, unsigned len) { u32_t tmp; __asm__ __volatile__ ( -// "xorl %%eax, %%eax \n\t" "cld \n\t" "rep stosb \n" :"=c"(tmp),"=D"(tmp) @@ -411,6 +406,9 @@ static inline void * pci_alloc_consistent(struct pci_dev *hwdev, size_t size, addr_t *dma_handle) { + + size = (size + 0x7FFF) & ~0x7FFF; + *dma_handle = AllocPages(size >> 12); return (void*)MapIoMem(*dma_handle, size, PG_SW+PG_NOCACHE); } diff --git a/drivers/usb/uhci/hcd.inc b/drivers/usb/uhci/hcd.inc index b3659616e7..b5a372041e 100644 --- a/drivers/usb/uhci/hcd.inc +++ b/drivers/usb/uhci/hcd.inc @@ -216,6 +216,13 @@ bool init_hc(hc_t *hc) hc->frame_dma = GetPgAddr(hc->frame_base); hc->frame_number = 0; + hc->td_pool = dma_pool_create("uhci_td", NULL, + sizeof(td_t), 16, 0); + if (!hc->td_pool) + { + dbgprintf("unable to create td dma_pool\n"); + goto err_create_td_pool; + } for (i = 0; i < UHCI_NUM_SKELQH; i++) { @@ -336,6 +343,12 @@ bool init_hc(hc_t *hc) }; }; return true; + +err_create_td_pool: + + KernelFree(hc->frame_base); + + return false; }; u16_t __attribute__((aligned(16))) @@ -396,9 +409,10 @@ request_t *create_request(udev_t *dev, endp_t *enp, u32_t dir, { td_t *td, *td_prev; addr_t data_dma; - + hc_t *hc = dev->host; size_t packet_size = enp->size; size_t size = req_size; + addr_t td_dma; request_t *rq = (request_t*)kmalloc(sizeof(request_t),0); @@ -420,7 +434,9 @@ request_t *create_request(udev_t *dev, endp_t *enp, u32_t dir, packet_size = size; }; - td = alloc_td(); + td = dma_pool_alloc(hc->td_pool, 0, &td_dma); + td->dma = td_dma; + td->link = 1; if(rq->td_head == NULL) @@ -465,6 +481,10 @@ bool ctrl_request(udev_t *dev, void *req, u32_t pid, td_t *td0, *td, *td_prev; qh_t *qh; addr_t data_dma = 0; + hc_t *hc = dev->host; + + addr_t td_dma = 0; + bool retval; @@ -476,7 +496,10 @@ bool ctrl_request(udev_t *dev, void *req, u32_t pid, rq->size = req_size; rq->dev = dev; - td0 = alloc_td(); + td0 = dma_pool_alloc(hc->td_pool, 0, &td_dma); + td0->dma = td_dma; + + dbgprintf("alloc td0 %x dma %x\n", td0, td_dma); td0->status = 0x00800000 | dev->speed; td0->token = TOKEN( 8, DATA0, 0, dev->addr, 0x2D); @@ -495,7 +518,11 @@ bool ctrl_request(udev_t *dev, void *req, u32_t pid, packet_size = size; }; - td = alloc_td(); + td = dma_pool_alloc(hc->td_pool, 0, &td_dma); + td->dma = td_dma; + + dbgprintf("alloc td %x dma %x\n", td, td->dma); + td_prev->link = td->dma | 4; td->status = TD_CTRL_ACTIVE | dev->speed; td->token = TOKEN(packet_size, toggle, 0,dev->addr, pid); @@ -509,7 +536,11 @@ bool ctrl_request(udev_t *dev, void *req, u32_t pid, toggle ^= DATA1; } - td = alloc_td(); + td = dma_pool_alloc(hc->td_pool, 0, &td_dma); + td->dma = td_dma; + + dbgprintf("alloc td %x dma %x\n", td, td->dma); + td_prev->link = td->dma | 4; pid = (pid == DIN) ? DOUT : DIN; @@ -573,7 +604,7 @@ bool ctrl_request(udev_t *dev, void *req, u32_t pid, do { td_prev = td->bk; - free_td(td); + dma_pool_free(hc->td_pool, td, td->dma); td = td_prev; }while( td != NULL); diff --git a/drivers/usb/uhci/makefile b/drivers/usb/uhci/makefile index 0de8aff0ee..1d881d94a2 100644 --- a/drivers/usb/uhci/makefile +++ b/drivers/usb/uhci/makefile @@ -26,7 +26,7 @@ USB_SRC:= usb.c USB_OBJ:= usb.obj -LIBS:= -ldrv -lcore +LIBS:= -lddk -lcore USB = usb.dll diff --git a/drivers/usb/uhci/usb.c b/drivers/usb/uhci/usb.c index 44bec1f4a8..d896106373 100644 --- a/drivers/usb/uhci/usb.c +++ b/drivers/usb/uhci/usb.c @@ -1,24 +1,17 @@ -#include +#include #include #include - -//#include -//#include -//#include - - +#include #include #include "usb.h" - int __stdcall srv_usb(ioctl_t *io); bool init_hc(hc_t *hc); static slab_t qh_slab; -static slab_t td_slab; LIST_HEAD( hc_list ); LIST_HEAD( newdev_list ); @@ -63,30 +56,16 @@ u32_t drvEntry(int action, char *cmdline) p->r1 = 0; }; - td_slab.available = 128; - td_slab.start = KernelAlloc(4096); - td_slab.nextavail = (addr_t)td_slab.start; - td_slab.dma = GetPgAddr(td_slab.start); - - td_t *td; - for (i = 0, td = (td_t*)td_slab.start, dma = td_slab.dma; - i < 128; i++, td++, dma+= sizeof(td_t)) - { - td->link = (addr_t)(td+1); - td->status = 0; - td->token = 0; - td->buffer = 0; - td->dma = dma; - }; - - hc = (hc_t*)hc_list.next; while( &hc->list != &hc_list) { - init_hc(hc); + hc_t *tmp = hc; hc = (hc_t*)hc->list.next; - } + + if( !init_hc(tmp)) + list_del(&tmp->list); + }; dbgprintf("\n"); @@ -184,26 +163,6 @@ static void free_qh(qh_t *qh) qh_slab.available++; }; -static td_t* alloc_td() -{ - if( td_slab.available ) - { - td_t *td; - - td_slab.available--; - td = (td_t*)td_slab.nextavail; - td_slab.nextavail = td->link; - return td; - } - return NULL; -}; - -static void free_td(td_t *td) -{ - td->link = td_slab.nextavail; - td_slab.nextavail = (addr_t)td; - td_slab.available++; -}; #include "pci.inc" #include "detect.inc" diff --git a/drivers/usb/uhci/usb.h b/drivers/usb/uhci/usb.h index 447774093a..54629d465e 100644 --- a/drivers/usb/uhci/usb.h +++ b/drivers/usb/uhci/usb.h @@ -51,6 +51,8 @@ typedef struct addr_t iobase; + struct dma_pool *td_pool; + u32_t *frame_base; count_t frame_number; addr_t frame_dma;